Lecture Notes from March 23, 2023

taken by tukasz Krzywon

Last time
e Positivity
e Spectrum
e Square Roots
Warm up: If B € M,,(C), A = BB*, then A > 0.
Proof. Let A € C and x € C™ with x # 0 such that Ax = Ax. If we can show A € [0, 00) then
we are done. We know A € R because A is Hermitian. We can simply compute:

Ax||? = (Ax,x) = (BB*x,x) = (B*x, B*x) = |[B*x|* > 0.

Thus, A > 0. O
We first finish proof of the lemma from last time.
1.6 Lemma. Let A be a C*—algebra with unit and a € A. Then the following hold.
1. Ifa>0,!be A" withb? = a.
2. If a* = a then 3! paira,,a_ € Asuchthata=a, —a_anda,a_=a_a, =0.
3 Ifa,be A", thena+b € A,

4. If —aa* >0 then a = 0.



1) The first statement was proved in the last notes.

2) If a* = a then 3! pair a;,a_ € Asuchthata=a; —a_and a;a_ =a_a; =0.

Proof. Let A, be the commutative subalgebra of A generated by {1, a}. Recall the Gelfand
representation a — @ with p € I} @(p) = p(a), which we may apply to A,. Hence, may
define @, (p) = max{a(p),0} and @_(p) = max{—a(p),0}. It is clear by construction that the
corresponding a, and a_ satisfy the statement.

To prove uniqueness, suppose there exists y,y_ such that a =y, —y-, y4+,y- > 0, and
y,y_ =y-y, =0. Then, a commutes with y, and y_, so {1, a,y,,y_} generate A" C A. By
Gelfand, A" = C(T'4/). For p € T4 with @(p) = 0 we have {j.(p) = §_(p) = 0. This follows
from 0 = @(p) = G (p) —9-(p), so §+(p) = §_(p). Hence, §,(p)g_(p) =0, so §%(p) =0,
so . = 0. Likewise, §j_(p) = 0. If @ > 0, then §.(p) > 0, §_(p) = 0, so a(p) = §.(p).
Likewise, if @ < 0, then §_(p) > 0, §.(p) = 0 so a(p) = §J_(p). Hence, §, = @, and

. =4 ,s0y, =a,,andy_=a_. O
3)If a,be A" thena+be A",

Proof. Let ¢ = a+ b, a,b > 0, ¢ Hermitian and ||a|| = «, ||b]| = B. Since o(a) C [0, «,

o(al —a) C [0,«f, and ||l — al| = r(x1 — a) < «. Likewise, |1 —b|| < 3. Thus,
llc+B)T = (a+Db)| <l —al +[IBT =Dl < o+ B.

If A € o(c), then [+ B — A| < a4+ B by the inequality between the norm and spectral radius
for (o« + )1 — c. Conjoining the results, if A € o(c), then A < a+ B and x+pf —A < x+ B.
Hence, A > 0soc > 0. ]

4) If —aa* > 0 then a =0.

Proof. By a March 21 lemma, o(—a*a) \ {0} = o(—aa*) \ {0} € R. Thus, —aa* > 0 implies
—a*a > 0. Let a = b+1ic, b = b*, ¢ = c*, then aa* + a*a = 2(b* +c?) > 0, by
(3). Now, by assumption, a*a = (aa* + a*a) — aa* > 0 and —a*a > 0. This implies
o(a*a) ={0}. Finally, by the equality between norm and spectral radius of hermitian elements,

lall* = llaa*|| = r(a*a) =0, so a = 0. =



With the lemma now proved, we return to the warm-up question so that we may generalize

it to the C*—algebra context.
1.7 Theorem. Ifb € A, a C*-algebra with unit, then a = b*b > 0.

Proof. We know a = a*, so by the lemma, a = a, — a_. We compute,

(ba_)*(ba_) =a*b*ba_=a*(a, —a_)a_=a*a.a_—a*a? =—a.

Thus, —(ba_)*(ba_) > 0, so ba_ = 0 and a®> = 0. We conclude a_ = 0 so a > 0 as
desired. 0
Positivity and Involutive Semigroups

1.8 Definition. (a)Let S be an involutive semigroup. A function ¢ : S — C is called positive
definite if K, (s,t) = ¢(st*) is a positive kernel. (b)Let A be an algebra with involution. A linear

functional f: A — C is called positive-definite in the sense of (a) with S = A.

1.9 Lemma. Let f be a linear functional on an algebra with involution A, then the following are

equivalent:
e The functional f is positive.
e The kernel K¢ : A x A — C defines a positive semidefinite sesquilinear form.

e f(aa*) > 0 for each a € A.



