Lecture Notes from February 28, 2023

taken by Dipanwita Bose

Last Time

Towards extended functional calculus.

Finishing the theorem from last time-

Warm-up Let (K, ρ, μ) be a Borel measure space for a compact set $K \subset \mathbb{C}$. Let $\mathcal{H} = \mathcal{L}^2(\mu)$, then

$$\mathcal{M}_{C(K)} \equiv \{M_{\varphi} : \varphi \in C(K)\}$$

forms a commutative $C^*\mbox{-algebra}$ on ${\mathcal H}$

Q1. Does $\mathcal{M}_{C(K)}$ have a cyclic vector?

The answer is Yes. Take f = 1 (the characteristic function on K. Then $M_{\varphi}(f) = M_{\varphi}(1) = \varphi$ for any $\varphi \in C(K)$ and by C(K) being a dense linear subspace in $L^2(\mu)$, we have a cyclic vector.

Q1. If $\phi \in C(K)$, find conditions such that for $T = M_{\phi}$, $\Delta_T = \overline{\text{span}\{T^n(T^*)^m; n, m \ge 0\}}^{\|.\|}$ has a cyclic vector.

If we can show that span{ $\phi^n \overline{\phi}^m$ } is dense in $\mathcal{L}^2(\mu)$, then we have a cyclic vector given by 1(Consider the case when $\phi = 1$,then since we know that $\overline{M_{C(K)}} = \mathcal{L}^2(\mu)$. We also have that $M_{\phi}(f) = f$ for any $f \in \mathcal{L}^2(\mu)$. Since K is compact and using Stone-Weierstrass Theorem, since $M_{\phi} \in C(K)$ is a separating subset of C(K). Then the complex unital *-algebra generated by M_{ϕ} namely Δ_T is dense in C(K). Now since C(K) is dense in $\mathcal{L}^2(\mu)$, we say that Δ_T is a dense linear supspace in $\mathcal{L}^2(\mu)$ and has a cyclic vector 1).

The above diagram commutes where μ is a Borel measure of $\sigma(T)$ and \mathcal{G} is an isometry in terms of C*-algebra and the map from \mathcal{A}_T to $\{T\}''$ is an embedding.

2.6 Theorem. Let Tbe a normal operator in \mathcal{H} , \mathcal{A}_T has cyclic vector, then there is a positive regular Borel measure ν on \mathbb{C} , $supp(\nu) = \sigma(T)$, isometric isomorphism γ from \mathcal{H} to $\mathcal{L}^2(\nu)$ such that $\mathcal{G}'(A) = \gamma A \gamma^{-1}$ is a *-isometric isomorphism from \mathcal{A}''_T to $\mathcal{L}^{\infty}(\nu)$, and \mathcal{G}' is a *- isomorphic isomorphism from \mathcal{A}''_T to $\mathcal{L}^{\infty}(\nu)$.

Moreover, if there is a measure ν_1 on \mathbb{C} , \mathcal{G}'_1 a *-isomorphism from \mathcal{A}''_T to $\mathcal{L}^{\infty}(\nu_1)$ extending \mathcal{G} , then $\nu_1 \sim \nu$, and

$$\mathcal{L}^{\infty}(\mathbf{v}_1) = \mathcal{L}^{\infty}(\mathbf{v})$$

and $\mathcal{G}'_1 = \mathcal{G}'$

Proof. We had taken f cyclic to \mathcal{A}_T . Now Consider the map $\psi : C(\sigma(T)) \to \mathbb{C}$ defined as

$$\psi(\phi) \equiv \langle \phi(\mathsf{T})\mathsf{f}, \mathsf{f} \rangle$$

We have seen that there is a regular Borel measure ν on \mathbb{C} such that for all $\phi \in C(\mathbb{C})$,

$$\psi(\varphi) \equiv \langle \varphi(\mathsf{T})\mathsf{f}, \mathsf{f} \rangle \int \varphi d\nu$$

and taking $\phi = 1$ gives that ν is a probability measure.

Next we show that $\sigma(T)$ is the support of ν .

If it were not, we would find a relatively open set $\emptyset \neq U \subset \sigma(T)(U = A \cap \mathbb{C})$, where A is open in \mathbb{C}) such that $\nu(U) = 0$. Using Urysohn's Lemma, taking $\varphi \in C(\sigma(T))$ such that $\varphi \geq 0$, $\varphi(x) = 1$ for some $x \in U$ and $\varphi|_{U^c} = 0$ gives a contradiction because then

$$\langle \sqrt{Q(T)} f, \sqrt{Q(T)} f \rangle = \int \phi d\nu$$

= 0

So Q(T) annihilates f but $h \in A_T$ and f is cyclic, then f is separating (Lemma from Last time). So we would get $\phi(T) = 0$ but $\phi \neq 0$ as \mathcal{G} acts between continuous functions with the sup-norm and the bounded operator. Therefore, $\sigma(T) = supp(\nu)$. We now define

$$\Phi: \mathcal{A}_{\mathsf{T}}\mathsf{f} \mapsto \mathsf{C}(\sigma(\mathsf{T}))$$

by

$$\phi(\mathsf{T})\mathsf{f} \mapsto \phi$$

Then Φ is an isometry if we equip $\mathcal{A}_T f$ with the norm $\|\varphi(T)f\| = \|\varphi\|_{\mathcal{L}^2(\nu)}$. By definition,

$$\| \Phi(T) f \|^{2} = \langle (\Phi(T))^{*} \Phi(T) f, f \rangle$$
$$= \langle | \Phi(T) |^{2} f, f \rangle$$
$$= \int_{\sigma} (T) | \Phi |^{2} d\nu$$
$$= \| \Phi \|_{\mathcal{L}^{2}}$$

The norm on $\mathcal{A}_T f$ coincides with the norm on \mathcal{H} . So, we have Φ is a isometry that extends to a map defined on \mathcal{H} .

We also note that we can get any continuous functions being dense in $\mathcal{L}^2(\nu)$ and included in $Ran(\Phi)$, the range of the extended isometry is all of $\mathcal{L}^{\in}(\nu)$, so Φ is unitary.

Next, we define \mathcal{G}' from T" to $\mathcal{B}(\mathcal{L}^2(\mathbf{v}))$ by

$$\mathcal{G}'(\mathsf{A}) = \Phi \mathsf{A} \Phi^{-1}$$

Next we show that $\mathcal{G}'|_{\mathcal{A}_T}=\mathcal{G}(\text{i.e.},\,\mathcal{G}'\text{ extends the Gelfand transform})$. For any $\varphi\in C(\sigma(T)),\;g\in C(\sigma(T)),$

$$\mathcal{G}'(\phi(T))g = (\Phi\phi(T)\Phi^{-1})g$$
$$= \Phi(\phi(T))g(T)f$$
$$= \Phi(\phi g(T))f$$
$$= \phi g$$
$$= M_{\phi}g$$

i.e., any continuous function of T corresponds to a multiplication operator. It is true for all $g \in C(\sigma(T))$ and then by continuity (and boundedness) of $\mathcal{G}'(\varphi(T))$, this identity holds for each $g \in \mathcal{L}^2(\nu)$. Now using $\mathcal{A}_T'' = \overline{\mathcal{A}_T}^{WOT}$ (By Bicommutant theorem) and $\overline{C(\sigma(T))}^{W^*} = \mathcal{L}^\infty(\nu)$ (as $\overline{C(\sigma(T))}^{W^*} = \overline{C(\sigma(T))}^{WOT}$), we get that \mathcal{G}' is a *-isometric isomorphism between \mathcal{A}_T'' and $\mathcal{L}^\infty(\nu)$