Lecture Notes from February 23, 2023

taken by Cristian Meraz

Last time:

- Riesz Representation theorem.
- The weak operator topology versus the weak *-topology for $L^{\infty}(\mu)$.
- C(X) is weak *-dense in $L^{\infty}(\mu)$.

We recall the definitions of cyclic and separating vectors in a Hilbert space.

1.6 Definition. Let \mathcal{H} be a Hilbert space, and \mathcal{A} subalgebra of $B(\mathcal{H})$. Then $v \in \mathcal{H}$ is cyclic if $\overline{\mathcal{A}v} = \mathcal{H}$, and separating if Av = 0 implies A = 0 for normal A.

Thus, cyclic vectors exhibit a "spanning"-type property, meanwhile separating vectors are special in that they provide an "easy" test for triviality of normal operators inside a subalgebra.

Warm-up: Let $T^*T = TT^*$, $T \in B(\mathbb{C}^n)$.

1.7 Question. When does $A_T \coloneqq \text{Span}\{T^{\ell}(T^*)^m : \ell, m \ge 0\}$ have a cyclic vector?

1.8 Answer. The short answer is: A_T has a cyclic vector if $|\sigma(T)| = n$.

In particular, since normal matrices are diagonalizable, we can think of the case when $T = I_n$, the identity matrix. Thus, A_T is one-dimensional. It follows that

$$\exists v \in \mathbb{C}^n \text{ s.th. } \overline{\mathcal{A}_T v} = \mathbb{C}^n \quad \Longleftrightarrow \quad n = 1.$$

Otherwise, for $n \ge 2$, the space $\overline{A_T v}$ is still one-dimensional and thus has no cyclic vectors: The identity matrix fails so bad because it has n repeated eigenvalues!

Hence, reiterating the short answer: For a normal matrix T acting on \mathbb{C}^n , \mathcal{A}_T has a cyclic vector if T has no repeated eigenvalues.

Aside: In physics, this is known as non-degeneracy. Degenerate roots of polynomials in elementary algebra are multiple roots, so we have a connection here whenever the polynomial in question is the characteristic polynomial of T: We want no degenerate roots.

We begin the class with a lemma.

1.9 Lemma. In a compact metric space X, pointwise limits of decreasing sequences of continuous, nonnegative functions contain all characteristic functions of closed (compact) subsets.

Proof. Let ρ be the metric on X. Then for $x \in X$, $K \subset X$, let

$$d(\mathbf{x},\mathsf{K})\coloneqq\inf\{\rho(\mathbf{x},\mathbf{y}):\mathbf{y}\in\mathsf{K}\},\$$

denote the distance between x and K. Let K be compact. Then if $\{\varphi_n\}_{n=1}^{\infty} \subset C(X)$ is defined by

$$\varphi_n(x) = \max\{0, 1 - nd(x, K)\}$$

we see that

$$\lim_{n\to\infty} \varphi_n(x) = \begin{cases} 1 & \text{if } x \in \mathsf{K} \\ 0 & \text{if } x \in \mathsf{X} \setminus \mathsf{K}. \end{cases}$$

That is, $\phi_{\mathfrak{n}} \to \chi_K$ pointwise, and this proves the lemma.

1

The following theorem can be found as Theorem 4.55 on page 94 in Douglas ([**Douglas**]).

1.10 Theorem. Let (X, S) be a compact metric space with Borel σ -algebra S, and let λ_1, λ_2 be finite regular Borel measures on this measurable space. If Φ is a *-isometric isomorphism between $L^{\infty}(\lambda_1)$ and $L^{\infty}(\lambda_2)$ such that $\Phi(f) = f$ for all $f \in C(X)$, then $\lambda_1 \sim \lambda_2$ and Φ is the identity.

