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Chapter 1

Abstract Integration

1.1 σ-algebras

The classical Riemann integral relies on continuity, which is a topological property.
One of our main objectives is to generalize Riemann integral. Hence, it is essential
to enlarge the class of integrable functions from merely continuous functions. In
analogy to a topology, we want to construct an underlying space of subsets on
which more functions can be integrated similarly. We will study this space and
the corresponding functions from section 1.1 to 1.4.

Throughout this chapter, let X be a nonempty set and P(X) = {S : S ⊆ X}
denote its power set.

Definition 1.1.1 (Topology). Let I �= ∅. A topology τ ⊆ P(X) of X satifies:

i. The empty set ∅ and X ∈ τ .

ii. If Ei ∈ τ , for all i ∈ I, then
�

i∈I Ei ∈ τ .

iii. If Ei ∈ τ , for 1 ≤ i ≤ n, then
�

n

i=1 Ei ∈ τ .

Definition 1.1.2 (Basis for a topology). A collection B ⊆ P(X) is called a
basis for X satisfying:

i. For all x ∈ X, there is E ∈ B such that x ∈ E.

ii. For all x ∈ X with x ∈ E1 ∩E2, there is E3 ∈ B, such that x ∈ E3 ⊆ E1 ∩E2.

Proposition 1.1.3. Let B be a basis for X. Then, τ := {U : U =
�

E∈B E} is
a topology. We call such τ the topology generated by B.

Proof. Verify the axioms. �

Definition 1.1.4 (σ-algebra). A collection M ⊆ P(X) is called a σ-algebra
if it satisfies the following:
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Abstract Integration

i. The set X ∈ M .

ii. If A ∈ M , then X \ A ∈ M .

iii. If An ∈ M , for each n ∈ N, then
�∞

n=1 An ∈ M .

The pair (X,M) is called a measurable space. Any set E ∈ M is called a
measurable set.

Remark. Note that M is “closed” under any finite and countable union, intersec-
tions, and set difference.

Example 1.1.5. Let X �= ∅.

• P(X), {∅, X} are σ-algebras.

• If X is uncountable, then M := {E ∈ P(X) : either E or E
c is countable} is

a σ-algebra.

1.2 Measurable Maps and Borel Algebras

In this section, we want to study the relations between topological spaces and
measurable spaces. To be precise, we will write the set X with its topology τ and
σ-algebra M when necessary.

Proposition 1.2.1 (σ-algebra generated by a collection). Suppose F ⊆ P(X).
There exists a unique σ-algebra M(F ) ⊆ P(X), such that

i. F ⊆ M(F )

ii. If N ⊇ F is a σ-algebra, then N ⊇ M(F ).

We call M(F ) the σ-algebra generated by F .

Proof. Define Ω := {N ⊆ P(X) : N ⊃ F, N is a σ-algebra}. Define M(F ) :=�
N∈Ω N . Verify the definition. For the uniqueness, show M(F ) ⊆ M

�(F ) and
M(F ) ⊇ M

�(F ). �
Definition 1.2.2 (Borel σ-algebra). Let (X, τ) be a topological space. The σ-
algebra generated by τ , M(τ), is called the Borel σ-algebra. Any set B ∈ M(F )
is an Borel set.

Definition 1.2.3 (Measurable maps). Let (X,M) be a measurable space,
(Y, τ) be a topological space. A map f : (X,M) → (Y, τ) is measurable if for
each open set U , f−1(U) is measurable in X.

Definition 1.2.4 (Borel measurable maps). Let (X, τX), (Y, τY ) be topolog-
ical spaces. Then f : (X,M(τX)) → (Y, τY ) is Borel measurable if for each open
set U in Y , f

−1(U) is a Borel set in X. Hence, all continuous maps are Borel
measurable.
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Measurable Maps and Borel Algebras

Theorem 1.2.5. The map f : (X,M) → (Y, τ) is measurable if and only if for
each Borel set B in Y , f−1(B) is measurable in X.

Proof. (⇐) is trivial. (⇒) Define N := {U ⊂ Y : f−1(U) ∈ M}. Show that N is
a σ-algebra containing τ . By definition of Borel algebra, N ⊃ M(τ). �
Remark 1.2.6. From the definitions and Theorem 1.2.5., we immediately see
that if f : (X,M) → (Y, τY ) is measurable and g : (Y, τY ) → (Z, τZ) is Borel mea-
surable, then g ◦ f : X → Z is measurable.

Proposition 1.2.7. Let f : (X,M) → (Y, τY ) be measurable, g : (Y, τY ) →
(Z, τZ) be continuous. Then g ◦ f : X → Z is measurable.

Proof. For U ∈ M(τZ), g−1(U) ∈ M(τY ), so f
−1(g−1(U)) = (g ◦f)−1(U) ∈ M . �

Lemma 1.2.8. Let V ⊆ R2 be open. There exists sequence of open rectangles
{Ri}∞i=1, Ri = (ai, bi)× (ci, di), such that V =

�
i∈N Ri.

Proof. B := {(a, b)× (c, d) : a, b, c, d ∈ Q} is a countable basis for R2. �
Proposition 1.2.9. Let u, v : X → R be measurable. Then the map f : X → R2,
given by f(x) := (u(x), v(x)) is measurable.

Proof. Let R := (a, b)× (c, d) be an open rectangle. Then,

f
−1(R) = {x : u(x) ∈ (a, b)} ∩ {x : v(x) ∈ (c, d)} ∈ M.

Let V ∈ R2 be open. By Lemma (1.2.8), V =
�∞

i=1 Ri, where Ri is an open
rectangle. Hence,

f
−1(V ) = f

−1

� ∞�

i=1

(Ri)

�
=

∞�

i=1

f
−1(Ri) ∈ M. �

Corollary 1.2.10.

