Lecture Notes from April 11, 2023

taken by Yerbol Palzhanov

1.1 Last week

- "Highlights" from last week:
 - More on consequences of GNS representation
 - Cyclic representations vs GNS construction

1.2 Warm-up

Skip the warm-up and come back later...

1.3 This week

1.6 Theorem. Each C^{*}- algebra \mathcal{A} is isomorphic to a closed *-subalgebra of $\mathcal{B}(\mathcal{H})$ for some \mathcal{H} .

Proof. We can assume \mathcal{A} has a unit, otherwise we embed \mathcal{A} in $\mathcal{A} \bigoplus 1$. For each $\varphi \in \Phi(\mathcal{A})$, we associate $(\pi_{\varphi}, \mathcal{H}_{\varphi})$. Next, we consider

$$\pi = igoplus_{\phi \in \Phi(\mathcal{A})} \pi_{\phi},$$

with our summability convention. For each s,

$$\|\pi(s)\| = \sup\{\|\pi_{\varphi}(s)\| : \varphi \in \Phi(\mathcal{A})\} \le \|s\|.$$

So π is a representation. We want to prove π is an isometry. Consider $s \in A$, then s^*s is Hermitian. Thus,

$$|s^*s|| = r(s^*s) = \max\{|\lambda| : \lambda \in \sigma(s^*s)\}.$$

We know there is $\phi \in \Phi(\mathcal{A})$ such that $\phi(s^*s) = ||s^*s||$. Thus,

$$\|\pi_{\boldsymbol{\phi}}(s)\|^2 \geq \|\pi_{\boldsymbol{\phi}}(s)\boldsymbol{\phi}\|^2 = <\pi_{\boldsymbol{\phi}}(s)\boldsymbol{\phi}, \pi_{\boldsymbol{\phi}}(s)\boldsymbol{\phi} > = \boldsymbol{\phi}(s^*s),$$

which gives

$$\|\pi(s)\|^2 \ge \|\pi_{\phi}(s)\|^2 \ge \phi(s^*s)$$

and we can choose ϕ such that

$$||\pi(s)||^2 \ge ||s^*s|| = ||s||^2$$

We conclude that π is an isometry, thus giving us an isomorphism of C^{*}- algebras.

We study a relationship between representations and states.

1.7 Definition. A state $\varphi \in \Phi(\mathcal{A})$ on a C^{*}-algebra is called a *pure state* if it is an extreme point of $\Phi(\mathcal{A})$, so it cannot be obtained as a non-trivial convex combinations of distinct states.

1.8 Example. $\mathcal{A} = l^{\infty}(\{1,2\}), \Phi(\mathcal{A})$. By $\Phi(\mathcal{A}) \subset \mathcal{A}'$, we see any $\phi \in \Phi(\mathcal{A})$ is given by

$$\varphi(\mathfrak{a}) = \varphi_1 \mathfrak{a}_1 + \varphi_2 \mathfrak{a}_2$$

and $\phi_1\phi_2 \ge 0$, $\phi_1 + \phi_2 = 1$. We note $\Phi(\mathcal{A})$ forms a simplex, figure below:

This allows us to identify the pure states as $\varphi_1 = (1, 0)$ or $\varphi_2 = (0, 1)$.

1.9 Theorem. Let \mathcal{A} be a C^* - algebra with unit, $\varphi \in \Phi(\mathcal{A})$, $(\pi_{\varphi}, \mathcal{H}_{\varphi})$ the GNS representation then $(\pi_{\varphi}, \mathcal{H}_{\varphi})$ is irreducible if and only if φ is a pure state.

Proof. Let $(\pi_{\phi}, \mathcal{H}_{\phi})$, then there is $\mathcal{H}_1 = \overline{\mathcal{H}_1} \subset \mathcal{H}$ and $\mathcal{H}_2 = \mathcal{H}_1^{\perp} \neq \{0\}$ that are invariant under \mathcal{A} , giving us $\mathcal{H} = \mathcal{H}_1 \bigoplus \mathcal{H}_2$.

Assume ϕ is cyclic, then $\phi \notin \mathcal{H}_1$ and $\phi \notin \mathcal{H}_2$, so $\phi = (\phi_1, \phi_2)$ with $\phi_i \in \mathcal{H}_i \setminus \{0\}$ for $i \in \{1, 2\}$. For $s \in \mathcal{A}$, we get

$$\varphi_1(s) = <\pi_{\varphi}(s)(\varphi_1, 0), (\varphi_1, 0) > = <\pi_{\varphi}(s)\varphi_1, \varphi_1 > .$$

Let us define

$$\tilde{\varphi_1} = \frac{1}{\|\varphi_1\|^2} \varphi_1$$

then this is a state, and so is

$$\tilde{\varphi_2} = \frac{1}{\|\varphi_2\|^2} \varphi_2.$$

Thus, we obtain

$$\varphi = \|\varphi_1\|^2 \tilde{\varphi_1} + \|\varphi_2\|^2 \tilde{\varphi_2}$$

with

$$1 = \|\phi\|^2 = \|\phi_1\|^2 + \|\phi_2\|^2.$$

This shows φ is not an extreme point.

Conversely, let $(\pi_{\phi}, \mathcal{H}_{\phi})$ be an irreducible representation and $\lambda \in (0, 1)$, $\phi_1, \phi_2 \in \Phi(\mathcal{A})$ with $\phi = \lambda \phi_1 + (1 - \lambda) \phi_2$. For the kernels (and spaces) associated with ϕ_1 and ϕ_2 , say $\mathcal{K}_1^{(1)}, \mathcal{K}_1^{(2)}$ we get

$$\mathcal{K}_1 = \lambda \mathcal{K}_1^{(1)} + (1 - \lambda) \mathcal{K}_1^{(2)}.$$

By our lemma on reproducing kernels,

$$\mathcal{H}_{\phi_1} = \mathcal{H}_{\mathcal{K}^{(1)}} \subset \mathcal{H}_{\mathcal{K}} = \mathcal{H}_{\phi}$$

and the map

$$\mathfrak{i}:\mathcal{H}_{\varphi_1}\to\mathcal{H}_{\varphi}$$

is continuous. Moreover,

$$\mathfrak{i}^*(\pi_{\phi}(s^*)\phi) = \mathfrak{i}^*(\mathcal{K}_s) = \mathcal{K}_s^{(1)} = \pi_{\phi_1}(s^*)\phi_1$$

and hence $i^*\phi=\phi_1.$ By

$$\pi_{\varphi}(s)(i(f))(x) = i(f)(xs) = f(xs) = (\pi_{\varphi_1}(s)f)(x) = i(\pi_{\varphi_1}(s)f)(x)$$

We observe i intertwining π_{ϕ_1} and π_{ϕ} . A similar intertwining relationship holds for $i^* : \mathcal{H}_{\phi} \to \mathcal{H}_{\phi_1}$.