Lecture Notes from March 30, 2023

taken by Tanvi Telang

Last time

- Positivity
- States

Warm up: Let $\mathcal{A} = M_n(\mathbb{C})$, $X \in \mathcal{A}$, $X = X^*$, then for $\lambda \in \sigma(x)$ there exists $\varphi \in \mathcal{S}(\mathcal{A})$ such that $\varphi(x) = \lambda$.

We know that $\lambda \in \sigma(x)$ in $M_n(\mathbb{C})$ means that λ is an eigenvalue and there exists $\nu \in \mathbb{C}^n$ such that $\|\nu\| = 1$ and $X\nu = \lambda\nu$. Now define $\varphi : \mathcal{A} \to \mathbb{C}$; $A \mapsto \langle A\nu, \nu \rangle$. We have seen that $\varphi \in \mathcal{S}(\mathcal{A})$ since $\varphi(1) = 1$, $\|\varphi\| = 1$; and $\varphi(X) = \langle X\nu, \nu \rangle = \lambda$.

1.47 Theorem. Let A be a C^{*}-algebra with unit. Let $x \in A, x = x^*$.

- If $\phi \in S(\mathcal{A})$, then $\phi(x) \in \mathbb{R}$ and for each $\lambda \in \sigma(x)$, there exists $\phi \in S(\mathcal{A})$ such that $\phi(x) = \lambda$.
- An element $x = x^*$ is positive if, and only if $\varphi(x) \ge 0$ for each $\varphi \in \mathcal{S}(\mathcal{A})$.
- **Proof.** Let $x = x_+ x_-$ where $x_{\pm} \ge 0$ and $x_+x_- = x_-x_+ = 0$. By the lemma characteriing states, we have $\varphi(x_{\pm} \ge 0)$, so $\varphi(x) = \varphi(x_+) \varphi(x_-) \implies \varphi(x) \in \mathbb{R}$. Next, consider $\lambda \in \sigma(x)$. Let \mathcal{A}_x be the abelian C*-algebra generated by $\{1, x\}$, then $\sigma_{\mathcal{A}_x}(x) = \sigma_{\mathcal{A}}(x)$. Using Gelfand for the $\mathcal{A}_x \cong C(\sigma(x))$, we have an isometric *-isomorphism $\mathcal{G} : \mathcal{A}_x \to C(\sigma(x))$. For $\lambda \in \sigma(x)$, we have $\delta_{\lambda} : C(\sigma(x)) \to \mathbb{C}$, $f \mapsto f(\lambda)$ is a state on $C(\sigma(x))$, since $\delta_{\lambda}(1) = 1 = \|\delta_{\lambda}\|$ (1 is the constant function 1), and by isomorphism we get $\nu_{\lambda} = \delta_{\lambda} \circ \mathcal{G}$. $\nu_{\lambda}(1) = \delta_{\lambda}(1) = 1$ and by isometry $\|\nu_{\lambda}\| = \|\delta_{\lambda}\| = 1$ hence ν_{λ} is a state on \mathcal{A}_x . ν_{λ} can be extended to a state ν on \mathcal{A} by Hahn-Banach¹ such that the extension satisfies $\|\nu\| = \nu(1) = 1$ since $1 \in \mathcal{A}_x$. Thus, $\nu(x) = \nu_{\lambda}(x) = \delta_{\lambda}(id) = \lambda$ giving us the result.
 - If $x = x^*$, then w already know that for $\varphi \in S(\mathcal{A})$, $\varphi(x) \ge 0$. Conversely, if $x x^* \in \mathcal{A}$ such that for any $\varphi \in S(\mathcal{A})$, $\varphi(x) \ge 0$, then if $\lambda \in \sigma(x)$, $\lambda \ge 0$ there exists φ by the first part such that $\varphi(x) = \lambda \ge 0$ and so $\sigma(x) \subset [0, \infty)$, hence $x \ge 0$.