1. If f = u+ iv, where u, v are real measurable maps on X, then f is complex
measurable on X.

2. If f = u + iv is complex measurable on X, then u, v, and |f | are real mea-
surable on X.

3. If f, g are complex measurable on X, so are f + g and fg.

Definition 1.2.11 (Extended real line). In Analysis, we frequently deal with
∞, sequences and compactness. To generalize our results, we will work with the
extended real line. From Topology, it is a compactification of R. Roughly
speaking, we add the symbols “−∞" and “∞” to R and enlarge the standard
topology on R by allowing sets in the form of [−∞, b), (a,∞] to be open. Hence,
a standard basis for this topology is

B = {[−∞, b)} ∪ {(a, b)} ∪ {(a,∞]}. (1.2.1)

Under this topology, R is compact. We sometime write [−∞,∞] for R.
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Abstract Integration

Theorem 1.2.12 (Test for measurability). Let f : (X,M) → [−∞,∞]. Then, f
is measurable if and only for all a ∈ R, f−1((a,∞]) ∈ M .

Proof. (⇐) is trivial by the definition of meaurable function. (⇒) First show that
any basis set is measurable using [−∞, b) =

�∞
n=1[−∞, b − 1

n
] and intersection.

Then, for every open V ∈ [−∞,∞], V is either in (−∞,∞) or not. If former,
done previously. Otherwise, V is the union of a set containining [−∞, b) and/or
(a,∞] with some V0 ⊂ (−∞,∞), hence measurable. �

1.3 Sequences

Definition 1.3.1. Given {an}∞n=1 in [−∞,∞]. Define

lim sup an := inf
k∈N

{sup
k≥n

an}, and lim inf an := sup
k∈N

{ inf
k≥n

an}. (1.3.1)

We call lim sup an the upper limit and lim inf an the lower limit of {an}, re-
spectively.

Remark 1.3.2. Since {sup
k≥n

an}∞n=1 is a decreasing sequence in a compact set,
lim sup an always exists. Similarly, lim inf an always exists. Also,

lim inf
n→∞

(an) = − lim sup
n→∞

(−an).

If {an} converges in [−∞,∞], then

lim inf an = lim an = lim sup an.

Definition 1.3.3. Let fn : X → [−∞,∞], for all n ∈ N. Define the following
functions pointwise:

- (sup fn)(x) := sup
n∈N

{fn(x)}.

- (lim sup fn)(x) := lim sup
n→∞

{fn(x)}.

We define inf fn, lim inf fn similarly. Also, if for all x ∈ X, {fn(x)} converges, we
call f(x) := lim

n→∞
fn(x) the pointwise limit of the sequence {fn}.

Proposition 1.3.4. Let (X,M) be measurable space, fn : X → [−∞,∞] be
measurable for each n ∈ N. Then,

g := sup fn and h := lim sup fn

are measurable.

Proof. Show that g
−1((a,∞]) =

�∞
n=1 f

−1
n

((a,∞]) ∈ M . Same for inf fn, then
apply on h. �
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Simple Functions

Corollary 1.3.5. There following corollaries are useful in the later chapters.

1. If fn : X → C and f is the pointwise convergent limit of fn for all x ∈ X,
then f is complex measurable.

2. If f, g : X → [−∞,∞] are measurable, then so are max{f, g} and min{f, g}.
In parictular, it is true for

f
+ := max{f, 0} and f

− := −min{f, 0}.

1.4 Simple Functions

Definition 1.4.1. A function s : X → C is called a simple function if s(X) is
a finite set.

Definition 1.4.2. Let A ∈ M , define the characteristic function χA : X → C
given by

χA(x) =

�
1, if x ∈ A,
0, else.

(1.4.1)

Remark. Note that χA is measurable because χ−1
A
(U) = X,A

c
, A, or ∅.

Proposition 1.4.3. A function s : X → C is simple if and only if there are
disjoint measurable sets A1, . . . , An, and α1, . . . ,αn ∈ C, such that s =

�
n

i=1 αiχAi.

Proof. (⇒) follows from definition. (⇐). Let {α1, . . . ,αn} = s(X). Define Ai :=
s
−1(αi), for each i. Verify the claim. �

Theorem 1.4.4. Let f : X → [0,∞] be measurable, then there exists a sequence
of simple functions {sn}∞n=1, sn(x) ≥ 0 such that

i. For each n ∈ N, sn is measurable.

ii. The sequence {sn(x)} is non-decreasing, for all x ∈ X.

iii. For all x ∈ X, sn(x) → f(x).

Proof. Fix t ∈ [0,∞). For each n, there is kn(t) ∈ N0, such that kn(t)2−n ≤ t <

(kn(t) + 1)2−n.1 Define a staircase function ϕn : [0,∞) → [0,∞) given by

ϕn(t) :=

�
kn(t)
2n , if 0 ≤ t < n,

n, if t ≥ n.
(1.4.2)

Note that ϕn(t) � t, and 0 ≤ ϕ1 ≤ · · · ≤ t. Also,

ϕ−1
n
((a,∞]) =

�
∅, if n < a,
[m+1

2n ,∞], if m

2n ≤ a <
m+1
2n , for some m ∈ N.

1
The set {m

2n : m,n ∈ N} is dense in R.
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Abstract Integration

Hence, ϕn is Borel measurable. Define sn := ϕn ◦ f , then sn ≤ f . Note that sn’s
are simple, measurable, and sn � f . �

1.5 Measures

Definition 1.5.1. Let (X,M) be a measurable space. A set function µ : M →
[0,∞] is called countably additive, or σ-addivity, if whenever {An}∞n=1 ⊂ M ,
with Ai ∩ Aj = ∅, for all i �= j, we have

µ

� ∞�

i=1

Ai

�
=

∞�

i=1

µ(Ai).

Moreover, if µ(A) < ∞ for some A ∈ M , then µ is called a positive measure.
The triple (X,M, µ) is called a measure space.

Example 1.5.2. Let X = N, M := P(X). Define µ(S) = |S|. Such µ is known as
the counting measure.

Theorem 1.5.3 (Elementary Properties of Positive Measures). Let (X,M, µ) be
a positive measure space. Then

(a) µ(∅) = 0.

