
Lecture Notes from March 23, 2023
taken by  Lukasz Krzywon

Last time

• Positivity

• Spectrum

• Square Roots

Warm up: If B ∈ Mn(C), A = BB∗, then A ≥ 0.

Proof. Let λ ∈ C and x ∈ Cn with x ̸= 0 such that Ax = λx. If we can show λ ∈ [0,∞) then

we are done. We know λ ∈ R because A is Hermitian. We can simply compute:

λ||x||2 = ⟨Ax, x⟩ = ⟨BB∗x, x⟩ = ⟨B∗x, B∗x⟩ = ||B∗x||2 ≥ 0.

Thus, λ ≥ 0.

We first finish proof of the lemma from last time.

1.6 Lemma. Let A be a C∗−algebra with unit and a ∈ A. Then the following hold.

1. If a ≥ 0, !b ∈ A+ with b2 = a.

2. If a∗ = a then ∃! pair a+, a− ∈ A such that a = a+ − a− and a+a− = a−a+ = 0.

3. If a, b ∈ A+, then a+ b ∈ A+.

4. If −aa∗ ≥ 0 then a = 0.
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1) The first statement was proved in the last notes.

2) If a∗ = a then ∃! pair a+, a− ∈ A such that a = a+ − a− and a+a− = a−a+ = 0.

Proof. Let Aa be the commutative subalgebra of A generated by {1, a}. Recall the Gelfand

representation a 7→ â with p ∈ Γ, â(p) = p(a), which we may apply to Aa. Hence, may

define â+(p) = max{a(p), 0} and â−(p) = max{−a(p), 0}. It is clear by construction that the

corresponding a+ and a− satisfy the statement.

To prove uniqueness, suppose there exists y+, y− such that a = y+ − y−, y+, y− ≥ 0, and

y+y− = y−y+ = 0. Then, a commutes with y+ and y−, so {1, a, y+, y−} generate A ′ ⊂ A. By

Gelfand, A ′ ∼= C(ΓA ′). For p ∈ ΓA ′ with â(p) = 0 we have ŷ+(p) = ŷ−(p) = 0. This follows

from 0 = â(p) = ŷ+(p) − ŷ−(p), so ŷ+(p) = ŷ−(p). Hence, ŷ+(p)ŷ−(p) = 0, so ŷ2
+(p) = 0,

so ŷ+ = 0. Likewise, ŷ−(p) = 0. If â > 0, then ŷ+(p) > 0, ŷ−(p) = 0, so â(p) = ŷ+(p).

Likewise, if â < 0, then ŷ−(p) > 0, ŷ+(p) = 0 so â(p) = ŷ−(p). Hence, ŷ+ = â+ and

ŷ− = â−, so y+ = a+, and y− = a−.

3) If a, b ∈ A+, then a+ b ∈ A+.

Proof. Let c = a + b, a, b ≥ 0, c Hermitian and ||a|| = α, ||b|| = β. Since σ(a) ⊂ [0, α],

σ(α1− a) ⊂ [0, α], and ||α1− a|| = r(α1− a) ≤ α. Likewise, ||β1− b|| ≤ β. Thus,

||(α+ β)1− (a+ b)|| ≤ ||α1− a||+ ||β1− b|| ≤ α+ β.

If λ ∈ σ(c), then |α + β − λ| ≤ α + β by the inequality between the norm and spectral radius

for (α+ β)1− c. Conjoining the results, if λ ∈ σ(c), then λ ≤ α+ β and α+ β− λ ≤ α+ β.

Hence, λ ≥ 0 so c ≥ 0.

4) If −aa∗ ≥ 0 then a = 0.

Proof. By a March 21 lemma, σ(−a∗a) \ {0} = σ(−aa∗) \ {0} ⊂ R. Thus, −aa∗ ≥ 0 implies

−a∗a ≥ 0. Let a = b + ic, b = b∗, c = c∗, then aa∗ + a∗a = 2(b2 + c2) ≥ 0, by

(3). Now, by assumption, a∗a = (aa∗ + a∗a) − aa∗ ≥ 0 and −a∗a ≥ 0. This implies

σ(a∗a) = {0}. Finally, by the equality between norm and spectral radius of hermitian elements,

||a||2 = ||aa∗|| = r(a∗a) = 0, so a = 0.
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With the lemma now proved, we return to the warm-up question so that we may generalize

it to the C∗−algebra context.

1.7 Theorem. If b ∈ A, a C∗-algebra with unit, then a = b∗b ≥ 0.

Proof. We know a = a∗, so by the lemma, a = a+ − a−. We compute,

(ba−)
∗(ba−) = a∗

−b
∗ba− = a∗

−(a+ − a−)a− = a∗
−a+a− − a∗

−a
2
− = −a3

−.

Thus, −(ba−)
∗(ba−) ≥ 0, so ba− = 0 and a3

− = 0. We conclude a− = 0 so a ≥ 0 as

desired.

Positivity and Involutive Semigroups

1.8 Definition. (a)Let S be an involutive semigroup. A function ϕ : S → C is called positive

definite if Kp(s, t) = ϕ(st∗) is a positive kernel. (b)Let A be an algebra with involution. A linear

functional f : A → C is called positive-definite in the sense of (a) with S = A.

1.9 Lemma. Let f be a linear functional on an algebra with involution A, then the following are

equivalent:

• The functional f is positive.

• The kernel Kf : A×A → C defines a positive semidefinite sesquilinear form.

• f(aa∗) ≥ 0 for each a ∈ A.
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