Lecture Notes from March 30, 2023

taken by Tanvi Telang

Last time

- Positivity
- States

Warm up: Let $\mathcal{A}=M_{n}(\mathbb{C}), X \in \mathcal{A}, X=X^{*}$, then for $\lambda \in \sigma(x)$ there exists $\varphi \in \mathcal{S}(\mathcal{A})$ such that $\varphi(x)=\lambda$.

We know that $\lambda \in \sigma(x)$ in $M_{n}(\mathbb{C})$ means that λ is an eigenvalue and there exists $v \in \mathbb{C}^{n}$ such that $\|v\|=1$ and $X v=\lambda \nu$. Now define $\varphi: \mathcal{A} \rightarrow \mathbb{C} ; A \mapsto\langle A v, v\rangle$. We have seen that $\varphi \in \mathcal{S}(\mathcal{A})$ since $\varphi(1)=1,\|\varphi\|=1$; and $\varphi(X)=\langle X v, v\rangle=\lambda$.
1.47 Theorem. Let \mathcal{A} be a C^{*}-algebra with unit. Let $x \in \mathcal{A}, x=x^{*}$.

- If $\varphi \in \mathcal{S}(\mathcal{A})$, then $\varphi(x) \in \mathbb{R}$ and for each $\lambda \in \sigma(x)$, there exists $\varphi \in \mathcal{S}(\mathcal{A})$ such that $\varphi(\mathrm{x})=\lambda$.
- An element $x=x^{*}$ is positive if, and only if $\varphi(x) \geq 0$ for each $\varphi \in \mathcal{S}(\mathcal{A})$.

Proof. - Let $x=x_{+}-x_{-}$where $x_{ \pm} \geq 0$ and $x_{+} x_{-}=x_{-} x_{+}=0$. By the lemma characteriing states, we have $\varphi\left(x_{ \pm} \geq 0\right)$, so $\varphi(x)=\varphi\left(x_{+}\right)-\varphi\left(x_{-}\right) \Longrightarrow \varphi(x) \in \mathbb{R}$. Next, consider $\lambda \in \sigma(x)$. Let \mathcal{A}_{x} be the abelian C^{*}-algebra generated by $\{1, x\}$, then $\sigma_{\mathcal{A}_{x}}(x)=\sigma_{\mathcal{A}}(x)$. Using Gelfand for the $\mathcal{A}_{x} \cong \mathrm{C}(\sigma(x))$, we have an isometric $*$-isomorphism $\mathcal{G}: \mathcal{A}_{x} \rightarrow$ $C(\sigma(x))$. For $\lambda \in \sigma(x)$, we have $\delta_{\lambda}: C(\sigma(x)) \rightarrow \mathbb{C}, f \mapsto f(\lambda)$ is a state on $C(\sigma(x))$, since $\delta_{\lambda}(1)=1=\left\|\delta_{\lambda}\right\|\left(1\right.$ is the constant function 1), and by isomorphism we get $v_{\lambda}=\delta_{\lambda} \circ \mathcal{G}$. $v_{\lambda}(1)=\delta_{\lambda}(1)=1$ and by isometry $\left\|v_{\lambda}\right\|=\left\|\delta_{\lambda}\right\|=1$ hence v_{λ} is a state on \mathcal{A}_{x}. v_{λ} can be extended to a state v on \mathcal{A} by Hahn-Banach ${ }^{1}$ such that the extension satisfies $\|v\|=v(1)=1$ since $1 \in \mathcal{A}_{x}$. Thus, $v(x)=v_{\lambda}(x)=\delta_{\lambda}(i d)=\lambda$ giving us the result.

- If $x=x^{*}$, then w already know that for $\varphi \in \mathcal{S}(\mathcal{A}), \varphi(x) \geq 0$. Conversely, if $x-x^{*} \in \mathcal{A}$ such that for any $\varphi \in \mathcal{S}(\mathcal{A}), \varphi(x) \geq 0$, then if $\lambda \in \sigma(x), \lambda \geq 0$ there exists φ by the first part such that $\varphi(x)=\lambda \geq 0$ and so $\sigma(x) \subset[0, \infty)$, hence $x \geq 0$.
1.48 Definition. We give a few definitions relating cones and positive elements in a real vector space.