(b) For finite disjoint collection {Ai}ni=1, µ(
�

n

i=1 Ai) =
�

n

i=1 µ(Ai).

(c) If A,B ∈ M , and A ⊆ B, then µ(A) ≤ µ(B).

(d) If A1 ⊆ A2 ⊂ . . . in M , then µ(
�∞

i=1 Ai) = lim
n→∞

µ(An).

(e) If A1 ⊇ A2 ⊇ . . . in M , and there is k ∈ N, so that µ(Ak) < ∞, then
µ(
�∞

i=1 Ai) = lim
n→∞

µ(An).

We call properties (b) finite addivitiy and (c) monotonicty.

Proof. Follow from definition. For (d), take Bn = An \An−1. For (e), similar. �

1.6 Integration of Positive Functions

From now on, (X,M, µ) denotes a positive measure space.

Definition 1.6.1. Let s : X → [0,∞] be a simple measurable function, of the
form

s =
n�

i=1

αiχAi ,
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Integration of Positive Functions

where s(X) = {α1, . . . ,αn} and Ai ∩ Aj = ∅, for all i �= j. If E ∈ M , we define
the integral of s over E by

�

E

s dµ :=
n�

i=1

αiµ(Ai ∩ E),

with the convention 0 ·∞ = 0.

Remark. By definition, if 0 ≤ t ≤ s is a simple measurable function over a
measurable set E ∈ M , we see that

�

E

t dµ ≤
�

E

s dµ.

Definition 1.6.2 (Lebesgue integral). Let f : X → [0,∞] be a measurable
function and E ∈ M , we define the Lebesgue integral of f over E

�

E

f dµ := sup

��

E

s dµ : s is simple, measurable with 0 ≤ s ≤ f

�

Note that if f is simple, the definitions of
�
E
f dµ agree.

Theorem 1.6.3 (Properties of Lebesgue Integral). Let f, g : X → [0,∞] be
measurable.

(a) If 0 ≤ f ≤ g, then
�
E
f dµ ≤

�
E
g dµ.

(b) If A ⊆ B and A,B ∈ M , then
�
A
f dµ ≤

�
B
g dµ.

(c) Given c ∈ [0,∞), E ∈ M ,
�
E
cf dµ = c

�
E
f dµ.

(d) If f(E) = 0, or µ(E) = 0, then
�
E
f dµ = 0.

(e) For all E ∈ M ,
�
E
f dµ =

�
X
fχE dµ.

Proof. One should be able to prove these properties by the definitions. In gen-
eral, when we need to prove the result for measurable f , we first prove that for
simple functions. It is a lot easier because simple functions are just finite linear
combinations. Then generalize the case for measurable function f . �

We now come to some remarkable results on limits and sequences.

Lemma 1.6.4. Let s : X → [0,∞] be a simple measurable function. The function
ϕ : M → [0,∞] given by

ϕ(E) :=

�

E

s dµ,

is a positive measure.

Proof. It is easy to verify the definition of positive measure since s only takes
finitely many values on X. �
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Abstract Integration

Theorem 1.6.5 (Lebesgue’s Monotone Convergence Theorem). Let {fn}
be a sequence of measurable functions on X → [0,∞], with

(a) 0 ≤ f1 ≤ f2 ≤ · · · ≤ ∞, and

(b) fn(x) → f(x), for all x ∈ X.

Then f is measurable, and

lim
n→∞

�

X

fn dµ =

�

X

f dµ. (1.6.1)

Proof. Obviously, limn→∞
�
X
fn dµ ≤

�
X
f dµ. For another inequality, for every

c ∈ (0, 1), fix a simple measurable function s, with 0 ≤ s ≤ f . Let En := {x :
fn(x) ≥ cs(x)}. Then, E1 ⊆ E2 ⊆ . . . and

�∞
n=1 En = X. By Lemma (1.6.4),

�

X

s dµ = ϕ(X) = lim
n→∞

ϕ(En) = lim
n→∞

�

En

s dµ

≤ lim
n→∞

�

En

1

c
fn dµ

≤ lim
n→∞

�

X

1

c
fn dµ. (1.6.2)

Bying taking the supremum over all such s on the LHS of inequality (1.6.2),

lim
n→∞

�

X

fn dµ ≥ c

�

X

f dµ, ∀c ∈ (0, 1). (1.6.3)

Thus, (1.6.3) also holds true when c = 1 and it completes the proof. �
Corollary 1.6.6. Let f, g : X → [0,∞] be measurable, then for all E ∈ M ,

�

E

(f + g) dµ =

�

E

f dµ+

�

E

g dµ.

Proof. First show for simple functions using the lemma. Pick increasing sequences
of simple functions, sn � f , tn � g and apply Monotone Convergence. �
Corollary 1.6.7 (Monotone Convergence for Series). If fn : X → [0,∞]
is measurable for each n ∈ N, then for all E ∈ M ,

�

E

∞�

n=1

fn dµ =
∞�

n=1

�

E

fn dµ. (1.6.4)

Proof. Define gn := f1 + · · ·+ fn and apply Monotone Convergence on {gn}. �
Theorem 1.6.8 (Integral to measures). Let f : X → [0,∞] be measurable. Then
the function ϕ : M → [0,∞] given by

ϕ(E) :=

�

E

f dµ,
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Integration of Complex Functions

is a positive measure. Moreover, if g : X → [0,∞] is measurable, then
�

X

g dϕ =

�

X

gf dµ.

