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taken by Bernhard Bodmann

Last time

• Maximality and cyclic vectors.

• Reproducing kernels.

We continue with the proof of the lemma from last time.

2.2 Lemma. Let M be a set and H ⊂ CM a Hilbert space such that for each m ∈M,

Λm : f 7→ f(m)

is a continuous linear functional, then there exists a function K :M×M→ C with the following
properties:

(1) For y ∈M, Ky ≡ K(·, y) ∈ H gives for all f ∈ H,

〈f, Ky〉 = f(y) .

(2) For every finite {x1, · · · , xn} ⊂M, the matrix (K(xj, xl))
n
j,l=1 is positive semidefinite.

(3) The set {Ky : y ∈M} is total in H, i.e. has dense linear span in H.

(4) If {ej}j∈J is an orthonormal basis and x, y ∈M, we have that

K(x, y) =
∑
j∈J

ej(x)ej(y).

Proof. We had already shown (1) and (2). The property (3) follows from f ⊥ {Km : m ∈ M}

implying f(m) = 0 for each m ∈ M, so the orthogonal complement of {Km : m ∈ M} is {0},
hence the span of the set of kernel functions is dense. Finally, we obtain (4) from the properties
of the orthonormal basis,

Ky =
∑
j∈J

〈Ky, ej〉ej

and by taking the inner product of both sides with Kx.
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This lemma shows that having a Hilbert space of functions for which all point evaluation
functionals gives a positive kernel. The converse holds, too, so each positive kernel K determines
a Hilbert space with bounded point evaluation functionals.

2.3 Theorem. Let K be a positive kernel on M, then we can equip H0 = span{Ky : y ∈ M}

with an inner product

〈
∑
j

cjKyj ,
∑
k

dkKyk〉 =
∑
j,k

cjdkK(yk, yj) .

For this space, we have f(y) = 〈f, Ky〉 for each f ∈ H0 and y ∈ M. The completion of H0
is a Hilbert space of functions on M with continuous point evaluation functionals and K is the
corresponding kernel according to the lemma.

Proof. We first need to show that the inner product is well defined. To this end, we note that
for f =

∑
j cjKyj and h =

∑
k dkKyk , the value∑

j,k

cjdkK(yk, yj) =
∑
j,k

cjdkKyj(yk) =
∑
k

dkf(yk)

depends only on f, not on the particular way f was written as a linear combination of kernel
functions. Similarly, the above value depends only on h, not on the explicit expression in terms
of the kernel functions. This permits us to write

〈f, h〉 =
∑
j,k

cjdkK(yk, yj) .

By the positivity of the kernel, this defines a positive semidefinite sesquilinear form on H0. From
the definition, setting h = Ky, we get 〈f, Ky〉 = f(y). If 〈f, f〉 = 0, then for each y ∈ M,
|f(y)|2 ≤ K(y, y)〈f, f〉 = 0, so f is the zero function. This shows that the sequilinear form is
positive definite.

Let HK be the completion of this inner product space, then the set {Ky : y ∈ M} is total,
because its span is H0. Thus, we can identify each f ∈ HK with a function f : M → C,
f(y) = 〈f, Ky〉, and the point evaluation functionals are obtained as inner products with the
kernel functions.

Next, we investigate how the choice of the kernel reflects in properties of the associated
Hilbert space.

2.4 Lemma. Let K and L be positive kernels on M, then K+ L is a positive kernel and

HK+L = HK +HL ≡ {f+ h : f ∈ HK, h ∈ HL} .

Proof. Since the sum of two positive semidefinite matrices is positive semidefinite, Q = K+ L is
a psotive kernel on M. Consider X = HK ⊕HL and define

Φ : X → HK +HL, (f, h) 7→ f+ h .
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The kernel of Φ consists of (f, h) ∈ X : f(y) = h(y) = 0, which can be rewritten as

kerΦ = {(f, g) : 〈(f, h), (Ky, Ly)〉 = 0 : y ∈M} .

In particular, the kernel is closed and its perp is given by the span of {(Ky, Ly) : y ∈M}. From the
decomposition of the direct sum into kerΦ and the orthogonal complement, kerΦ⊥ is realized
as a reproducing kernel on M, whose reproducing kernel is given by

(x, y) 7→ 〈(Ky, Ly), (Kx, Lx)〉 = 〈Ky, Kx〉+ 〈Ly, Lx〉 = K(x, y) + L(x, y) .
This shows HK +HL = HK+L.
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