Lecture Notes from March 9, 2023

taken by Bernhard Bodmann

1.1 Last time

- Reproducing kernel Hilbert spaces ,
- Relationships between reproducing kernels and associated Hilbert spaces.

1.2 Warm up

For a matrix $A \in M_n(\mathbb{C})$, show that all the non-zero the eigenvalues of AA^* and of A^*A form the same set.

To see this, we note that if $AA^*x = \lambda x$, then defining $y = A^*x$, if $||y||^2 = ||A^*x||^2 = \langle AA^*x, x \rangle = \lambda ||x||^2 \neq 0$, we obtain $A^*Ay = A^*AA^*x = \lambda A^*x = \lambda y$, so y is an eigenvector of A^*A corresponding to eigenvalue $\lambda \neq 0$. Switching the roles of A and A^* gives the converse.

1.3 Inclusions of reproducing kernel spaces

We continue the relationship between kernel functions and spaces.

1.2 Lemma. Let L and K be two positive kernels on M, then the following holds:

- (i) The inclusion $\mathcal{H}_K \subset \mathcal{H}_K$ is equivalent to the existence of C > 0 such that CL K is a positive kernel.
- (ii) If $\mathcal{H}_K \subset \mathcal{H}_L$, then the canonical inclusion map $i : \mathcal{H}_K \to \mathcal{H}_L$, i(f) = f is a continuous linear map.

Proof. First let us assume Q = CL - K is a positive kernel. Then Q + K = CL and with the preceding lemma, we get

$$\mathcal{H}_{L} = \mathcal{H}_{CL} = \mathcal{H}_{K} + \mathcal{H}_{Q},$$

so $\mathcal{H}_K \subset \mathcal{H}_L$. Conversely, assume $\mathcal{H}_K \subset \mathcal{H}_L$, and let I be the canonical embedding. We show it is a continuous linear map. To this end, we use the closed graph theorem. Let us assume $f_n \to f$ in \mathcal{H}_K and assume $\mathfrak{i}(f_n) = f_n \to h$ in \mathcal{H}_L . We want to show $h = \mathfrak{i}(f) = f$. For $x \in M$, we use continuity of the inner products to get

$$f(x) = \langle f, K_x \rangle = \lim_n \langle f_n, K_x \rangle = \lim_n f_n(x) = \lim_n \langle i(f_n), L_x \rangle = \lim_n \langle f_n, L_x \rangle = h(x) \,.$$

By the closed graph theorem, i is bounded. We return to the second part of (i). Since i is continuous, so is ii^* Moreover, we have

$$i^*L_x = K_x$$

for each $x \in M$, because $\langle f, i^*L_x \rangle = \langle i(f), L_x \rangle = f(x) = \langle f, K_x \rangle$ for each $f \in \mathcal{H}_K$, $x \in M$. Choosing $f = K_y$ gives

$$\langle \mathfrak{i}\mathfrak{i}^*L_\mathfrak{y},L_\mathfrak{x}\rangle = \langle \mathfrak{i}K_\mathfrak{y},L_\mathfrak{x}\rangle = K_\mathfrak{y}(\mathfrak{x}) = K(\mathfrak{x},\mathfrak{y}).$$

Setting $C = \|i\|^2$ and let the map $D = C1 - ii^*$, then for each $\nu \in \mathcal{H}_L$,

$$\langle \mathrm{D} \nu, \nu \rangle = \mathrm{C} \| \nu \|^2 - \| \mathfrak{i}^* \nu \|^2 \ge 0$$
.

Next, we define $Q(x, y) = \langle DL_y, L_x \rangle$ and observe that by definition of D, Q = CL - K. By the positivity of D, we can then verify that Q is a positive kernel.

2 States and positivity

Next, we prepare the GNS representation. To this end, we need the concept of states.

2.1 Definition. A Hermitian element a in a C*-algebra A is called positive, if $\sigma(a) \subset \mathbb{R}^+$. We write $a \ge 0$ and also denote the set of positive elements of A by A^+ .

2.2 Example. Let $\mathcal{A} = C(X)$ for compact X, then $\sigma(f) = f(X)$ and $f \ge 0$ if and only f has values in \mathbb{R}^+ .