Proof. This is a general version of Lemma (1.6.4). Show that ϕ defines a measure
using Monotone Convergence. For the second part, start with simple function,
then use Monotone Convergence on sn � g. �
Theorem 1.6.9 (Fatou’s Lemma). Let fn : X → [0,∞] be measurable for
every n ∈ N, then

�

X

�
lim inf
n→∞

fn

�
dµ ≤ lim inf

n→∞

�

X

fn dµ. (1.6.5)

Proof. Let gn(x) := inf{fk(x) : n ≥ k}. So, gn ≤ fm for all m ≥ n, and {gn} is a
non-decreasing sequence. By Monotone Convergence,

�

X

lim inf
n→∞

fn dµ =

�

X

lim
n→∞

gn dµ = lim
n→∞

�

X

gn dµ

≤ lim
n→∞

�
inf
m≥n

��

X

fm dµ

��
= lim inf

n→∞

�

X

fn dµ. �

1.7 Integration of Complex Functions

Definition 1.7.1 (L1 Space). Define L
1(µ) to be the set of all complex mea-

surable functions f : X → C such that
�

X

|f | dµ < ∞. (1.7.1)

Recall that the measurability of f implies that of |f |. Any f ∈ L
1(µ) is called

Lebesgue integrable, absolutely integrable, or L1-integrable.

Definition 1.7.2 (Integral of Complex Functions). Let f ∈ L
1(µ) and f =

u+ iv. For all E ∈ M , we define the integral of f to be
�

E

f dµ :=

��

E

u
+ dµ−

�

E

u
− dµ

�
+ i

��

E

v
+ dµ−

�

E

v
− dµ

�
. (1.7.2)

Note that u
+
, u

− ≤ |u| ≤ |f | and v
+
, v

− ≤ |v| ≤ |f |. Thus, each of the integals
above is finite. Also, if f ∈ L

1(µ) and f : X → [−∞,∞], E ∈ M , we write
�

E

f dµ =

�

E

f
+ dµ−

�

E

f
− dµ. (1.7.3)

Theorem 1.7.3. For all f, g ∈ L
1(µ), for all α, β ∈ C, αf + βg ∈ L

1(µ), and
�

X

(αf + βg) dµ = α

�

X

f dµ+ β

�

X

g dµ.

9



Abstract Integration

Proof. First, αf + βg is measurable. Also,
�

X

|αf + βg| dµ ≤
�

X

|α||f |+ |β||g| dµ = |α|
�

X

|f | dµ+ |β|
�

X

|g| dµ < ∞.

So αf + βg ∈ L
1(µ). Now consider h := f + g. We see that

h
+ + f

− + g
− = h

− + f
+ + g

+
,

which implies
�
X
f + g dµ =

�
X
f dµ +

�
X
g dµ. Finally, if α = −1, then use

(−u)+ = u
−. If α = i, we have

�

X

if dµ =

�

X

(−v) dµ+ i

�

X

u = i

��

X

u dµ+ i

�

X

v dµ

�
= i

�

X

f dµ.

Therefore, L1(µ) is a complex vector space. �

Proposition 1.7.4. If f ∈ L
1(µ), then |

�
X
f dµ| ≤

�
X
|f | dµ.

Proof. First show that for real-valued f ,
����
�

X

f dµ

���� =
����
�

X

f
+ dµ−

�

X

f
− dµ

���� ≤
����
�

X

f
+ dµ

����+
����
�

X

f
− dµ

����

=

�

X

(f+ + f
−) dµ =

�

X

|f | dµ.

For complex-valued f , suppose z :=
�
X
f dµ �= 0. Then, there is α ∈ C such that

αz = |z|. Hence,
����
�

X

f dµ

���� = α

�

X

f dµ =

�

X

αf dµ =

�

X

Re(αf) dµ

≤
�

X

|αf | dµ =

�

X

|f | dµ,

where the third equality comes from the fact that |
�
X
f dµ| is real-valued. �

Theorem 1.7.5 (Dominated Convergence Theorem). For all n ∈ N, let
fn : X → C be measurable. Suppose

f(x) := lim
n→∞

fn(x)

exists for all x ∈ X and there exists g ∈ L
1(µ) such that |fn(x)| ≤ g(x), for all

x ∈ X and n ∈ N. Then f ∈ L
1(µ),

lim
n→∞

�

X

|fn − f | dµ = 0, and lim
n→∞

�

X

fn dµ =

�

X

f dµ. (1.7.4)

10
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Proof. First, since |fn| ≤ g, |f | ≤ g and f ∈ L
1(µ). Applying Fatou’s Lemma on

2g − |fn − f |, we see that
�

X

2g dµ ≤ lim inf
n→∞

�

X

2g − |fn − f | dµ

=

�

X

2g dµ+ lim inf
n→∞

�
−
�

X

|fn − f | dµ
�

=

�

X

2g dµ− lim sup
n→∞

�

X

|fn − f | dµ. (1.7.5)

Because
�
X
2g dµ < ∞, inequality (1.7.5) gives

lim sup
n→∞

�

X

|fn − f | dµ ≤ 0. (1.7.6)

However,
�
X
|fn − f | dµ ≥ 0 forces the upper limit to be 0. On other hand, the

lower limit is at least 0. Therefore,

0 ≤ lim
n→∞

����
�

X

fn dµ−
�

X

f dµ

���� ≤ lim sup
n→∞

�

X

|fn − f | dµ = 0. �

1.8 Sets of Measure Zero

Definition 1.8.1. Let (X,M, µ) be a measure space, and E ∈ M . We say
a property P holds almost everywhere on E with respect to µ if there exists
N ⊂ E, N ∈ M such that P holds on E \ N and µ(N) = 0. We denote that by
“a.e.”, “µ-a.e.”, or “a.e. [µ]”.

Example 1.8.2. If f, g are measurable functions on X, and if

µ({x : f(x) �= g(x)}) = 0,

we say f = g µ-a.e. on X, and denote that by f ∼ g because it is an equivalence
relation. Moreover, for all E ∈ M ,

�

E

f dµ =

�

E

g dµ.

This is an important concept in measure theory. We will investigate further in the
later chapters.

Definition 1.8.3. If for every E ∈ M with µ(E) = 0, F ⊆ E implies F ∈ M ,
then µ is called a complete measure on M .

Theorem 1.8.4 (Completion of measure space). Let (X,M, µ) be a measure
space. Define M

∗ := {E ⊆ X : ∃A,B ∈ M s.t. A ⊂ E ⊂ B, µ(B \ A) = 0}.
Define µ

∗(E) = µ(A). Then µ
∗ is complete on M

∗.

