Lecture Notes from April 11, 2023

taken by Yerbol Palzhanov

1.1 Last week

- "Highlights" from last week:
- More on consequences of GNS representation
- Cyclic representations vs GNS construction

1.2 Warm-up

Skip the warm-up and come back later...

1.3 This week

1.6 Theorem. Each C^{*} - algebra \mathcal{A} is isomorphic to a closed ${ }^{*}$-subalgebra of $\mathcal{B}(\mathcal{H})$ for some \mathcal{H}. Proof. We can assume \mathcal{A} has a unit, otherwise we embed \mathcal{A} in $\mathcal{A} \bigoplus 1$. For each $\varphi \in \Phi(\mathcal{A})$, we associate $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$. Next, we consider

$$
\pi=\bigoplus_{\varphi \in \Phi(\mathcal{A})} \pi_{\varphi},
$$

with our summability convention. For each s,

$$
\|\pi(s)\|=\sup \left\{\left\|\pi_{\varphi}(s)\right\|: \varphi \in \Phi(\mathcal{A})\right\} \leq\|s\| .
$$

So π is a representation. We want to prove π is an isometry. Consider $s \in \mathcal{A}$, then $s^{*} s$ is Hermitian. Thus,

$$
\left\|s^{*} s\right\|=r\left(s^{*} s\right)=\max \left\{|\lambda|: \lambda \in \sigma\left(s^{*} s\right)\right\} .
$$

We know there is $\varphi \in \Phi(\mathcal{A})$ such that $\varphi\left(s^{*} s\right)=\left\|s^{*} s\right\|$. Thus,

$$
\left\|\pi_{\varphi}(s)\right\|^{2} \geq\left\|\pi_{\varphi}(s) \varphi\right\|^{2}=<\pi_{\varphi}(s) \varphi, \pi_{\varphi}(s) \varphi>=\varphi\left(s^{*} s\right)
$$

which gives

$$
\|\pi(s)\|^{2} \geq\left\|\pi_{\varphi}(s)\right\|^{2} \geq \varphi\left(s^{*} s\right)
$$

and we can choose φ such that

$$
\|\pi(s)\|^{2} \geq\left\|s^{*} s\right\|=\|s\|^{2}
$$

We conclude that π is an isometry, thus giving us an isomorphism of C^{*} - algebras.

We study a relationship between representations and states.
1.7 Definition. A state $\varphi \in \Phi(\mathcal{A})$ on a C^{*}-algebra is called a pure state if it is an extreme point of $\Phi(\mathcal{A})$, so it cannot be obtained as a non-trivial convex combinations of distinct states.
1.8 Example. $\mathcal{A}=l^{\infty}(\{1,2\}), \Phi(\mathcal{A})$. By $\Phi(\mathcal{A}) \subset \mathcal{A}^{\prime}$, we see any $\varphi \in \Phi(\mathcal{A})$ is given by

$$
\varphi(a)=\varphi_{1} a_{1}+\varphi_{2} a_{2}
$$

and $\varphi_{1} \varphi_{2} \geq 0, \varphi_{1}+\varphi_{2}=1$. We note $\Phi(\mathcal{A})$ forms a simplex, figure below:

This allows us to identify the pure states as $\varphi_{1}=(1,0)$ or $\varphi_{2}=(0,1)$.
1.9 Theorem. Let \mathcal{A} be a C^{*} - algebra with unit, $\varphi \in \Phi(\mathcal{A}),\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ the GNS representation then $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ is irreducible if and only if φ is a pure state.

Proof. Let $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$, then there is $\mathcal{H}_{1}=\overline{\mathcal{H}_{1}} \subset \mathcal{H}$ and $\mathcal{H}_{2}=\mathcal{H}_{1}^{\perp} \neq\{0\}$ that are invariant under \mathcal{A}, giving us $\mathcal{H}=\mathcal{H}_{1} \bigoplus \mathcal{H}_{2}$.
Assume φ is cyclic, then $\varphi \notin \mathcal{H}_{1}$ and $\varphi \notin \mathcal{H}_{2}$, so $\varphi=\left(\varphi_{1}, \varphi_{2}\right)$ with $\varphi_{i} \in \mathcal{H}_{i} \backslash\{0\}$ for $\mathfrak{i} \in\{1,2\}$. For $s \in \mathcal{A}$, we get

$$
\varphi_{1}(s)=<\pi_{\varphi}(s)\left(\varphi_{1}, 0\right),\left(\varphi_{1}, 0\right)>=<\pi_{\varphi}(s) \varphi_{1}, \varphi_{1}>
$$

Let us define

$$
\tilde{\varphi}_{1}=\frac{1}{\left\|\varphi_{1}\right\|^{2}} \varphi_{1}
$$

then this is a state, and so is

$$
\tilde{\varphi}_{2}=\frac{1}{\left\|\varphi_{2}\right\|^{2}} \varphi_{2}
$$

Thus, we obtain

$$
\varphi=\left\|\varphi_{1}\right\|^{2} \tilde{\varphi}_{1}+\left\|\varphi_{2}\right\|^{2} \tilde{\varphi}_{2}
$$

with

$$
1=\|\varphi\|^{2}=\left\|\varphi_{1}\right\|^{2}+\left\|\varphi_{2}\right\|^{2} .
$$

This shows φ is not an extreme point.
Conversely, let $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ be an irreducible representation and $\lambda \in(0,1), \varphi_{1}, \varphi_{2} \in \Phi(\mathcal{A})$ with $\varphi=\lambda \varphi_{1}+(1-\lambda) \varphi_{2}$. For the kernels (and spaces) associated with φ_{1} and φ_{2}, say $\mathcal{K}_{1}^{(1)}, \mathcal{K}_{1}^{(2)}$ we get

$$
\mathcal{K}_{1}=\lambda \mathcal{K}_{1}^{(1)}+(1-\lambda) \mathcal{K}_{1}^{(2)}
$$

By our lemma on reproducing kernels,

$$
\mathcal{H}_{\varphi_{1}}=\mathcal{H}_{\mathcal{K}^{(1)}} \subset \mathcal{H}_{\mathcal{K}}=\mathcal{H}_{\varphi}
$$

and the map

$$
i: \mathcal{H}_{\varphi_{1}} \rightarrow \mathcal{H}_{\varphi}
$$

is continuous. Moreover,

$$
i^{*}\left(\pi_{\varphi}\left(s^{*}\right) \varphi\right)=i^{*}\left(\mathcal{K}_{s}\right)=\mathcal{K}_{s}^{(1)}=\pi_{\varphi_{1}}\left(s^{*}\right) \varphi_{1}
$$

and hence $i^{*} \varphi=\varphi_{1}$. By

$$
\pi_{\varphi}(s)(\mathfrak{i}(f))(x)=\mathfrak{i}(f)(x s)=\mathfrak{f}(x s)=\left(\pi_{\varphi_{1}}(s) \mathfrak{f}\right)(x)=\mathfrak{i}\left(\pi_{\varphi_{1}}(s) \mathfrak{f}\right)(x)
$$

We observe i intertwining $\pi_{\varphi_{1}}$ and π_{φ}. A similar intertwining relationship holds for $i^{*}: \mathcal{H}_{\varphi} \rightarrow$ $\mathcal{H}_{\varphi_{1}}$.

