MATH 7321 Lecture Notes

Note-taker: Kumari Teena

February 16, 2023

Last Time:

- $L^{\infty}(\mu)$ as a C^* -algebra.
- $L^{\infty}(\mu)$ and associated multiplication operation on $L^{\infty}(\mu)$.

Warm up: Let $T \in \mathcal{B}(\mathcal{H})$ be normal. Show that $T = S^*S$ for some $S \in \mathcal{B}(\mathcal{H})$ if and only if $\sigma(T) \subset [0, \infty)$.

Proof. Assume $T = S^*S$ and let $\lambda \in \sigma(T)$. So, $T - \lambda 1$ is not invertible which means there is a sequence $(v_n)_{n=1}^{\infty}$ such that $||v_n|| = 1$ for each $n \in \mathbb{N}$ and $||(T - \lambda 1)v_n|| \longrightarrow 0$. Hence, $\langle (T - \lambda 1)v_n, v_n \rangle \longrightarrow 0$ and by $T = S^*S$

$$\langle Sv_n, Sv_n \rangle - \lambda ||v_n||^2 \longrightarrow 0,$$

 $||Sv_n||^2 - \lambda ||v_n||^2 \longrightarrow 0.$

Thus, $\lambda \geq 0$ because $||Sv_n||^2 \geq 0$ and $||v_n||^2 \geq 0$. Conversely, if $\sigma(T) \subset [0, \infty)$. We know there is a *-isomorphism between $C^*(T) = A_T = \overline{span\{T^n(T^*)^m : n, m \geq 0\}}$ and $C(\sigma(T))$. Using $\Phi = \mathcal{G}^{-1}$, we get $S = \Phi(f)$ for $f(x) = \sqrt{x}$ such that $S^2 = T$ and $S^* = \Phi(\overline{f}) = \Phi(f) = S$, (since f is real valued). Therefore, $T = S^*S$ where $S \in \mathcal{B}(\mathcal{H})$.

Define $\mathcal{M} = \{\mathcal{M}_{\phi}: \phi \in L^{\infty}(\mu)\}.$

Proposition 1. \mathcal{M} and $L^{\infty}(\mu)$ are isometrically isomorphic as C^* -algebras.

Proof. By properties listed, $\phi \longrightarrow \mathcal{M}_{phi}$ is a *-algebra homomorphism which is contractive.

(To show that the map is an isometry , prove the range of the map is closed sub-algebra of $\mathcal{B}(\mathcal{H})$. Since $\mathcal{B}(\mathcal{H})$ is complete and since the map is an isomorphism. So, they are isometrically the same.)

We show $\|\phi\|_{\infty} = \|\mathcal{M}_{\phi}\|.$

Take $\lambda \in ess - range(\phi)$, and let $\psi = \phi - \lambda$. Then, by $0 \in ess - range(\phi)$, for each $\epsilon > 0$ we have

$$E = \{x \in X : |\psi(x)| < \epsilon\}$$

has non-zero measure and

$$\begin{aligned} \|\mathcal{M}_{\psi}\chi_{E}\|^{2} &= \|\psi\chi_{E}\|^{2} \\ &= \int_{E} |\psi(x)|^{2} d\mu \\ &< \epsilon^{2}\mu(E), \quad as \ |\psi(x)| < \epsilon \ on \ E \end{aligned}$$

$$\Rightarrow \quad \|\mathcal{M}_{\psi}\left(\frac{\chi_{E}}{\mu(E)}\right)\|^{2} < \epsilon^{2}. \end{aligned}$$

Thus, \mathcal{M}_{ψ} is not boundedly invertible, hence neither $\mathcal{M}_{\phi-\lambda}$, and so $\lambda \in \sigma(\mathcal{M}_{\phi})$.

