# Lecture Notes from February 14, 2023 

taken by Yerbol Palzhanov

### 1.1 Last week

- "Highlights" from last week:
$-A^{\prime \prime}=\bar{A}^{S}=\bar{A}^{W}$
- Schur's Lemma


### 1.2 Warm-up

Let $(\pi, \mathcal{H})$ be an irreducible map of an involutive semigroup $S$, what is $\overline{S p a n ~} \pi(S)^{s}$ ? Proof. Since Span $\pi(S)$ is an algebra:

$$
\begin{aligned}
\overline{\text { Span } \pi(\mathrm{S})}^{\mathrm{S}} & =(\text { Span } \pi(\mathrm{S}))^{\prime \prime} \\
& =(\mathrm{C} 1)^{\prime}=\mathcal{B}(\mathcal{H}) .
\end{aligned}
$$

1.6 Remark. $L^{\infty}(\mu)$ forms a $C^{*}$-algebra with respect to "pointwise" multiplication. We can interpret $L^{\infty}(\mu)$ as a space of functions defined up to sets of measure zero.
1.7 Proposition. Let $f \in L^{\infty}(\mu)$, then ess-ran $(f)$ is compact in $\mathbb{C}$ and $\sigma_{L^{\infty}(\mu)}(f)=$ ess-ran $(f)$.

Proof. Suppose $\lambda \notin$ ess-ran( $f$ ), then there is $\epsilon>0$ such that

$$
\mu(\{x \in \mathcal{X}:|f(x)-\lambda|<\epsilon\})=0 .
$$

For any such $\lambda, \epsilon^{\prime}$ sufficiently small, we get that $\lambda^{\prime} \in B_{\epsilon^{\prime}}(\mathcal{A}), \lambda^{\prime} \notin$ ess-ran $(f)$. Hence, the set of such $\lambda$ is open, so ess-ran $(f)$ is closed.
Note also if $|\lambda|>\|f\|_{\infty}$ then $\lambda \notin$ ess-ran(f), so ess-ran(f) is compact.

Next, we show that there exists $\lambda \in \mathbb{C},|\lambda|=\|f\|_{\infty}, \lambda \in \operatorname{ess}-r a n(f)$.
Let $\mathrm{m}=\|f\|_{\infty}$, and assume

$$
\partial \mathrm{B}_{\mathfrak{m}}(\mathrm{o}) \cap \operatorname{ess-ran}(\mathrm{f})=\emptyset .
$$

Since for each $\lambda$ with $|\lambda|=m$, by (ess-ran $(f))^{c}$ being open, there is $\epsilon(\lambda)>0$ such that

$$
\mathrm{B}_{\epsilon(\lambda)}(\lambda) \cap \operatorname{ess}-\mathrm{ran}(\mathrm{f})=\emptyset .
$$

Using that $\partial \mathrm{B}_{\mathrm{m}}(0)$ is compact, there is a set $\lambda_{1}, \lambda_{2} \ldots \lambda_{n},\left|\lambda_{j}\right|=m$ for each $j$ such that

$$
\partial B_{\mathfrak{m}}(\circ) \subset \cup B_{\epsilon\left(\lambda_{j}\right)}\left(\lambda_{j}\right)
$$

and hence

so there is $\epsilon^{\prime}>0$ such that

$$
\left\{\lambda: \mathfrak{m}-\epsilon^{\prime}<|\lambda|<\mathfrak{m}+\epsilon^{\prime}\right\}
$$

is also covered by this union, hence $\|f\|_{\infty} \leq \mathfrak{m}-\epsilon^{\prime}$, a contradiction to our assumption.
Next, we show if $\lambda \in \operatorname{ess}-r a n(f)$, then $\lambda \in \sigma_{L^{\infty}(\mu)}(f)$. Assume $\lambda \notin \sigma_{L^{\infty}(\mu)}(f)$, so $f-\lambda$ has an inverse in $L^{\infty}(\mu)$, so for some $L>0$,

$$
\mu\left(\left\{x:|f(x)-\lambda|^{-1}>L\right\}\right)=0
$$

and setting $\epsilon=\frac{1}{\mathrm{~L}}$, we get

$$
\mu(\{x:|f(x)-\lambda|<\epsilon\})=0
$$

then by definition, $\lambda \in$ ess-ran(f).
Conversely, if $\lambda \in$ ess-ran $(f)$, then $f-\lambda$ does not have an inverse in $L^{\infty}(\mu)$, so for each $\in>0$,

$$
\{x:|f(x)-\lambda|<\epsilon\}
$$

has non-zero measure thus $\lambda \in \operatorname{ess}-r a n(f)$.
As a consequence of Gelfand's representation theorem, we have :
1.8 Theorem. Let $\Gamma$ be the space of non-trivial homomorphisms from $L^{\infty}(\mu)$ to $\mathbb{C}$, then there is an isometric $*$-isomorphism between $\mathrm{L}^{\infty}(\mu)$ and $\mathrm{C}(\Gamma)$.

We would like to replace $C(\Gamma)$ with a class of functions on the measure space. To motivate this, we consider another example.
1.9 Example. Let $(\mathcal{X}, \mu)$ be a probability space, $\mathcal{H}=L^{2}(\mu)$ and consider $\mathrm{L}^{\infty}(\mu)$ as a space of multiplication operators on $L^{2}(\mu)$, i.e. for $\phi \in L^{\infty}(\mu), f \in L^{2}(\mu)$,

$$
M_{\phi} f=\phi f
$$

Let's study properties of $M_{\phi}$.
1.10 Proposition. For $\phi \in L^{\infty}(\mu), M_{\phi}$ as defined,
(i) $\left\|M_{\phi}\right\| \leq\|\phi\|_{\infty}$
(ii) for any polynomial $\mathrm{P}, \mathrm{M}_{\mathrm{P}(\phi)}=\mathrm{P}\left(\mathrm{M}_{\phi}\right)$
(iii) $M_{\phi}^{*}=M_{\bar{\phi}}$
(iv) if $\phi$ is invertible in $\mathrm{L}^{\infty}(\mu)$ then $\mathrm{M}_{\phi}$ is invertible in $\mathrm{B}(\mathcal{H})$ and $M_{\phi^{-1}}=M_{\phi}^{-1}$
(v) $\mathcal{A}=\left\{M_{\phi}: \phi \in \mathrm{L}^{\infty}(\mu)\right\}$ is a Banach algebra with respect to operator on $\mathcal{H}$.

