Lecture Notes from March 28, 2023

taken by Joseph Walker

0 Warm Up

Let $W \in M_n(\mathbb{C})$, $W \ge 0$, tr[W] = 1 and define $f : M_n(\mathbb{C}) \to \mathbb{C}$, f(x) = tr[XW]. We will show that f is positive and $|f(X)| \le ||x||$, then ||f|| = 1.

By the spectral theorem, $W = \sum_{j=1}^{n} \lambda_j v_j v_j^*$, $\lambda \ge 0$, $\sum_{j=1}^{n} \lambda_j = 1$. We want to show $f(X^*X) \ge 0$ for any $X \in M_n(\mathbb{C})$. Evaluating the trace in the eigenbasis of W gives

$$f(XX^*) = tr[XX^*W]$$

= $\sum_{j=1}^{n} \langle XX^*Wv_j, v_j \rangle$
= $\sum_{j=1}^{n} \lambda_j \langle XX^*v_j, v_j \rangle$
= $\sum_{j=1}^{n} \lambda_j |X^*v_j|^2 \ge 0$

To show the second proposition, we have $|f(x)| = |\sum_{j=1}^n \lambda_j \langle X \nu_j, \nu_j \rangle| \le \sum_{j=1}^n \lambda_j |\langle X \nu_j, \nu_j \rangle| \le ||X||$ by Cauchy-Schwartz

1 Properties of Positive Linear Functionals on C*-Algebras

1.0.1 Proposition. Le A be a C*-algebra with unit, f be a positive linear functional on A, then

- (*i*) $f(a^*) = \overline{f(a)}$
- (ii) $|f(ab^*)| \leq f(aa^*)f(bb^*)$

(iii)
$$|f(x)| \le f(1) ||x||$$

- (iv) f is continuous with ||f|| = f(1)
- *Proof.* (i) f is positive, so $K_f(a, b) = f(ab^*)$ is a positive semidefinite sesquilinear form. Using Hermitian properties, we have $f(a^*) = K_f(1, a) = \overline{K_f(a, 1)} = \overline{f(a)}$

- (ii) Applying Cauchy-Schwarz to K_f yields (ii).
- (iii) With a = 1, b = x we get $|f(x)|^2 = |K_f(1, x)|^2 \le K_f(1, 1)K_f(x, x) = f(1)f(xx^*)$. It remains to show $f(xx^*) \le f(1)||x||^2$.

Using the equality between the spectral radius and operator norm for Hermitian elements, let $t > ||x||^2 = r(xx^*)$, then $\sigma(t1 - xx^*) = t - \sigma(xx^*) \subset \mathbb{R}^+$ and hence $t1 - xx^* \ge 0$. We use the square-root lemma, and get $u \in \mathcal{A}^+$ with $t1 - xx^* = u^2 \ge 0$. Thus $f(uu^*) = f(u^2) = f(t1 - xx^*) = tf(1) - f(xx^*) \ge 0$, so $f(xx^*) \le tf(1)$ and taking inf over all $t > ||x||^2$ gives $f(xx^*) \le f(1)||x||^2$. Combining inequalities gives $|f(x)|^2 \le f(1)^2 ||x||^2$ and taking the square-root on both sides gives the inequality.

(iv) We know from (iii) that $||f|| \le f(1)$. Using that ||1|| = 1, we have |f(1)| = f(1), hence $\sup_{||x|| \le 1} |f(x)| \ge f(1)$. The complimentary inequality shows ||f|| = 1.

2 States

2.0.1 Definition. Let \mathcal{A} be a C^* algebra with unit. A functional $\varphi \in \mathcal{A}'$ with $\varphi(1) = \|\varphi\| = 1$ is called a state. The set of states is denoted by $\zeta(\mathcal{A})$.

2.1 **Properties of States**

2.1.2 Lemma. The set $\zeta(A)$ is a convex weak-*-compact subset of A'

Proof. The convexity of $\zeta(\mathcal{A})$ is due to the linearity of each $\varphi \in \zeta(\mathcal{A})$ and the requirement $\varphi(1) = 1$. The set $\overline{B_1} = \{\alpha \in \mathcal{A}' : \|\alpha\| \le 1\}$ is weak-*-compact by Banach-Alaoglu [Rudin]. Also, $\zeta(\mathcal{A}) = \overline{B_1} \cap \{\alpha : \alpha(1) = 1\}$ is a weak-*-closed subset of $\overline{B_1}$ hence $\zeta(\mathcal{A})$) is weak-*-compact.

2.1.3 Lemma. If $\phi \in A'$, A a C*-Algebra, with unit, then TFAE:

- (i) ϕ is positive and $\|\phi\| = 1$
- (ii) $\phi \in \zeta(\mathcal{A})$

Proof. Assume (i), by positivity $1 = \|\varphi\| = \varphi(1)$, hence $\varphi \in \zeta(\mathcal{A})$. Assume (ii), so $\varphi \in \zeta(\mathcal{A})$. We need to show $\varphi(aa^*) \ge 0$ for each $a \in \mathcal{A}$. Let $\alpha = \|aa^*\| = \|a\|^2$. By $aa^* \ge 0$, $\sigma(aa^*) \subset [0, \alpha]$, hence $\|\alpha 1 - \alpha \alpha^*\| = r(\alpha 1 - \alpha \alpha^*) \le \alpha$. We observe $\alpha - \varphi(aa^*) = \varphi(\alpha 1 - aa^*) \le \|\varphi\|\|\alpha 1 - aa^*\| \le \alpha$, as $\|\varphi\| = 1$ and $\|\alpha 1 - aa^*\| \le \alpha$ Thus, φ is positive.

2.2 Examples of States

2.2.4 Examples. (i) Take $\mathcal{A} = C(X)$, X compact, then $\zeta(\mathcal{A})$ is given by $\varphi f \mapsto \int f dx$ for some Borel probability measure.

(ii) Take $\mathcal{A} = B(H)$, $\nu \in H$, $\|\nu\| = 1$. Then $\phi : A \mapsto \langle A\nu, \nu \rangle$ is a state, because $\phi(1) = 1$. We can also consider $(\nu_n)_{n=1}^{\infty}$, $\sum_{n=1}^{\infty} \|\nu_n\|^2 = 1$. Then $\phi(1) = \sum_{n=1}^{\infty} \langle \nu, \nu \rangle = \sum_{n=1}^{\infty} \|\nu_n\|^2 = 1$, hence ϕ is a state.

References

[Rudin] Rudin, Walter (1991). Functional Analysis. International Series in Pure and Applied Mathematics. Vol. 8 (Second ed.) Theorem 3.15