Positive Functionals and States Manpreet Singh March 21, 2023

Last Time

• Reproducing Kernel spaces and properties.

Warm up

Question: If $A \in M_n(\mathbb{C})$ then AA^* and A^*A have the same eigenvalues except possibly for $\lambda = 0$.

Solution: Let $A^*Ax = \lambda x$ with $\lambda \neq 0$, $x \neq 0$. Let y = Ax then by $x \neq 0$ and $||Ax||^2 = \langle Ax, Ax \rangle = \langle A^*Ax, x \rangle = \langle x, x \rangle = \lambda ||x||^2 \neq 0$. We get $y = Ax \neq 0$. Note that $AA^*y = AA^*Ax = \lambda Ax = \lambda y$. Thus, y is an eigen vector corresponding to eigen value λ for AA^* . Therefore, $\sigma(A^*A) \setminus \{0\} \subset \sigma(AA^*) \setminus \{0\}$. By switching the roles between A and A^* , we get the reverse inclusion.

Postive Functionals and States

0.1 Definition. A normal element of a C^* -algebra \mathcal{A} is called positive if $\sigma(a) \subset \mathbb{R}^+$. We write $a \geq 0$ and let \mathcal{A}^+ denote the positive elements in \mathcal{A} .

0.2 Example. If X is compact, $\mathcal{A} = C(X)$, then for $f \in \mathcal{A}$, $\sigma(f) = f(X)$, so $f \ge 0$ iff f has values in $[0, \infty)$.

0.3 Lemma. If \mathcal{A} is a complex algebra with unit and $x, y \in \mathcal{A}$, then $\sigma(xy) \setminus \{0\} = \sigma(yx) \setminus \{0\}$.

Proof. We want to show if $\lambda \neq 0$, $\lambda 1 - xy$ has an inverse if and only if $\lambda 1 - yx$ does. Without loss of generality, let $\lambda = 1$, otherwise divide both $\lambda 1 - xy$ and $\lambda 1 - yx$ by λ . Let 1 - xy be invertible and $z = (1 - xy)^{-1}$. Define a := 1 + yzx then left multiplying and right multiplying both sides of (1 - xy)xy = xy(1 - xy) by z gives xyz = zxy. Also $xy = 1 - z^{-1}$, so we get $xyz = zxy = z(1 - z^{-1}) = z - zz^{-1} = z - 1$. Now

$$a(1 - yx) = (1 + yzx)(1 - yx)$$
$$a(1 - yx) = 1 + yzx - yx - yzxyx$$
$$a(1 - yx) = 1 + yzx - yx - y(z - 1)x$$

$$a(1 - yx) = 1 + yzx - yx - yzx + yx$$
$$a(1 - yx) = 1$$

So, $a = (1 - yx)^{-1}$. By exchanging roles of xandy, proves our claim.

We use this lemma to deduce properties of positive elements in C^* -algebras.

0.4 Lemma. Let A be a C^* -algebra with unit and $a \in A$, then

- 1. if $a \ge 0$, then there is a unique $b \in \mathcal{A}^+$ with $b^2 = a$.
- 2. if a is Hermitian, then there is a unique pair $a_+, a_- \in A^+$ such that $a = a_+ a_-$ and $a_+a_- = a_-a_+ = 0$.
- 3. if $a, b \in \mathcal{A}^+$ then $a + b \in \mathcal{A}^+$.
- 4. if $-aa^* \ge 0$ then a = 0.
- *Proof.* 1. We recall Gelfand's representation, mapping $a \mapsto \hat{a}$, with $\mathcal{P} \in \tau$, $\hat{a}(\mathcal{P}) \equiv \mathcal{P}(a)$. By $a \geq 0$, we get $\hat{a} : \tau \to \mathbb{R}^+$. Taking $\hat{b} = \sqrt{\hat{a}} : \mathcal{P} \mapsto \sqrt{\mathcal{P}(a)}$ then gives $b^2 = a$ and $b \geq 0$. For the uniqueness, let $c \geq 0$, $c^2 = a$, then $ca = c^3 = ac$. So $\{1, c, a\}$ generates a commutative C^* - subalgebra $\mathcal{A}' \subset \mathcal{A}$. We have $c \geq 0$ in \mathcal{A}' , but also $b \in \mathcal{A}'$ and $b \geq 0$ and both satisfy $c^2 = b^2 = a$. Using Gelfand's representation for \mathcal{A}' , then shows $\hat{c} = \hat{b} = \sqrt{\hat{a}}$.