
Lecture Notes from February 23, 2023
taken by Cristian Meraz

Last time:

• Riesz Representation theorem.

• The weak operator topology versus the weak ∗-topology for L∞(µ).

• C(X) is weak ∗-dense in L∞(µ).

We recall the definitions of cyclic and separating vectors in a Hilbert space.

1.6 Definition. Let H be a Hilbert space, and A subalgebra of B(H). Then v ∈ H is cyclic if
Av = H, and separating if Av = 0 implies A = 0 for normal A.

Thus, cyclic vectors exhibit a “spanning”-type property, meanwhile separating vectors are
special in that they provide an “easy” test for triviality of normal operators inside a subalgebra.

Warm-up: Let T ∗T = TT ∗, T ∈ B(Cn).
1.7 Question. When does AT := Span{T `(T ∗)m : `,m ≥ 0} have a cyclic vector?

1.8 Answer. The short answer is: AT has a cyclic vector if |σ(T)| = n.
In particular, since normal matrices are diagonalizable, we can think of the case when T = In,

the identity matrix. Thus, AT is one-dimensional. It follows that

∃v ∈ Cn s.th. ATv = Cn ⇐⇒ n = 1.

Otherwise, for n ≥ 2, the space ATv is still one-dimensional and thus has no cyclic vectors: The
identity matrix fails so bad because it has n repeated eigenvalues!

Hence, reiterating the short answer: For a normal matrix T acting on Cn, AT has a cyclic
vector if T has no repeated eigenvalues.

Aside: In physics, this is known as non-degeneracy. Degenerate roots of polynomials in
elementary algebra are multiple roots, so we have a connection here whenever the polynomial in
question is the characteristic polynomial of T : We want no degenerate roots.

We begin the class with a lemma.

1.9 Lemma. In a compact metric space X, pointwise limits of decreasing sequences of continuous,
nonnegative functions contain all characteristic functions of closed (compact) subsets.
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Proof. Let ρ be the metric on X. Then for x ∈ X, K ⊂ X, let

d(x, K) := inf{ρ(x, y) : y ∈ K},

denote the distance between x and K. Let K be compact. Then if {ϕn}
∞
n=1 ⊂ C(X) is defined by

ϕn(x) = max{0, 1− nd(x, K)},

we see that

lim
n→∞ϕn(x) =

{
1 if x ∈ K
0 if x ∈ X \ K.

That is, ϕn → χK pointwise, and this proves the lemma.

The following theorem can be found as Theorem 4.55 on page 94 in Douglas ([Douglas]).

1.10 Theorem. Let (X,S) be a compact metric space with Borel σ-algebra S, and let λ1, λ2
be finite regular Borel measures on this measurable space. If Φ is a ∗-isometric isomorphism
between L∞(λ1) and L∞(λ2) such that Φ(f) = f for all f ∈ C(X), then λ1 ∼ λ2 and Φ is the
identity.

Proof. By Φ a ∗-isomorphism, Φ(f) ≥ 0 if f ≥ 0. Since Φ is the identity on C(X), if a sequence
(ϕn)

∞
n=1 in C(X) is decreasing and converges pointwise (everywhere), so does Φ(ϕn) = ϕn.

Consequently, Φ is also the identity on all functions that are pointwise limits of decreasing se-
quences of continuous functions, i.e., by the preceding lemma, characteristic functions of compact
subsets.

Next, consider a measurable set E. By regularity of λ1, there exists a sequence of compact sets
(K ′n)

∞
n=1 such that K ′n ⊂ E, K ′n ⊂ K ′n ′ if n ′ ≥ n, and λ1(E \ K ′n) → 0. Similarly, there exists a

sequence of compact sets (K ′′n)
∞
n=1 such that K ′′n ⊂ E, K ′′n ⊂ K ′′n ′ if n ′ ≥ n, and λ1(E \K

′′
n)→ 0.

By compactness of Kn = K ′n ∪ K ′′n , we have λ1(E \ Kn) → 0 and λ2(E \ Kn) → 0. Also,
χKn are increasing, and by Monotone Convergence theorem, are converging to some f. From
Φ(χKn) = χKn , λ1,2({x : f(x) 6= χKn(x)}) = 0, so f = χE in L∞(λ1) and in L∞(λ2). This
implies by linearity that Φ is the identity on simple functions. By simple functions being dense
in L∞(λ1,2), Φ is the identity operator.

Next, we construct a measure for the extension G ′ of the Gelfand transform. First, a lemma.

1.11 Lemma. If H is a Hilbert space, A commutative subalgebra of B(H), v cyclic, then v is
separating.

Proof. Consider B ∈ A, Bv = 0. By commutativity, for all A ∈ A,

BAv = ABv = 0.

Then Av ∈ kerB. By density of Av, kerB = H, which implies B = 0.
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1.12 Theorem. Let T be a normal operator on H, and suppose that AT (as previously defined in
the warm-up) has a cyclic vector. Then there exists a positive Borel measure, ν, on C (or σ(T), if
one considers the “trace” topology) with support σ(T), an isometric isomorphism Φ between H
and L2(ν) such that G ′(A) = ΦAΦ−1 is an isometric ∗-isomorphism betweenA ′′T and L∞(ν), and
G ′ extends G from AT to L∞(ν). Finally, if ν1 is a measure on C, G ′1 a ∗-isometric isomorphism
from A ′′T to L∞(ν1), then ν1 ∼ ν, L

∞(ν1) = L
∞(ν), and G ′1 = G ′.

Proof. Let f be a cyclic vector for AT , with ‖f‖ = 1. We define a functional ψ on C(σ(T)) by

ψ(ϕ) = 〈ϕ(T)f, f〉.

This is a positive (bounded) linear functional, so by Riesz Representation Theorem, there exists
a regular Borel measure ν on σ(T) such that for every ϕ ∈ C(σ(T)),

〈ϕ(T)f, f〉 =
∫
σ(T)

ϕdν,

and by choosing ϕ = 1, we have ‖f‖2 = 1 =
∫
σ(T)

dν, which implies that ν is a probability
measure.

We leave the rest of the proof to next class.
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