Proof. By Φ a *-isomorphism, $\Phi(f) \ge 0$ if $f \ge 0$. Since Φ is the identity on C(X), if a sequence $(\varphi_n)_{n=1}^{\infty}$ in C(X) is decreasing and converges pointwise (everywhere), so does $\Phi(\varphi_n) = \varphi_n$. Consequently, Φ is also the identity on all functions that are pointwise limits of decreasing sequences of continuous functions, i.e., by the preceding lemma, characteristic functions of compact subsets.

Next, consider a measurable set E. By regularity of λ_1 , there exists a sequence of compact sets $(K'_n)_{n=1}^{\infty}$ such that $K'_n \subset E$, $K'_n \subset K'_{n'}$ if $n' \ge n$, and $\lambda_1(E \setminus K'_n) \to 0$. Similarly, there exists a sequence of compact sets $(K''_n)_{n=1}^{\infty}$ such that $K''_n \subset E$, $K''_n \subset K''_{n'}$ if $n' \ge n$, and $\lambda_1(E \setminus K''_n) \to 0$. By compactness of $K_n = K'_n \cup K''_n$, we have $\lambda_1(E \setminus K_n) \to 0$ and $\lambda_2(E \setminus K_n) \to 0$. Also, χ_{K_n} are increasing, and by Monotone Convergence theorem, are converging to some f. From $\Phi(\chi_{K_n}) = \chi_{K_n}, \lambda_{1,2}(\{x : f(x) \ne \chi_{K_n}(x)\}) = 0$, so $f = \chi_E$ in $L^{\infty}(\lambda_1)$ and in $L^{\infty}(\lambda_2)$. This implies by linearity that Φ is the identity on simple functions. By simple functions being dense in $L^{\infty}(\lambda_{1,2})$, Φ is the identity operator.

Next, we construct a measure for the extension \mathcal{G}' of the Gelfand transform. First, a lemma.

1.11 Lemma. If \mathcal{H} is a Hilbert space, \mathcal{A} commutative subalgebra of $B(\mathcal{H})$, ν cyclic, then ν is separating.

Proof. Consider $B \in A$, Bv = 0. By commutativity, for all $A \in A$,

$$BAv = ABv = 0.$$

Then $Av \in \ker B$. By density of Av, $\ker B = H$, which implies B = 0.

1.12 Theorem. Let T be a normal operator on \mathcal{H} , and suppose that \mathcal{A}_T (as previously defined in the warm-up) has a cyclic vector. Then there exists a positive Borel measure, ν , on \mathbb{C} (or $\sigma(T)$, if one considers the "trace" topology) with support $\sigma(T)$, an isometric isomorphism Φ between \mathcal{H} and $L^2(\nu)$ such that $\mathcal{G}'(A) = \Phi A \Phi^{-1}$ is an isometric *-isomorphism between \mathcal{A}_T'' and $L^{\infty}(\nu)$, and \mathcal{G}' extends \mathcal{G} from \mathcal{A}_T to $L^{\infty}(\nu)$. Finally, if ν_1 is a measure on \mathbb{C} , \mathcal{G}_1' a *-isometric isomorphism from \mathcal{A}_T'' to $L^{\infty}(\nu_1)$, then $\nu_1 \sim \nu$, $L^{\infty}(\nu_1) = L^{\infty}(\nu)$, and $\mathcal{G}_1' = \mathcal{G}'$.

Proof. Let f be a cyclic vector for A_T , with ||f|| = 1. We define a functional ψ on $C(\sigma(T))$ by

$$\psi(\varphi) = \langle \varphi(\mathsf{T})\mathsf{f}, \mathsf{f} \rangle.$$

This is a positive (bounded) linear functional, so by Riesz Representation Theorem, there exists a regular Borel measure ν on $\sigma(T)$ such that for every $\varphi \in C(\sigma(T))$,

$$\langle \phi(\mathsf{T})\mathsf{f},\mathsf{f}\rangle = \int_{\sigma(\mathsf{T})} \phi \, d\nu,$$

and by choosing $\phi=1,$ we have $\|f\|^2=1=\int_{\sigma(T)}\,d\nu,$ which implies that ν is a probability measure.

We leave the rest of the proof to next class.