Lecture Notes from February 23, 2023

taken by Cristian Meraz

Last time:
e Riesz Representation theorem.
e The weak operator topology versus the weak x-topology for L ().
e C(X) is weak *-dense in L>®°(p).
We recall the definitions of cyclic and separating vectors in a Hilbert space.

1.6 Definition. Let H be a Hilbert space, and A subalgebra of B(H). Then v € H is cyclic if

v = H, and separating if Av =0 implies A = 0 for normal A.

Thus, cyclic vectors exhibit a “spanning”-type property, meanwhile separating vectors are
special in that they provide an “easy” test for triviality of normal operators inside a subalgebra.

Warm-up: Let T*T =TT*, T € B(C").
1.7 Question. When does Ayt == Span{T*(T*)™ : {, m > 0} have a cyclic vector?

1.8 Answer. The short answer is: At has a cyclic vector if |o(T)| =n.
In particular, since normal matrices are diagonalizable, we can think of the case when T = [,
the identity matrix. Thus, Ay is one-dimensional. It follows that

FIveCisth. AAv=C" < n=1.

Otherwise, for n > 2, the space A7v is still one-dimensional and thus has no cyclic vectors: The
identity matrix fails so bad because it has n repeated eigenvalues!

Hence, reiterating the short answer: For a normal matrix T acting on C", At has a cyclic
vector if T has no repeated eigenvalues.

Aside: In physics, this is known as non-degeneracy. Degenerate roots of polynomials in
elementary algebra are multiple roots, so we have a connection here whenever the polynomial in
question is the characteristic polynomial of T: We want no degenerate roots.

We begin the class with a lemma.

1.9 Lemma. In a compact metric space X, pointwise limits of decreasing sequences of continuous,
nonnegative functions contain all characteristic functions of closed (compact) subsets.



Proof. Let p be the metric on X. Then for x € X, K C X, let
d(X) K) = inf{p(x,y) ‘y e K}>
denote the distance between x and K. Let K be compact. Then if {@,}2, C C(X) is defined by

(Pn(X) = maX{O) 1— Tld(X, K)}>

. (x) 1 ifxekK
im @n(x) =
? 0 ifxeX\K.

we see that

That is, @, — Xk pointwise, and this proves the lemma.
m

The following theorem can be found as Theorem 4.55 on page 94 in Douglas ([Douglas]).

1.10 Theorem. Let (X,S) be a compact metric space with Borel o-algebra S, and let A1, A;
be finite regular Borel measures on this measurable space. If ® is a x-isometric isomorphism
between 1°(A;) and L°°(A;) such that ©(f) = f for all f € C(X), then Ay ~ A, and ® is the
identity.

Proof. By @ a #-isomorphism, ®(f) > 0 if f > 0. Since @ is the identity on C(X), if a sequence
(@n)22; in C(X) is decreasing and converges pointwise (everywhere), so does @ (¢@n) = @n.
Consequently, @ is also the identity on all functions that are pointwise limits of decreasing se-
quences of continuous functions, i.e., by the preceding lemma, characteristic functions of compact
subsets.

Next, consider a measurable set E. By regularity of A;, there exists a sequence of compact sets
(K7 )22, such that K/ C E, K] C K/, if n” > n, and A;(E\ K/) — 0. Similarly, there exists a
sequence of compact sets (K )%, such that K|/ C E, K/ C K/, if n’ > n, and A;(E\K}]) — 0.
By compactness of K, = K/ UK/ , we have A;(E \ K;) — 0 and A,(E \ K,) — 0. Also,
Xk, are increasing, and by Monotone Convergence theorem, are converging to some f. From
DXk, ) = Xknr M2(fx : f(x) # Xk, (x)}) = 0, so f = xg in (A1) and in L*°(A;2). This
implies by linearity that @ is the identity on simple functions. By simple functions being dense
in L°(A12), @ is the identity operator.

]

Next, we construct a measure for the extension G’ of the Gelfand transform. First, a lemma.

1.11 Lemma. If H is a Hilbert space, A commutative subalgebra of B(H), v cyclic, then v is
separating.

Proof. Consider B € A, Bv = 0. By commutativity, for all A € A,
BAv = ABv =0.

Then Av € ker B. By density of Av, ker B =, which implies B = 0. O



1.12 Theorem. Let T be a normal operator on H, and suppose that Ay (as previously defined in
the warm-up) has a cyclic vector. Then there exists a positive Borel measure, v, on C (or o(T), if
one considers the “trace” topology) with support o(T), an isometric isomorphism ® between H
and L2(v) such that G'(A) = @AD" is an isometric x-isomorphism between A% and L=(v), and
G' extends G from Ay to L*°(v). Finally, if vy is a measure on C, G| a x-isometric isomorphism
from A{ to L*°(vy), then vi ~v, L®(vy) =L*®(v), and G{ = G'.

Proof. Let f be a cyclic vector for Ay, with ||f|| = 1. We define a functional 1 on C(o(T)) by
V(o) = (@(T)f, ).

This is a positive (bounded) linear functional, so by Riesz Representation Theorem, there exists
a regular Borel measure v on o(T) such that for every ¢ € C(o(T)),

<(p(T)f) f) = J - ¢ dv,

and by choosing @ = 1, we have ||f||? =1 = J‘G(T) dv, which implies that v is a probability
measure.
We leave the rest of the proof to next class. n



