Lecture Notes from March 23, 2023

taken by Łukasz Krzywon

Last time

- Positivity
- Spectrum
- Square Roots

Warm up: If $B \in M_{n}(\mathbb{C}), A=B B^{*}$, then $A \geq 0$.
Proof. Let $\lambda \in \mathbb{C}$ and $x \in \mathbb{C}^{n}$ with $x \neq 0$ such that $A x=\lambda x$. If we can show $\lambda \in[0, \infty)$ then we are done. We know $\lambda \in \mathbb{R}$ because A is Hermitian. We can simply compute:

$$
\lambda\|x\|^{2}=\langle A x, x\rangle=\left\langle B^{*} x, x\right\rangle=\left\langle B^{*} x, B^{*} x\right\rangle=\left\|B^{*} x\right\|^{2} \geq 0 .
$$

Thus, $\lambda \geq 0$.
We first finish proof of the lemma from last time.
1.6 Lemma. Let \mathcal{A} be a C^{*}-algebra with unit and $\mathrm{a} \in \mathcal{A}$. Then the following hold.

1. If $\mathrm{a} \geq 0,!\mathrm{b} \in \mathcal{A}^{+}$with $\mathrm{b}^{2}=\mathrm{a}$.
2. If $\mathrm{a}^{*}=\mathrm{a}$ then \exists ! pair $\mathrm{a}_{+}, \mathrm{a}_{-} \in \mathcal{A}$ such that $\mathrm{a}=\mathrm{a}_{+}-\mathrm{a}_{-}$and $\mathrm{a}_{+} \mathrm{a}_{-}=\mathrm{a}_{-} \mathrm{a}_{+}=0$.
3. If $\mathrm{a}, \mathrm{b} \in \mathcal{A}^{+}$, then $\mathrm{a}+\mathrm{b} \in \mathcal{A}^{+}$.
4. If $-\mathrm{aa}^{*} \geq 0$ then $\mathrm{a}=0$.
1) The first statement was proved in the last notes.
2) If $a^{*}=a$ then \exists ! pair $a_{+}, a_{-} \in \mathcal{A}$ such that $a=a_{+}-a_{-}$and $a_{+} a_{-}=a_{-} a_{+}=0$.

Proof. Let \mathcal{A}_{a} be the commutative subalgebra of \mathcal{A} generated by $\{1, a\}$. Recall the Gelfand representation $a \mapsto \hat{a}$ with $p \in \Gamma, \widehat{a}(p)=p(a)$, which we may apply to \mathcal{A}_{a}. Hence, may define $\hat{a}_{+}(p)=\max \{a(p), 0\}$ and $\hat{a}_{-}(p)=\max \{-a(p), 0\}$. It is clear by construction that the corresponding a_{+}and a_{-}satisfy the statement.

To prove uniqueness, suppose there exists y_{+}, y_{-}such that $a=y_{+}-y_{-}, y_{+}, y_{-} \geq 0$, and $y_{+} y_{-}=y_{-} y_{+}=0$. Then, a commutes with y_{+}and y_{-}, so $\left\{1, a, y_{+}, y_{-}\right\}$generate $\mathcal{A}^{\prime} \subset \mathcal{A}$. By Gelfand, $\mathcal{A}^{\prime} \cong \mathrm{C}\left(\Gamma_{\mathcal{A}^{\prime}}\right)$. For $p \in \Gamma_{\mathcal{A}^{\prime}}$ with $\hat{a}(p)=0$ we have $\hat{y}_{+}(p)=\hat{y}_{-}(p)=0$. This follows from $0=\hat{a}(p)=\hat{y}_{+}(p)-\hat{y}_{-}(p)$, so $\hat{y}_{+}(p)=\hat{y}_{-}(p)$. Hence, $\hat{y}_{+}(p) \hat{y}_{-}(p)=0$, so $\hat{y}_{+}^{2}(p)=0$, so $\hat{y}_{+}=0$. Likewise, $\hat{y}_{-}(p)=0$. If $\hat{a}>0$, then $\hat{y}_{+}(p)>0, \hat{y}_{-}(p)=0$, so $\hat{a}(p)=\hat{y}_{+}(p)$. Likewise, if $\hat{a}<0$, then $\hat{y}_{-}(p)>0, \hat{y}_{+}(p)=0$ so $\hat{a}(p)=\hat{y}_{-}(p)$. Hence, $\hat{y}_{+}=\hat{a}_{+}$and $\hat{y}_{-}=\hat{a}_{-}$, so $y_{+}=a_{+}$, and $y_{-}=a_{-}$.
3) If $a, b \in \mathcal{A}^{+}$, then $a+b \in \mathcal{A}^{+}$.

