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Last time

• Positivity

• States

Warm up: Let A = Mn(C), X ∈ A, X = X∗, then for λ ∈ σ(x) there exists φ ∈ S(A) such
that φ(x) = λ.

We know that λ ∈ σ(x) in Mn(C) means that λ is an eigenvalue and there exists v ∈ Cn

such that ∥v∥ = 1 and Xv = λv. Now define φ : A → C; A 7→ ⟨Av, v⟩. We have seen that
φ ∈ S(A) since φ(1) = 1, ∥φ∥ = 1; and φ(X) = ⟨Xv, v⟩ = λ.

1.47 Theorem. Let A be a C∗-algebra with unit. Let x ∈ A, x = x∗.

• If φ ∈ S(A), then φ(x) ∈ R and for each λ ∈ σ(x), there exists φ ∈ S(A) such that
φ(x) = λ.

• An element x = x∗ is positive if, and only if φ(x) ≥ 0 for each φ ∈ S(A).

Proof. • Let x = x+−x− where x± ≥ 0 and x+x− = x−x+ = 0. By the lemma characteriing
states, we have φ(x± ≥ 0), so φ(x) = φ(x+) − φ(x−) =⇒ φ(x) ∈ R. Next, consider
λ ∈ σ(x). Let Ax be the abelian C∗-algebra generated by {1, x}, then σAx(x) = σA(x).
Using Gelfand for the Ax

∼= C(σ(x)), we have an isometric ∗-isomorphism G : Ax →
C(σ(x)). For λ ∈ σ(x), we have δλ : C(σ(x)) → C, f 7→ f(λ) is a state on C(σ(x)), since
δλ(1) = 1 = ∥δλ∥ (1 is the constant function 1), and by isomorphism we get νλ = δλ ◦ G.
νλ(1) = δλ(1) = 1 and by isometry ∥νλ∥ = ∥δλ∥ = 1 hence νλ is a state on Ax. νλ

can be extended to a state ν on A by Hahn-Banach1 such that the extension satisfies
∥ν∥ = ν(1) = 1 since 1 ∈ Ax. Thus,ν(x) = νλ(x) = δλ(id) = λ giving us the result.

• If x = x∗, then w already know that for φ ∈ S(A), φ(x) ≥ 0. Conversely, if x − x∗ ∈ A
such that for any φ ∈ S(A), φ(x) ≥ 0, then if λ ∈ σ(x), λ ≥ 0 there exists φ by the
first part such that φ(x) = λ ≥ 0 and so σ(x) ⊂ [0,∞), hence x ≥ 0.

1.48 Definition. We give a few definitions relating cones and positive elements in a real vector
space.
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1. (Convex cone) A subset C of a real vector space V is called a convex cone if it is convex
and R+C ⊂ C.

2. (Dual cone) If V is a topological vector space (such that vector space operations are
continuous) and V ′ is the dual of V , then for a cone C in V , define the dual cone to C as

C ′ := {α ∈ V ′ : α(C) ⊂ R+}.

3. (Predual cone) If W ⊂ V ′ is a subset, then

(W)‘ := {v ∈ V : (∀w ∈ W) w(v) ≥ 0}

is called the predual cone of W.

1.49 Remark. If V is a real topological space,W ⊂ V ′, thenW‘ is closed sinceW‘ =
⋂

w∈W w−1[0,∞)
is the intersection of closed sets, where each w−1[0,∞) is closed since it is a preimage of a closed
set under a continuous map.

1.50 Theorem. If V is a real topological vector space and C ⊂ V a closed convex cone, then

C = (C ′)‘ and (C ′)⊥ = C ∩ (−C).

Proof. By definition of C ′, C ⊂ (C ′)‘. To show the reverse inclusion, let x ̸∈ C. We need to
show that x ̸∈ (C ′)‘. Using separation properties and geometric Hahn-Banach2, there exists a
linear functional α ∈ V ′ with inf

c∈C
α(c) > α(x). From scaling properties of C and linearity of α,

inf
c∈C

α(c) = 0, α(x) < 0, so x ̸∈ (C ′)‘. We then also get

C ∩ (−C) = (C ′)‘ ∩−(C ′)‘

= {α ∈ C : α(a) = 0∀a ∈ C ′}

= (C ′)⊥.

1.51 Lemma. Let A be a C∗-algebra with unit, then A+ forms a closed convex cone in A.

Proof. Recall A+ = {a ∈ A : (∀φ ∈ S(A) φ(a) ≥ 0}, so A+ = S(A)‘.

1.52 Remark. Recall the two theorems used in the proofs above.

1. Hahn-Banach theorem: (Corollary 6.5 from John B. Conway - A Course in Functional
Analysis) If X is a normed space over C, M is a linear manifold in X, and f : M → C is a
bounded linear functional, then there is an F ∈ X ′ such that F|M = f and ∥F∥ = ∥f∥.
We apply this theorem with M = Ax a subspace of A.

2. (Theorem 2.4.7. from Gert K. Pedersen - Analysis Now) Separation properties and geomet-
ric Hahn-Banach: Let A and B be disjoint, nonempty, convex subsets of a topological vector
space X. If A is open, there is a α ∈ X ′ and a t ∈ R such that Reα(x) < t < Reα(y), for
every x ∈ A and y ∈ B.

We apply theorem with Cc = A which is open since C is closed and B = {x}.
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2 The Gelfand–Naimark–Segal (GNS) construction

We start with an observation. Let A be a C∗-algebra with unit, (π,H a representation of A,
then we recall π is a contraction. For each v ∈ H, ∥v∥ = 1, we get φv(a) = ⟨π(a)v, v⟩ a
state, because φv(1) = ⟨π(1)v, v⟩ = ∥v∥2 = 1, and φv(a

∗a) = ∥π(a)v∥2 ≥ 0. The next
goal is to find, for any A and φ, a representation (π,K) such that there exists v ∈ H and
φ(a) = ⟨π(a)v, v⟩.
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