Positive Functionals and States Manpreet Singh March 21, 2023

Last Time

- Reproducing Kernel spaces and properties.

Warm up

Question: If $A \in M_{n}(\mathbb{C})$ then $A A^{*}$ and $A^{*} A$ have the same eigenvalues except possibly for $\lambda=0$.
Solution: Let $A^{*} A x=\lambda x$ with $\lambda \neq 0, x \neq 0$. Let $y=A x$ then by $x \neq 0$ and $\|A x\|^{2}=$ $\langle A x, A x\rangle=\left\langle A^{*} A x, x\right\rangle=\langle x, x\rangle=\lambda\|x\|^{2} \neq 0$. We get $y=A x \neq 0$. Note that $A A^{*} y=$ $A A^{*} A x=\lambda A x=\lambda y$. Thus, y is an eigen vector corresponding to eigen value λ for $A A^{*}$. Therefore, $\sigma\left(A^{*} A\right) \backslash\{0\} \subset \sigma\left(A A^{*}\right) \backslash\{0\}$. By switching the roles between A and A^{*}, we get the reverse inclusion.

Postive Functionals and States

0.1 Definition. A normal element of a C^{*}-algebra \mathcal{A} is called positive if $\sigma(a) \subset \mathbb{R}^{+}$. We write $a \geq 0$ and let \mathcal{A}^{+}denote the positive elements in \mathcal{A}.
0.2 Example. If X is compact, $\mathcal{A}=C(X)$, then for $f \in \mathcal{A}, \sigma(f)=f(X)$, so $f \geq 0$ iff f has values in $[0, \infty)$.
0.3 Lemma. If \mathcal{A} is a complex algebra with unit and $x, y \in \mathcal{A}$, then $\sigma(x y) \backslash\{0\}=\sigma(y x) \backslash\{0\}$.

Proof. We want to show if $\lambda \neq 0, \lambda 1-x y$ has an inverse if and only if $\lambda 1-y x$ does. Without loss of generality, let $\lambda=1$, otherwise divide both $\lambda 1-x y$ and $\lambda 1-y x$ by λ. Let $1-x y$ be invertible and $z=(1-x y)^{-1}$. Define $a:=1+y z x$ then left multiplying and right multiplying both sides of $(1-x y) x y=x y(1-x y)$ by z gives $x y z=z x y$. Also $x y=1-z^{-1}$, so we get $x y z=z x y=z\left(1-z^{-1}\right)=z-z z^{-1}=z-1$. Now

$$
\begin{gathered}
a(1-y x)=(1+y z x)(1-y x) \\
a(1-y x)=1+y z x-y x-y z x y x \\
a(1-y x)=1+y z x-y x-y(z-1) x
\end{gathered}
$$

$$
\begin{gathered}
a(1-y x)=1+y z x-y x-y z x+y x \\
a(1-y x)=1
\end{gathered}
$$

So, $a=(1-y x)^{-1}$. By exchanging roles of xandy, proves our claim.
We use this lemma to deduce properties of positive elements in C^{*}-algebras.
0.4 Lemma. Let \mathcal{A} be a C^{*}-algebra with unit and $a \in \mathcal{A}$, then

1. if $a \geq 0$, then there is a unique $b \in \mathcal{A}^{+}$with $b^{2}=a$.
2. if a is Hermitian, then there is a unique pair $a_{+}, a_{-} \in \mathcal{A}^{+}$such that $a=a_{+}-a_{-}$and $a_{+} a_{-}=a_{-} a_{+}=0$.
3. if $a, b \in \mathcal{A}^{+}$then $a+b \in \mathcal{A}^{+}$.
4. if $-a a^{*} \geq 0$ then $a=0$.

Proof. 1. We recall Gelfand's representation, mapping $a \mapsto \hat{a}$, with $\mathcal{P} \in \tau, \hat{a}(\mathcal{P}) \equiv \mathcal{P}(a)$. By $a \geq 0$, we get $\hat{a}: \tau \rightarrow \mathbb{R}^{+}$. Taking $\hat{b}=\sqrt{\hat{a}}: \mathcal{P} \mapsto \sqrt{\mathcal{P}(a)}$ then gives $b^{2}=a$ and $b \geq 0$. For the uniqueness, let $c \geq 0, c^{2}=a$, then $c a=c^{3}=a c$. So $\{1, c, a\}$ generates a commutative C^{*} - subalgebra $\mathcal{A}^{\prime} \subset \mathcal{A}$. We have $c \geq 0$ in \mathcal{A}^{\prime}, but also $b \in \mathcal{A}^{\prime}$ and $b \geq 0$ and both satisfy $c^{2}=b^{2}=a$. Using Gelfand's representation for \mathcal{A}^{\prime}, then shows $\hat{c}=\hat{b}=\sqrt{\hat{a}}$.