1．（Convex cone）A subset C of a real vector space V is called a convex cone if it is convex and $\mathbb{R}^{+} \mathrm{C} \subset \mathrm{C}$ ．

2．（Dual cone）If V is a topological vector space（such that vector space operations are continuous）and V^{\prime} is the dual of V ，then for a cone C in V ，define the dual cone to C as

$$
\mathrm{C}^{\prime}:=\left\{\alpha \in \mathrm{V}^{\prime}: \alpha(\mathrm{C}) \subset \mathbb{R}^{+}\right\} .
$$

3．（Predual cone）If $\mathrm{W} \subset \mathrm{V}^{\prime}$ is a subset，then

$$
(W)^{r}:=\{v \in \mathrm{~V}:(\forall w \in \mathrm{~W}) w(v) \geq 0\}
$$

is called the predual cone of W ．
1．49 Remark．If V is a real topological space，$W \subset V^{\prime}$ ，then W^{\prime} is closed since $W^{\prime}=\bigcap_{w \in W} W^{-1}[0, \infty)$ is the intersection of closed sets，where each $w^{-1}[0, \infty)$ is closed since it is a preimage of a closed set under a continuous map．

1．50 Theorem．If V is a real topological vector space and $\mathrm{C} \subset \mathrm{V}$ a closed convex cone，then

$$
\mathrm{C}=\left(\mathrm{C}^{\prime}\right)^{\star} \text { and }\left(\mathrm{C}^{\prime}\right)^{\perp}=\mathrm{C} \cap(-\mathrm{C}) .
$$

Proof．By definition of $\mathrm{C}^{\prime}, \mathrm{C} \subset\left(\mathrm{C}^{\prime}\right)^{〔}$ ．To show the reverse inclusion，let $x \notin \mathrm{C}$ ．We need to show that $x \notin\left(\mathrm{C}^{\prime}\right)^{〔}$ ．Using separation properties and geometric Hahn－Banach ${ }^{2}$ ，there exists a linear functional $\alpha \in \mathrm{V}^{\prime}$ with $\inf _{\mathrm{c} \in \mathrm{C}} \alpha(\mathrm{c})>\alpha(x)$ ．From scaling properties of C and linearity of α ， $\inf _{c \in C} \alpha(c)=0, \alpha(x)<0$ ，so $x \notin\left(C^{\prime}\right)^{‘}$ ．We then also get

$$
\begin{aligned}
C \cap(-C) & =\left(C^{\prime}\right)^{‘} \cap-\left(C^{\prime}\right)^{`} \\
& =\left\{\alpha \in C: \alpha(a)=0 \forall a \in C^{\prime}\right\} \\
& =\left(C^{\prime}\right)^{\perp} .
\end{aligned}
$$

1．51 Lemma．Let \mathcal{A} be a C^{*}－algebra with unit，then \mathcal{A}^{+}forms a closed convex cone in \mathcal{A} ．
Proof．Recall $\mathcal{A}^{+}=\left\{a \in \mathcal{A}:(\forall \varphi \in \mathcal{S}(\mathcal{A}) \varphi(a) \geq 0\}\right.$ ，so $\mathcal{A}^{+}=\mathcal{S}(\mathcal{A})^{〔}$ ．
1．52 Remark．Recall the two theorems used in the proofs above．
1．Hahn－Banach theorem：（Corollary 6.5 from John B．Conway－A Course in Functional Analysis）If X is a normed space over \mathbb{C}, \mathcal{M} is a linear manifold in X ，and $f: \mathcal{M} \rightarrow \mathbb{C}$ is a bounded linear functional，then there is an $\mathrm{F} \in \mathrm{X}^{\prime}$ such that $\left.\mathrm{F}\right|_{\mathcal{M}}=\mathrm{f}$ and $\|\mathrm{F}\|=\|\mathrm{f}\|$ ．
We apply this theorem with $\mathcal{M}=\mathcal{A}_{x}$ a subspace of \mathcal{A} ．
2．（Theorem 2．4．7．from Gert K．Pedersen－Analysis Now）Separation properties and geomet－ ric Hahn－Banach：Let A and B be disjoint，nonempty，convex subsets of a topological vector space X ．If A is open，there is a $\alpha \in X^{\prime}$ and a $t \in \mathbb{R}$ such that $\operatorname{Re} \alpha(x)<t<\operatorname{Re} \alpha(y)$ ，for every $x \in A$ and $y \in B$ ．
We apply theorem with $C^{c}=A$ which is open since C is closed and $B=\{x\}$ ．

2 The Gelfand-Naimark-Segal (GNS) construction

We start with an observation. Let \mathcal{A} be a C^{*}-algebra with unit, (π, \mathcal{H} a representation of \mathcal{A}, then we recall π is a contraction. For each $v \in \mathcal{H},\|v\|=1$, we get $\varphi_{v}(\mathbf{a})=\langle\pi(a) v, v\rangle$ a state, because $\varphi_{v}(1)=\langle\pi(1) v, v\rangle=\|v\|^{2}=1$, and $\varphi_{v}\left(\mathrm{a}^{*} \mathrm{a}\right)=\|\pi(\mathrm{a}) v\|^{2} \geq 0$. The next goal is to find, for any \mathcal{A} and φ, a representation (π, \mathcal{K}) such that there exists $\nu \in \mathcal{H}$ and $\varphi(a)=\langle\pi(a) v, v\rangle$.