11
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Proof. Step 1: We need to show that µ
∗ is well-defined, i.e. µ

∗ depends on the
choice of E, not A. Suppose A ⊂ E ⊂ B, A

� ⊂ E ⊂ B
�. Then,

A ⊂ E ⊂ B
� ⇒ (A \ A�) ⊂ (E \ A�) ⊂ (B \ A�)

⇒ µ(A \ A�) = 0.

Similary, µ(A� \ A) = 0, and

µ(A) = µ(A \ A�) + µ(A ∩ A
�)

= µ(A� \ A) + µ(A� ∩ A)

= µ(A�) = µ
∗(E).

Step 2: Verify that M
∗ is a σ-algebra. We see that X ∈ M . Let E ∈ M , if

A ⊂ E ⊂ B and µ(B \ A) = 0, then A
c ⊃ E

c ⊃ B
c, and

µ(Ac \Bc) = µ(Ac ∩ B) = µ(B ∩ A
c) = µ(B \ A) = 0.

So, E
c ∈ M

∗. Let En ∈ M
∗ and An ⊂ En ⊂ Bn. Define A :=

�∞
n=1 An and

B :=
�∞

n=1 Bn. Then, A ⊂
�∞

n=1 En ⊂ B and

µ(B \ A) = µ

� ∞�

n=1

Bn \ An

�
=

∞�

n=1

µ(Bn \ An) = 0.

Thus,
�∞

n=1 En ∈ M
∗, and M

∗ is a σ-algebra.

Step 3: Finally, we need to show that µ∗ is a measure on M
∗, i.e. show countable

additivity. Let {En} ⊂ M
∗ be pairwise disjoint. Then there exists pairwise disjoint

sequence {An} such that

µ
∗(E) = µ(A) = µ

� ∞�

n=1

An

�
=

∞�

n=1

µ(An) =
∞�

n=1

µ
∗(En).

Obviously, if E ∈ M ⊂ M
∗, µ∗(E) < ∞. Therefore, (X,M

∗
, µ

∗) is a completion
of (X,M, µ). �

Theorem 1.8.5. Let f : X → [0,∞] be measurable and
�
X
f dµ = 0. Then,

f = 0 a.e.

Proof. Let En := {x ∈ X : f(x) >
1
n
}. Then En ∈ M , for all n ∈ N and

E :=
�

n∈N En = {x : f(x) > 0} ∈ M . Consider
�

X

f dµ = 0 ≥
�

X

fχEn dµ ≥ 1

n

�

X

χEn dµ

=
1

n
µ(En) ≥ 0.

Then, by σ-additivity, µ(En) = 0 and µ(E) = 0, which concludes f = 0 a.e. �
Proposition 1.8.6. If f = 0 a.e., then

�
X
f dµ = 0.

12
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Proof. Let E := {x : f(x) �= 0}. Then, µ(E) = 0 and
�

X

f dµ =

�

X

f(χE + χEc) dµ =

�

E

f dµ+

�

Ec

f dµ = 0 + 0 = 0. �

Theorem 1.8.7. For all n ∈ N, let fn be a complex measurable function defined
a.e. on X such that

�∞
n=1

�
X
|fn| dµ < ∞. Then there exists f ∈ L

1(µ) such that

f(x) =
∞�

n=1

fn(x), µ-a.e. and
�

X

f dµ =
∞�

n=1

�

X

fn dµ. (1.8.1)

Proof. Define Sn := {x : fn(x) is not defined.}, so µ(Sn) = 0. We want to show
that there is S with µ(S) = 0, and for all x /∈ S,

�∞
n=1 fn(x) converges abso-

lutely. Define ϕ(x) :=
�∞

n=1 |fn(x)|. By Monotone Convergence,
�

X

ϕ dµ =
∞�

n=1

�

X

|fn| dµ < ∞.

Thus, {x ∈ X : ϕ(x) = ∞} has measure zero. Hence, if x /∈ Sn, ∀n ∈ N and
ϕ(x) �= ∞,

�∞
n=1 fn(x) must converge absolutely. Define S :=

�∞
n=1 Sn ∪ {x ∈ X :

ϕ(x) = ∞}. Then µ(S) = 0 and ∀x ∈ S
c, by absolute convergence we have

∞�

n=1

fn(x) = f(x).

Finally, define gn := f1+ · · ·+fn, ∀n ∈ N. Then, |gn| ≤ ϕ and gn(x) → f(x), ∀x ∈
S
c. By Dominated Convergence on S

c,
�

Sc

f dµ = lim
n→∞

�

Sc

gn dµ =
∞�

n=1

�

Sc

fn dµ.

Since S has measure zero, we obtain the second equality. �

Proposition 1.8.8 (An Average Argument). Let (X,M, µ) be a finite positive
measure space. Let f ∈ L

1(µ) and S be a closed set in C. If for every E ∈ M ,
the averages

AE(f) :=
1

µ(E)

�

E

f dµ ∈ S,

then f(x) ∈ S for almost all x ∈ X.

Proof. Since S
c is open, Sc =

�∞
n=1 En for open balls En of the form B(α, r) ⊂ S

c.
Let E := f

−1(B(α, r)). Thus, it suffcies to show µ(E) = 0. By contradiction,
suppose µ(E) > 0, then

|AE(f)− α| = 1

µ(E)

����
�

E

(f − α) dµ

���� ≤
1

µ(E)

�

E

|f − α| dµ

≤ 1

µ(E)

�

E

r dµ = r.

However, it contradicts the hypothesis AE(f) ∈ S. �

13



Abstract Integration

Theorem 1.8.9. Let {En} be a sequence of measurable sets in X, such that�∞
n=1 µ(En) < ∞. Then almost all x ∈ X lie in at most finitely many Ek’s.

Proof. Define A := {x : x ∈ infinitely many Ek}. Define g(x) :=
�∞

n=1 χEn(x).
Then, x ∈ A if and only if g(x) = ∞. By Monotone Convergence for series,�
X
g dµ =

�∞
n=1 µ(En) < ∞. Hence, g ∈ L

1(µ) and g(x) < ∞ a.e. �
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Chapter 2

Positive Borel Measures

2.1 Integration as a Linear Functional

Definition 2.1.1. Let V be a complex vector space. A linear functional is a
linear transformation Λ : V → C.