We know that the spectral value satisfies $|\lambda| \leq r(\mathcal{M}_{\phi}) \leq ||\mathcal{M}_{\phi}||$. Hence $||\phi||_{\infty} \leq ||\mathcal{M}_{\phi}||$

The other side inequality can be obtained as follows: we know that the operator \mathcal{M}_{ϕ} is multiplication operator defined by

$$\mathcal{M}_{\phi}(f) = \phi f, \quad \forall \quad f \in L^2(\mu).$$

Then

$$\begin{split} \|\mathcal{M}_{\phi}(f)\|^{2} &= \int |\phi(x)f(x)|^{2}d\mu(x),\\ &\leq \int |\phi(x)|^{2}|f(x)|^{2}d\mu(x),\\ &\leq \|\phi\|_{\infty}^{2} \int |f(x)|^{2}d\mu(x),\\ &= \|\phi\|_{\infty}^{2}\|f\|^{2},\\ &\implies \|\mathcal{M}_{\phi}\| = \sup_{\|f\| \leq 1} \frac{\|\mathcal{M}_{\phi}(f)\|}{\|f\|} \leq \|\phi\|_{\infty}. \end{split}$$

Thus, this implies that $\|\phi\|_{\infty} = \|\mathcal{M}_{\phi}\|.$ We want to establish $L^{\infty}(\mu) = (\mathcal{M}_{C(X)})''.$

Definition 2. An abelian algebra \mathcal{A} of bounded operators on a Hilbert space \mathcal{H} is maximal abelian if it not a proper sub-algebra of a larger abelian algebra of operators on \mathcal{H} .

Proposition 3. The C^* -algebra \mathcal{M} is maximal abelian.

Proof. By μ being a probability measure, $L^{\infty}(\mu) \subset L^{2}(\mu)$. We show that if $T \in \mathcal{B}(\mathcal{H})$ commutes with \mathcal{M} , that is $T \in \mathcal{M}'$, then $T \in \mathcal{M}$. So, there is $\psi \in L^{\infty}(\mu)$ such that $T = \mathcal{M}_{\psi}$. If there is such a ψ , it must be $\psi = T1$ where $1 \in L^{2}(\mu)$. We know for any $\phi \in L^{\infty}(\mu)$

$$T_{\phi} = T\mathcal{M}_{\phi}1 = \mathcal{M}_{\phi}T1 = \mathcal{M}_{\phi\psi},$$

and

$$\|\psi\phi\|_2 = \|T\phi\|_2 \le \|T\| \|\phi\|_2.$$

So, $\|\psi\|_{\infty} \leq \|T\|$.

Because if $\alpha > ||T||$, setting $E = \psi^{-1}((\alpha, \infty))$, then we get $\mu(E) = ||\chi_E||^2 = 0$. Otherwise,

$$|T\chi_E|| = ||\psi\chi_E||^2$$

= $\int |\psi|^2 \chi_E d\mu$
 $\geq \alpha^2 \int \chi_E d\mu$ as $|\psi|^2 \geq \alpha^2$
= $\alpha^2 \mu(E) = \alpha^2 ||\chi_E||^2 \quad \forall \ \alpha \geq ||T||$

Now taking $\alpha_n \downarrow ||T||$, e.g. $\alpha_n = ||T|| + \frac{1}{n}$, gives $||\psi||_{\infty} \leq ||T||$. By span{ $\chi_E : E \text{ is measurable}$ } dense in $L^2(\mu)$ and T bounded/ continuous, we have $Tf = \psi f$ for each $f \in L^2(\mu)$. Hence, $T = \mathcal{M}_{\psi}$.

From this we observe a consequence for the spectrum.

Corollary 4. If $\psi \in L^{\infty}(\mu)$, then $ess - range(\phi) = \sigma_{\mathcal{M}}(\mathcal{M}_{\phi}) = \sigma(\mathcal{M}_{\phi})$, where \mathcal{M}_{ϕ} is operator in $\mathcal{B}(\mathcal{H})$.

Proof. If \mathcal{M}_{ϕ} is as given for some $\phi \in L^{\infty}(\mu)$ and $\lambda \in \rho(\mathcal{M}_{\phi})$ i.e. $(\mathcal{M}_{\phi} - \lambda id)^{-1}$ exists, then \mathcal{M}_{ϕ} commutes with $(\mathcal{M}_{\phi} - \lambda)^{-1}$. Since by previous proposition, \mathcal{M} is maximal abelian, so $(\mathcal{M}_{\phi} - \lambda)^{-1} \in \mathcal{M}$. Thus, $\sigma_{\mathcal{M}}(\mathcal{M}_{\phi}) = \sigma(\mathcal{M}_{\phi})$. Together with $ess - range(\phi) = \sigma_{\mathcal{M}}(\mathcal{M}_{\phi})$, we get the identity. \Box