Lecture Notes from April 13, 2023

taken by Cristian Meraz

Last time: From the GNS construction to an isometric isomorphism of C^{*}-algebras.

0 Warm-up

Let $\mathcal{A}=M_{n}(\mathbb{C})$ and $\varphi \in \mathcal{S}(\mathcal{A})$. Recall that states on a C^{*}-algebra \mathcal{A} are positive, bounded, linear functionals $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ with unit norm. (We proved this on 2023-03-28.)
0.1 Exercise. Part 1: Show that φ is given by

$$
\varphi: \mathcal{A} \rightarrow \mathbb{C}, \quad \varphi: \mathbf{A} \mapsto \varphi(\mathbf{A}):=\operatorname{tr}[\mathbf{A W}]
$$

where $\mathbf{W} \in \mathcal{A}$ is such that $\mathbf{W} \geq 0$ and $\operatorname{tr}[\mathbf{W}]=1$.
Part 2: Moreover, φ is pure if and only if $\mathbf{W}^{2}=\mathbf{W}$.
Proof of Part 1. First note that since \mathcal{A} is finite-dimensional, we can equip it with the HilbertSchmidt norm:

$$
\|\mathbf{A}\|_{\text {HS }}=\left(\operatorname{tr}\left[\mathbf{A}^{*} \mathbf{A}\right]\right)^{\frac{1}{2}},
$$

as all norms || || we consider are equivalent. Then, as φ is a bounded linear functional on a Hilbert space, we have:

$$
\varphi(\mathbf{A})=\operatorname{tr}\left[\mathbf{A} \mathbf{W}^{*}\right] \quad \text { with some } \mathbf{W} \in \mathcal{A},
$$

by the Riesz representation theorem for Hilbert spaces. If \mathbf{I} denotes the $n \times n$ identity matrix then

$$
\begin{aligned}
\varphi(\mathbf{I}) & =1 \\
& =\operatorname{tr}\left[\mathbf{I} \mathbf{W}^{*}\right]=\operatorname{tr}\left[\mathbf{W}^{*}\right]
\end{aligned}
$$

since φ is a state. Next, we will show that $\mathbf{W} \geq 0$. This will imply that all eigenvalues are non-negative real numbers, and $\operatorname{tr}[\mathbf{W}]=1$ follows.

To this end, note that if $\mathbf{X}=\mathbf{x x}^{*}$ is a rank-one matrix for some for some $\mathbf{x} \in \mathbb{C}^{n}$, then

$$
\begin{aligned}
\varphi(\mathbf{X}) & =\operatorname{tr}\left[\mathbf{X} \mathbf{W}^{*}\right] \\
& =\operatorname{tr}\left[\mathbf{W}^{*} \mathbf{X}\right]=\left\langle\mathbf{W}^{*} \mathbf{x}, \mathbf{x}\right\rangle .
\end{aligned}
$$

I.e. this is the quadratic form of \mathbf{W}^{*}. Hence, if $\lambda \in \sigma(\mathbf{W}) \backslash\{0\}$ and $\mathbf{v} \in \mathbb{C}^{n} \backslash\{\mathbf{0}\}$ are an eigenvalue-eigenvector pair for \mathbf{W}, i.e. $\mathbf{W} \mathbf{v}=\lambda \mathbf{v}$, then

$$
\varphi\left(\mathbf{v \mathbf { v } ^ { * }}\right)=\bar{\lambda}\|\mathbf{v}\|^{2} \geq 0 \quad \text { by positivity of } \varphi .
$$

Thus $\bar{\lambda} \in \mathbb{R}^{+}$, and therefore $\mathbf{W} \geq 0$ and $\operatorname{tr}[\mathbf{W}]=1$.

Proof of Part 2. Assuming Part 1, and that \mathbf{W} also satisfies $\mathbf{W}^{2}=\mathbf{W}$, we can conclude that \mathbf{W} is an orthogonal rank-one projection. This means that there exists a vector $\mathbf{v} \in \mathbb{C}^{n}$ with $\|\mathbf{v}\|=1$ such that $\mathbf{W}=\mathbf{v v}^{*}$.

Moreover, this is equivalent to the conditions that $\operatorname{tr}[\mathbf{W}]=1, \mathbf{W} \geq 0$, and $\mathbf{W}^{2}=\mathbf{W}$. To see this, write

$$
\mathbf{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right] \quad \Longrightarrow \quad \mathbf{W}:=\mathbf{v v}^{*}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]\left[\begin{array}{lll}
\bar{v}_{1} & \ldots & \bar{v}_{n}
\end{array}\right]
$$

so that

$$
\operatorname{tr}[\mathbf{W}]=\sum_{i=1}^{n}\left|v_{i}\right|^{2}=\mathbf{v}^{*} \mathbf{v}=\|\mathbf{v}\|^{2}=1, \quad \mathbf{W}^{2}=\left(\mathbf{v} \mathbf{v}^{*}\right) \mathbf{v} \mathbf{v}^{*}=\left(\mathbf{v}^{*} \mathbf{v}\right) \mathbf{v} \mathbf{v}^{*}=\mathbf{W}
$$

and

$$
\sigma(\mathbf{W}) \subset[0,1) \quad \Longrightarrow \quad \mathbf{W} \geq 0
$$

Proof strategy: We show that if \mathbf{W} cannot be written in this form for any \mathbf{v}, then this is equivalent to φ not being a pure state.