Example 2.1.2. Let (X,M, µ) be a positive measure space. Recall that L
1(µ) is

a complex vector space. The map f �→
�
X
f dµ is a linear functional on L

1(µ).
Likewise, for any bounded measurable function g, f �→

�
X
fg dµ is also a linear

functional.

Definition 2.1.3. Let V be a complex vector space of functions on X. We say
Λ : V → C is a positive linear functional if f ≥ 0 implies Λ(f) ≥ 0.

Example 2.1.4. Let C([0, 1]) be the set of complex continuous functions on [0, 1].
The map f �→

� 1

0 f dx is a positive linear functional.

2.2 Topological Preliminaries

Let (X, τ) be a topological space.

Definition 2.2.1.

(a) A set E ⊆ X is closed if EC is open.

(b) The closure of E is defined as E :=
�

F⊇E
F , where F is any closed set.

(c) A set K ⊆ X is compact if for any open cover {Uα}α∈A of K, there exists
finite set B ⊂ A such that K ⊆

�
α∈B Uα.

(d) A neighborhood of a point p ∈ X is an open set U ∈ τ containing p.

(e) We say (X, τ) is Hausdorff if for all p �= q ∈ X, there are open sets U, V ∈ τ
such that p ∈ U, q ∈ V , and U ∩ V = ∅.
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(f) We say (X, τ) is locally compact if for each p ∈ X, there exists neighborhood
U of p such that U is compact.

Theorem (Heine-Borel). Recall that a subset K of the Euclidean space Rn is
compact if and only if K is closed and bounded.

Proposition 2.2.2 (Finite Intersection Property). Let (X, τ) be a Hausdorff
space, and {Kα}α∈A be a family of compact sets. If for every finite B ⊂ A,�

α∈B Kα �= ∅, then
�

α∈A Kα �= ∅.

Proof. By contrapositive, suppose
�

α∈A Kα = ∅. Then
�

α∈A K
C

α = X. There
exists β ∈ A such that Kβ ⊆ X =

�
α∈A K

C

α . By compactness, Kβ ⊆
�

α∈J K
c

α for
some finite J ⊂ A. Hence, Kβ ∩

�
α∈J Kα = ∅. �

Proposition 2.2.3. Let (X, τ) be a topological space. If F is closed subset of a
compact set K, then F is compact.

Proof. Let {Uα}α∈A be an open cover on F . Then, F
c ∪

�
α∈A Uα ⊇ K. So,

F
c ∪

�
α∈B Uα ⊆ K, for some finite B ⊂ A. Hence, F is covered by {Uα∈B}. �

Corollary 2.2.4.

1. Compact subsets of Hausdorff spaces are closed.

2. If F is closed and Kis compact in a Hausdorff space, then F ∩K is compact.

Proposition 2.2.5. Let (X, τ) be a Hausdorff space, and K be compact. If
p /∈ K, then there are U, V ∈ τ, U ∩ V = ∅, such that K ⊆ V, p ∈ U .

Proof. Fix p /∈ K. For each q ∈ K, there are Uq, Vq ∈ τ, Uq ∩ Vq = ∅ such that
p ∈ Uq, q ∈ Vq. Then by compactness,

K ⊆
n�

i=1

Vqi = V and p ∈
n�

i=1

Uqi = U. �

Theorem 2.2.6. Let (X, τ) be a locally compact Hausdorff space. If K is com-
pact, K ⊂ U ∈ τ , then there exists V ∈ τ such that V is compact, and

K ⊂ V ⊂ V ⊂ U.

Proof. For every x ∈ K, there exists open neighborhood of x with compact clo-
susre. By compactness, K is covered by a finite subcover of these neighborhoods.
If U = X, let V := G be the union of such subcover.

Otherwise, for each p ∈ U
c, there is open Wp ∈ τ such that K ⊂ Wp and p /∈ Wp.

Define A := {U c ∩ G ∩Wp : p ∈ U
c}. Observe that A is a collection of compact

sets, and ∩F∈AF = ∅. Hence, by FIP, there exists p1, . . . , pm ∈ U
c such that�

m

i=1 Fi = ∅. Hence, U c ∩ G ∩ (
�

m

i=1 Wpi) = ∅. Define V := G ∩ (
�

m

i=1 Wpi) and
verify the claim. �
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Definition 2.2.7. Let f be a real or extended-real valued function on (X, τ).
If {x : f(x) > α} ∈ τ , ∀α ∈ R, f is said to be lower semicontinuous. Likewise,
if {x : f(x) < α} ∈ τ , ∀α ∈ R, then f is upper semicontinuous.

Remark. A real valued function is continous if and only if it is both upper and
lower semicontinuous.

Proposition 2.2.8. If f, g are lower (upper) semicontinouos, so is f + g. If
u1 ≤ u2 ≤ . . . are lower semicontinuous, then so is u := lim

n→∞
un.

Proof. Take {x : f(x) + g(x) > α} =
�

r∈Q({x : f(x) > r} ∩ {x : g(x) > α − r}),
which is open. Take {x : u(x) > α} =

�∞
n=1{x : un(x) > α}, which is open. �

Definition 2.2.9. Let (X, τ) be a topological space, and f : X → C. The
support of f is defined as

supp(f) := {x ∈ X : f(x) �= 0}. (2.2.1)

We also define

Cc(X) := {f : X → C : f continuous with compact support}.

Remark. Note that supp(f + g) ⊆ supp(f) ∪ supp(g), which is compact. Thus,
Cc(X) is a complex vector subspace of C(X).

Proposition 2.2.10. Let X, Y be topological spaces and f : X → Y be continu-
ous. If K ⊂ X is compact, then f(K) is compact in Y .