1.48 Definition. We give a few definitions relating cones and positive elements in a real vector space.

- 1. (Convex cone) A subset C of a real vector space V is called a convex cone if it is convex and $\mathbb{R}^+C \subset C$.
- 2. (Dual cone) If V is a topological vector space (such that vector space operations are continuous) and V' is the dual of V, then for a cone C in V, define the dual cone to C as

$$C' := \{ \alpha \in V' : \alpha(C) \subset \mathbb{R}^+ \}.$$

3. (Predual cone) If $W \subset V'$ is a subset, then

$$(W)' := \{ v \in V : (\forall w \in W) \ w(v) \ge 0 \}$$

is called the predual cone of W.

1.49 Remark. If V is a real topological space, $W \subset V'$, then W' is closed since $W' = \bigcap_{w \in W} w^{-1}[0, \infty)$ is the intersection of closed sets, where each $w^{-1}[0, \infty)$ is closed since it is a preimage of a closed set under a continuous map.

1.50 Theorem. If V is a real topological vector space and $C \subset V$ a closed convex cone, then

$$C = (C')$$
, and $(C')^{\perp} = C \cap (-C)$.

Proof. By definition of C', C \subset (C')'. To show the reverse inclusion, let $x \notin C$. We need to show that $x \notin (C')$ '. Using *separation properties and geometric Hahn-Banach*², there exists a linear functional $\alpha \in V'$ with $\inf_{c \in C} \alpha(c) > \alpha(x)$. From scaling properties of C and linearity of α , $\inf_{c \in C} \alpha(c) = 0$, $\alpha(x) < 0$, so $x \notin (C')$ '. We then also get

$$C \cap (-C) = (C')^{\circ} \cap -(C')^{\circ}$$
$$= \{ \alpha \in C : \alpha(\alpha) = 0 \forall \alpha \in C' \}$$
$$= (C')^{\perp}.$$

1.51 Lemma. Let \mathcal{A} be a C^{*}-algebra with unit, then \mathcal{A}^+ forms a closed convex cone in \mathcal{A} .

Proof. Recall $\mathcal{A}^+ = \{ \mathfrak{a} \in \mathcal{A} : (\forall \varphi \in \mathcal{S}(\mathcal{A}) | \varphi(\mathfrak{a}) \ge 0 \}$, so $\mathcal{A}^+ = \mathcal{S}(\mathcal{A})^{\iota}$.

1.52 Remark. Recall the two theorems used in the proofs above.

1. Hahn-Banach theorem: (Corollary 6.5 from John B. Conway - A Course in Functional Analysis) If X is a normed space over \mathbb{C} , \mathcal{M} is a linear manifold in X, and $f : \mathcal{M} \to \mathbb{C}$ is a bounded linear functional, then there is an $F \in X'$ such that $F|_{\mathcal{M}} = f$ and ||F|| = ||f||.

We apply this theorem with $\mathcal{M}=\mathcal{A}_x$ a subspace of $\mathcal{A}.$

(Theorem 2.4.7. from Gert K. Pedersen - Analysis Now) Separation properties and geometric Hahn-Banach: Let A and B be disjoint, nonempty, convex subsets of a topological vector space X. If A is open, there is a α ∈ X' and a t ∈ ℝ such that Reα(x) < t < Reα(y), for every x ∈ A and y ∈ B.

We apply theorem with $C^c = A$ which is open since C is closed and $B = \{x\}$.

2 The Gelfand–Naimark–Segal (GNS) construction

We start with an observation. Let \mathcal{A} be a C*-algebra with unit, $(\pi, \mathcal{H} \text{ a representation of } \mathcal{A}$, then we recall π is a contraction. For each $\nu \in \mathcal{H}$, $\|\nu\| = 1$, we get $\varphi_{\nu}(a) = \langle \pi(a)\nu, \nu \rangle$ a state, because $\varphi_{\nu}(1) = \langle \pi(1)\nu, \nu \rangle = \|\nu\|^2 = 1$, and $\varphi_{\nu}(a^*a) = \|\pi(a)\nu\|^2 \ge 0$. The next goal is to find, for any \mathcal{A} and φ , a representation (π, \mathcal{K}) such that there exists $\nu \in \mathcal{H}$ and $\varphi(a) = \langle \pi(a)\nu, \nu \rangle$.