So suppose \mathbf{W} is not of this form. Then

$$
\mathbf{W}=\sum_{j=1}^{n} \lambda_{j} \mathbf{P}_{j} \quad \text { by Spectral Theorem },
$$

and $\lambda_{j} \in[0,1)$. By $\operatorname{tr}[\mathbf{W}]=\sum_{j=1}^{n} \lambda_{j}=1$, we know there exist $\lambda_{k}, \lambda_{\ell} \in(0,1)$ such that we can choose $\varepsilon>0$ and $\lambda_{k} \pm \varepsilon, \lambda_{\ell} \mp \varepsilon \in(0,1)$. But then we can write

$$
\left\{\begin{array}{l}
\mathbf{W}^{\prime}=\sum_{\substack{j=1 \\
j \neq k \\
j \neq \ell}} \lambda_{j} \mathbf{P}_{j}+\left(\lambda_{j}+\varepsilon\right) \mathbf{P}_{j}+\left(\lambda_{j}-\varepsilon\right) \mathbf{P}_{j} \\
\mathbf{W}^{\prime \prime}=\sum_{\substack{j=1 \\
j \neq k \\
j \neq \ell}} \lambda_{j} \mathbf{P}_{j}+\left(\lambda_{j}-\varepsilon\right) \mathbf{P}_{j}+\left(\lambda_{j}+\varepsilon\right) \mathbf{P}_{j}
\end{array}\right.
$$

Thus \mathbf{W} does not represent a pure state.
Conversely, if \mathbf{W} does not represent a pure state, we can use the Spectral Theorem to obtain

$$
\mathbf{W}=\sum_{j=1}^{n} \lambda_{j} \mathbf{P}_{j}
$$

with each \mathbf{P}_{j} an orthogonal rank-one projection, and $\mathbf{P}_{j} \mathbf{P}_{k}=\mathbf{0}=\mathbf{P}_{k} \mathbf{P}_{j}$ if $j \neq k$.

We can then note that

$$
\mathbf{W}^{2}=\sum_{j=1}^{n} \lambda_{j}^{2} \mathbf{P}_{j}
$$

and since

$$
\begin{cases}\lambda_{k}^{2}<\lambda_{k} & \text { if } k \in\{1, \ldots, n\} \text { with } \lambda_{k}<1 \\ \lambda_{j}^{2} \leq \lambda_{j} & \text { for all } j,\end{cases}
$$

we get

$$
\begin{array}{r}
\operatorname{tr}\left[\mathbf{W}^{2}\right]=\sum_{j=1}^{n} \lambda_{j}^{2}<\sum_{j=1}^{n} \lambda_{j}=\operatorname{tr}[\mathbf{W}] \\
\Longrightarrow \quad \mathbf{W}^{2} \neq \mathbf{W}
\end{array}
$$

Therefore, \mathbf{W} is not an orthogonal rank-one projection.

1 Representations of pure states are irreducible

We will now continue proving the theorem from the previous class.
1.1 Theorem. Let \mathcal{A} be a C^{*}-algebra with unit, and $\varphi \in \mathcal{S}(\mathcal{A})$. Then $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ (given by the GNS construction) is irreducible if and only if φ is a pure state.

Proof. We had shown if φ is not irreducible, then φ is not pure.
Next, we assume $\left(\pi_{\varphi}, \mathcal{H}_{\varphi}\right)$ is irreducible and let

$$
\varphi=\lambda \varphi_{1}+(1-\lambda) \varphi_{2}, \quad \varphi_{1} \neq \varphi_{2}
$$

By the GNS construction and relationship between

$$
K_{1}^{(1)}:=\varphi_{1}, \quad K_{1}^{(2)}:=\varphi_{2},
$$

we have that

$$
\mathcal{H}_{\varphi_{1}} \subset \mathcal{H}_{\varphi}
$$

and $i: \mathcal{H}_{\varphi_{1}} \rightarrow \mathcal{H}_{\varphi}$ intertwines actions of \mathcal{A} on \mathcal{H}_{φ} and $\mathcal{H}_{\varphi_{1}}$.
We observed $i i^{*} \pi_{\varphi}(s)=\pi_{\varphi}(s) i i^{*}$. By irreducibility and Schur's lemma (proved on 2023-0209),

$$
i i^{*} \in\left(\pi_{\varphi}(\mathcal{A})\right)^{\prime}=\mathbb{C} \mathbb{1}
$$

From this, we know that $i i^{*}=\lambda \mathbb{1}, \lambda \in \mathbb{C}$. Then,

$$
\begin{aligned}
i i^{*} \varphi & =i \varphi_{1}=\varphi_{1} \\
& =\lambda \varphi,
\end{aligned}
$$

and together with $1=\varphi_{1}(1)=\lambda \varphi(1)=\lambda$, this shows that $\lambda=1$, and hence $\varphi_{1}=\varphi$. Similarly, one can show that $\varphi_{2}=\varphi$. Thus, φ is an extreme point in $\mathcal{S}(\mathcal{A})$, and denotes a pure state.

2 Preview for next class

We will prove in the next class that if \mathcal{A} is an abelian C^{*}-algebra, then the states on \mathcal{A} are precisely the characters on \mathcal{A}, i.e., the bounded linear homomorphisms on \mathcal{A}.