Proof. Let {Vα}α∈A be an open cover of f(K). So, {f−1(Vα)}α∈A is an open cover
of K, and there is a finite B ⊂ A such that K ⊆

�
α∈B f

−1(Vα), which concludes
f(K) ⊆

�
α∈B Vα. �

Theorem 2.2.11 (Urysohn’s Lemma). Let (X, τ) be a locally compact Haus-
dorff space. Suppose K is a compact subset and K ⊆ V ∈ τ . Then there exists
f ∈ Cc(X) such that χK ≤ f ≤ χV .

Proof. First, define P := [0, 1]Q = {0, 1, 12 ,
1
3 ,

2
3 , . . . }. By Theorem (2.2.6), there

are V0, V1 ∈ τ such that

K ⊂ V1 ⊂ V1 ⊂ V0 ⊂ V0 ⊂ V.

For all r, q ∈ P , with 0 < r < q < 1, choose open sets Vr, Vq such that

K ⊂ V1 ⊂ V1 ⊂ . . . Vq ⊂ Vq ⊂ · · · ⊂ Vr ⊂ Vr ⊂ · · · ⊂ V0 ⊂ V0 ⊂ V.

Define f : X → [0, 1] by

f(x) =

�
sup{r ∈ P : x ∈ Vr}, if x ∈ V,

0, if x /∈ V.
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Clearly, f = 1 on K and 0 ≤ f ≤ 1 with supp(f) ⊆ V0, which is compact. For
continuity of f , suppose x ∈ X with f(x) = 0, or f(x) = 1. Then f is continuous
at x by sequential continuity.

Now suppose f(x) ∈ (0, 1). For all (a, b) ⊂ (0, 1) with f(x) ∈ (a, b), choose
r, q ∈ P such that a < r < f(x) < q < b. Let U := Vr \ Vq. We see that U ∈ τ
with f(x) ∈ f(U) ⊂ (a, b). Therefore, f ∈ Cc(X). �
Remark. The Urysohn’s Lemma is an important tool in building more compli-
cated functions.

Corollary 2.2.12. Let (X,M, µ) be a positive measure space and a locally
compact Hausdorff space. Then, every compact K has µ(K) < ∞ if and only
if Cc(X) ⊂ L

1(µ) and Λ(f) :=
�
X
f dµ defines a positive linear functional on

Cc(X).

Proof. (⇒) Suppose every compact subset of X has finite measure. For each
f ∈ Cc(X), |f | �= 0 on some compact K. Thus, |f | < ∞ on K and µ(K) < ∞.
Hence,

�

X

|f | dµ =

�

K

|f | dµ+

�

Kc

|f | dµ < ∞+ 0.

The second assertion is trivial.

(⇐) For every compact K, by compactness we may choose open precompact V

such that K ⊂ V . By Urysohn’s Lemma, there exists f ∈ Cc(X) such that χK ≤ f .
By hypothesis,

µ(K) =

�

X

χK dµ ≤
�

X

f dµ < ∞. �

2.3 Riesz Representation Theorem and Borel Mea-
sures

Theorem 2.3.1 (Riesz Representation Theorem). Let X be a locally com-
pact Hausdorff space, and Λ be a positive linear functional on CC(X). Then
exists a σ-algebra M which contains all Borel sets in X, and a unique positive
measure µ such that:

(a) Functional to Integral: Λ(f) =

�

X

f dµ, for all f ∈ CC(X).

(b) Finite Measure on Compact Set: µ(K) < ∞, for all compact K ⊂ X.

(c) Outer Regularity: If E ∈ M , µ(E) = inf{µ(V ) : E ⊂ V , V open }.

(d) Inner Regularity: If E is open, or E ∈ M with µ(E) < ∞, then µ(E) =
sup{µ(K) : K ⊂ E, K compact }.
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(e) Complete Measure: If E ∈ M,A ⊆ E, then µ(E) = 0 implies A ∈ M .

Proof. Read Rudin page 41. �

Definition 2.3.2. Let (X, τ) be a locally compact Hausdorff space. A measure
µ defined on the Borel σ-algebra M is called a Borel measure.

A Borel set E is outer regular, or inner regular if it satisfies property (c), or
(d), respectively in the Riesz Representation Theorem. If every Borel set is both
outer and inner regular, then µ called a regular measure.

Remark. Note that in Theorem (2.3.1), we only have inner regularity for open
sets and Borel sets with finite measure. In general, it is the best we can have.
However, with extra assumptions, we can obtain regularity.

Definition 2.3.3. Let X be a topological space. A set E is called σ-compact if
E =

�∞
n=1 Kn, where Kn is compact for all n. A set is called Fσ if it is a countable

union of open sets; likewise it is called Gδ if it is a countable intersection of
closed sets.

Definition 2.3.4. A meaurable set E in a measure space is said to have σ-finite
measure if E =

�∞
n=1 En, where En is measurable and µ(En) < ∞ for all n. In

particular, if X has σ-finite measure, then µ is called σ-finite.

Theorem 2.3.5 (Riesz Representation Theorem). In addition to the hy-
potheses of Theorem (2.3.1), if X is σ-compact, then the followings hold:

(a) For all E ∈ M , and ε > 0, there are closed F and open V , so that F ⊂ E ⊂ V

and µ(V \ F ) < ε.

(b) µ is a regular Borel measure on X.

(c) For all E ∈ M , there are Fσ-set A, Gδ-set B, such that A ⊂ E ⊂ B and
µ(B \ A) = 0.

From (c), every E ∈ M is the union of an Fσ and a set of measure zero.

Proof. (a). By hypothesis, X =
�∞

n=1 Kn, where Kn is compact and µ(Kn) < ∞
for every n. Given any E ∈ M, ε > 0, for every n we have µ(Kn ∩ E) < ∞. By
outer regularity, there exists open Vn ⊇ (Kn ∩ E), such that

µ(Vn \ (Kn ∩ E)) = µ(Vn)− µ(Kn ∩ E) <
ε

2n+1
.