Proof. Let $c=a+b, a, b \geq 0, c$ Hermitian and $\|a\|=\alpha,\|b\|=\beta$. Since $\sigma(a) \subset[0, \alpha]$, $\sigma(\alpha 1-a) \subset[0, \alpha]$, and $\|\alpha 1-a\|=r(\alpha 1-a) \leq \alpha$. Likewise, $\|\beta 1-b\| \leq \beta$. Thus,

$$
\|(\alpha+\beta) 1-(a+b)\| \leq\|\alpha 1-a\|+\|\beta 1-b\| \leq \alpha+\beta .
$$

If $\lambda \in \sigma(c)$, then $|\alpha+\beta-\lambda| \leq \alpha+\beta$ by the inequality between the norm and spectral radius for $(\alpha+\beta) 1-c$. Conjoining the results, if $\lambda \in \sigma(c)$, then $\lambda \leq \alpha+\beta$ and $\alpha+\beta-\lambda \leq \alpha+\beta$. Hence, $\lambda \geq 0$ so $c \geq 0$.
4) If $-a a^{*} \geq 0$ then $a=0$.

Proof. By a March 21 lemma, $\sigma\left(-a^{*} a\right) \backslash\{0\}=\sigma\left(-a a^{*}\right) \backslash\{0\} \subset \mathbb{R}$. Thus, $-a a^{*} \geq 0$ implies $-a^{*} a \geq 0$. Let $a=b+i c, b=b^{*}, c=c^{*}$, then $a a^{*}+a^{*} a=2\left(b^{2}+c^{2}\right) \geq 0$, by (3). Now, by assumption, $a^{*} a=\left(a a^{*}+a^{*} a\right)-a a^{*} \geq 0$ and $-a^{*} a \geq 0$. This implies $\sigma\left(a^{*} a\right)=\{0\}$. Finally, by the equality between norm and spectral radius of hermitian elements, $\|a\|^{2}=\left\|a a^{*}\right\|=r\left(a^{*} a\right)=0$, so $a=0$.

With the lemma now proved, we return to the warm-up question so that we may generalize it to the C^{*}-algebra context.
1.7 Theorem. If $\mathrm{b} \in \mathcal{A}, \mathrm{a} \mathrm{C}^{*}$-algebra with unit, then $\mathrm{a}=\mathrm{b}^{*} \mathrm{~b} \geq 0$.

Proof. We know $a=a^{*}$, so by the lemma, $a=a_{+}-a_{-}$. We compute,

$$
\left(b a_{-}\right)^{*}\left(b a_{-}\right)=a_{-}^{*} b^{*} b a_{-}=a_{-}^{*}\left(a_{+}-a_{-}\right) a_{-}=a_{-}^{*} a_{+} a_{-}-a_{-}^{*} a_{-}^{2}=-a_{-}^{3} .
$$

Thus, $-\left(b a_{-}\right)^{*}\left(b a_{-}\right) \geq 0$, so $b a_{-}=0$ and $a_{-}^{3}=0$. We conclude $a_{-}=0$ so $a \geq 0$ as desired.

Positivity and Involutive Semigroups
1.8 Definition. (a)Let S be an involutive semigroup. A function $\phi: S \rightarrow \mathbb{C}$ is called positive definite if $\mathrm{K}_{\mathrm{p}}(\mathrm{s}, \mathrm{t})=\phi\left(s \mathrm{t}^{*}\right)$ is a positive kernel. (b)Let \mathcal{A} be an algebra with involution. A linear functional $\mathrm{f}: \mathcal{A} \rightarrow \mathbb{C}$ is called positive-definite in the sense of (a) with $\mathrm{S}=\mathcal{A}$.
1.9 Lemma. Let f be a linear functional on an algebra with involution \mathcal{A}, then the following are equivalent:

- The functional f is positive.
- The kernel $\mathrm{K}_{\mathrm{f}}: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{C}$ defines a positive semidefinite sesquilinear form.
- $f\left(a a^{*}\right) \geq 0$ for each $a \in \mathcal{A}$.

