Lecture Notes from March 23, 2023

taken by Łukasz Krzywon

Last time

- Positivity
- Spectrum
- Square Roots

Warm up: If $B \in M_n(\mathbb{C})$, $A = BB^*$, then $A \ge 0$.

Proof. Let $\lambda \in \mathbb{C}$ and $x \in \mathbb{C}^n$ with $x \neq 0$ such that $Ax = \lambda x$. If we can show $\lambda \in [0, \infty)$ then we are done. We know $\lambda \in \mathbb{R}$ because A is Hermitian. We can simply compute:

$$\lambda \|x\|^2 = \langle Ax, x \rangle = \langle BB^*x, x \rangle = \langle B^*x, B^*x \rangle = \|B^*x\|^2 \ge 0.$$

Thus, $\lambda \geq 0$.

We first finish proof of the lemma from last time.

1.6 Lemma. Let \mathcal{A} be a C^{*}-algebra with unit and $\alpha \in \mathcal{A}$. Then the following hold.

- 1. If $a \ge 0$, $!b \in \mathcal{A}^+$ with $b^2 = a$.
- 2. If $a^* = a$ then $\exists !$ pair $a_+, a_- \in A$ such that $a = a_+ a_-$ and $a_+a_- = a_-a_+ = 0$.
- 3. If $a, b \in A^+$, then $a + b \in A^+$.
- 4. If $-aa^* \ge 0$ then a = 0.

1) The first statement was proved in the last notes.

2) If $a^* = a$ then $\exists !$ pair $a_+, a_- \in \mathcal{A}$ such that $a = a_+ - a_-$ and $a_+a_- = a_-a_+ = 0$.

Proof. Let \mathcal{A}_a be the commutative subalgebra of \mathcal{A} generated by $\{1, a\}$. Recall the Gelfand representation $a \mapsto \hat{a}$ with $p \in \Gamma$, $\hat{a}(p) = p(a)$, which we may apply to \mathcal{A}_a . Hence, may define $\hat{a}_+(p) = \max\{a(p), 0\}$ and $\hat{a}_-(p) = \max\{-a(p), 0\}$. It is clear by construction that the corresponding a_+ and a_- satisfy the statement.

To prove uniqueness, suppose there exists y_+, y_- such that $a = y_+ - y_-, y_+, y_- \ge 0$, and $y_+y_- = y_-y_+ = 0$. Then, a commutes with y_+ and y_- , so $\{1, a, y_+, y_-\}$ generate $\mathcal{A}' \subset \mathcal{A}$. By Gelfand, $\mathcal{A}' \cong C(\Gamma_{\mathcal{A}'})$. For $p \in \Gamma_{\mathcal{A}'}$ with $\hat{a}(p) = 0$ we have $\hat{y}_+(p) = \hat{y}_-(p) = 0$. This follows from $0 = \hat{a}(p) = \hat{y}_+(p) - \hat{y}_-(p)$, so $\hat{y}_+(p) = \hat{y}_-(p)$. Hence, $\hat{y}_+(p)\hat{y}_-(p) = 0$, so $\hat{y}_+^2(p) = 0$, so $\hat{y}_+ = 0$. Likewise, $\hat{y}_-(p) = 0$. If $\hat{a} > 0$, then $\hat{y}_+(p) > 0$, $\hat{y}_-(p) = 0$, so $\hat{a}(p) = \hat{y}_+(p)$. Likewise, if $\hat{a} < 0$, then $\hat{y}_-(p) > 0$, $\hat{y}_+(p) = 0$ so $\hat{a}(p) = \hat{y}_-(p)$. Hence, $\hat{y}_+ = \hat{a}_+$ and $\hat{y}_- = \hat{a}_-$, so $y_+ = a_+$, and $y_- = a_-$.

3) If $a, b \in A^+$, then $a + b \in A^+$.

Proof. Let c = a + b, $a, b \ge 0$, c Hermitian and $||a|| = \alpha$, $||b|| = \beta$. Since $\sigma(a) \subset [0, \alpha]$, $\sigma(\alpha 1 - a) \subset [0, \alpha]$, and $||\alpha 1 - a|| = r(\alpha 1 - a) \le \alpha$. Likewise, $||\beta 1 - b|| \le \beta$. Thus,

$$\|(\alpha + \beta)\mathbf{1} - (\alpha + b)\| \le \|\alpha\mathbf{1} - \alpha\| + \|\beta\mathbf{1} - b\| \le \alpha + \beta.$$

If $\lambda \in \sigma(c)$, then $|\alpha + \beta - \lambda| \leq \alpha + \beta$ by the inequality between the norm and spectral radius for $(\alpha + \beta)\mathbf{1} - c$. Conjoining the results, if $\lambda \in \sigma(c)$, then $\lambda \leq \alpha + \beta$ and $\alpha + \beta - \lambda \leq \alpha + \beta$. Hence, $\lambda \geq 0$ so $c \geq 0$.

4) If $-\alpha \alpha^* \ge 0$ then $\alpha = 0$.

Proof. By a March 21 lemma, $\sigma(-a^*a) \setminus \{0\} = \sigma(-aa^*) \setminus \{0\} \subset \mathbb{R}$. Thus, $-aa^* \ge 0$ implies $-a^*a \ge 0$. Let a = b + ic, $b = b^*$, $c = c^*$, then $aa^* + a^*a = 2(b^2 + c^2) \ge 0$, by (3). Now, by assumption, $a^*a = (aa^* + a^*a) - aa^* \ge 0$ and $-a^*a \ge 0$. This implies $\sigma(a^*a) = \{0\}$. Finally, by the equality between norm and spectral radius of hermitian elements, $||a||^2 = ||aa^*|| = r(a^*a) = 0$, so a = 0.

With the lemma now proved, we return to the warm-up question so that we may generalize it to the C^* -algebra context.

1.7 Theorem. If $b \in A$, a C^{*}-algebra with unit, then $a = b^*b \ge 0$.

Proof. We know $a = a^*$, so by the lemma, $a = a_+ - a_-$. We compute,

$$(ba_{-})^{*}(ba_{-}) = a_{-}^{*}b^{*}ba_{-} = a_{-}^{*}(a_{+} - a_{-})a_{-} = a_{-}^{*}a_{+}a_{-} - a_{-}^{*}a_{-}^{2} = -a_{-}^{3}$$

Thus, $-(ba_{-})^{*}(ba_{-}) \ge 0$, so $ba_{-} = 0$ and $a_{-}^{3} = 0$. We conclude $a_{-} = 0$ so $a \ge 0$ as desired.

Positivity and Involutive Semigroups

1.8 Definition. (a)Let S be an involutive semigroup. A function $\phi : S \to \mathbb{C}$ is called positive definite if $K_p(s,t) = \phi(st^*)$ is a positive kernel. (b)Let \mathcal{A} be an algebra with involution. A linear functional $f : \mathcal{A} \to \mathbb{C}$ is called positive-definite in the sense of (a) with $S = \mathcal{A}$.

1.9 Lemma. Let f be a linear functional on an algebra with involution A, then the following are equivalent:

- The functional f is positive.
- The kernel $K_f : \mathcal{A} \times \mathcal{A} \to \mathbb{C}$ defines a positive semidefinite sesquilinear form.
- $f(aa^*) \ge 0$ for each $a \in A$.