Define V :=
�∞

n=1 Vn. Then V \ E ⊆
�∞

n=1(Vn \ (Kn ∩ E)), and

µ(V \ E) ≤
∞�

n=1

µ(Vn \ (Kn ∩ E)) =
ε

2
.

Next, consider Ec. Similarly, outer regularity gives open W ⊇ E
c with µ(W \Ec) <

ε
2 . Let F := W

c. Then we have F ⊆ E with µ(E \ F ) = µ(W \ Ec) < ε/2, and
µ(V \ F ) < ε.
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(b). For all E ∈ M , there exists F with µ(E \ F ) < ε. Let Fn := F ∩ (
�

n

i=1 Ki).
Then Fn is compact in E, with µ(Fn) � µ(F ). Thus, µ is inner regular.

(c). Let εn = 1
n
. By (a), there exists open Vn and closed Fn such that Fn ⊆ E ⊆ Vn,

and µ(Vn \Fn) <
1
n
. Then

�∞
n=1 Fn and

�∞
n=1 Vn are the corresponding Fσ and Gδ

sets. �

Theorem 2.3.6. Let (X, τ) be a locally compact Housdorff space in which every
open set is σ-compact. Let λ be a positive Borel measure on X such that for all
compact set K, λ(K) < ∞. Then λ is regular.

Proof. Define Λ : Cc(X) → C by Λ(f) :=
�
X
f dλ. Since λ(K) < ∞ for all

compact set K, Λ is a positive linear functional on Cc(X). By the Riesz Repre-
sentation Theorem (2.3.1), there exists regular Borel measure µ such that

�

X

f dλ =

�

X

f dµ.

We will show that λ = µ. First observe that they agree on open sets. Let V be
open. By hypothesis, V is σ-compact. So, V =

�∞
i=1 Ki, where Ki is compact.

By the Urysohn’s Lemma (2.2.11), for each i, there is fi ∈ Cc(X) such that
χKi ≤ fi ≤ χV .

Define gn := max{fi | 1 ≤ i ≤ n}. Then, the gn’s are continuous with compact
supports, and gn(x) � χV (x). Hence, by Monotone Convergence,

Λ(V ) = lim
n→∞

�

X

gn dλ = lim
n→∞

�

X

gn dµ = µ(V ).

Now suppose E is a Borel set. Given any ε > 0, by Theorem (2.3.5), there
are closed F and open V with F ⊆ E ⊆ V such that µ(V \ E) < ε. Hence,
µ(V ) ≤ µ(E)+ε. Note that V \F is open. So, by the preceding step, λ(V \E) ≤ ε
and λ(V ) ≤ λ(E) + ε. Thus,

λ(E) ≤ λ(V ) = µ(V ) ≤ µ(E) + ε,

µ(E) ≤ µ(V ) = λ(V ) ≤ λ(E) + ε,

and we have |λ(E)− µ(E)| < ε. Therefore, λ(E) = µ(E). �

2.4 Lebesgue Measure

In this section, we work with the familiar Euclidean space Rk with its Borel algebra.
Recall that the Riemann integral is only defined for continuous functions over
compact sets. We want to extend this integration from continuous functions to
Borel measurable functions. Therefore, we must first find a suitable Borel measure
on Rk, which presevers some useful properties of the Riemann integrals.
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Definition 2.4.1. Let E ⊆ Rk and x ∈ Rk. The translate of E by x is the set

E + x := {y + x : y ∈ E}.

Definition 2.4.2. A k-cell in Rk is a set of the form V =
�

k

i=1 Ii, where Ii is
a bounded interval with endpoints αi and βi. We also define the volume of V by

vol(V ) :=
k�

i=1

(βi − αi).

Definition 2.4.3. Let α = (α1, . . . ,αk) ∈ Rk and δ > 0. A δ-box with corner
at α is a set Q(α, δ) =

�
k

i=1[αi,αi + δ).

Theorem 2.4.4 (The Lebesgue Measure). There exists a σ-algebra M � B(Rk),
the Borel algebra of Rk, and a positive complete measure m on M satisfying the
followings:

(a) m(V ) = vol(V ) for every k-cell V .

(b) E ∈ M if and only if there are Fσ-set A and Gδ-set B such that A ⊂ E ⊂ B

and m(A \B) = 0. Moreover, m is a regular Borel measure on B(Rk).

(c) m is translation invariant, i.e. m(E + x) = m(E), for all E ∈ M , x ∈ Rk.

(d) If µ is a positive, translation-invariant, Borel measure on Rk such that µ(K) <
∞ for all compact K, then there is c ∈ R such that µ(E) = cm(E), for all
E ∈ B(Rk).

(e) Let T : Rk → Rk be a linear map. Then there is �(T ) ∈ [0,∞) such that

m(T (E)) = �(T )m(E), ∀E ∈ B(Rk).

In particular, m(T (E)) = m(E) when T is a rotation.

Definition 2.4.5. The sets E ∈ M are called Lebesgue measurable in Rk;
m is called the Lebesgue measure on Rk.

Proof. Step 1: Define Λ : Cc(Rk) → C by

Λ(f) :=

�

Rk

f dV, (2.4.1)

where dV stands for the Riemann Integral. Note that this definition is well-defined
because supp(f) is a compact set in Rk, and f is bounded. Also, Λ is a positive
linear functional on Cc(R). By the Riesz Representation Theorem (2.3.1),
there is a σ-algebra M ⊃ B(Rk), and a complete positive measure m, such that

Λ(f) =

�

Rk

f dm, (2.4.2)

for all f ∈ Cc(Rk). Since Rk is σ-compact, property (b) follows from the other
Riesz Representation Theorem (2.3.5).
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Step 2: For property (a), first suppose V is an open k-cell. There is a sequence
of compact sets K1 ⊂ K2 ⊂ · · · ⊂ V , such that

�∞
n=1 Kn = V . By the Uryshon’s

Lemma (2.2.11), there is fn ∈ Cc(Rk) with χKn ≤ fn ≤ χV , for each n. Hence,

m(Kn) = Λ(χKn) =

�

Rk

χKn dm ≤
�

Rk

fn dm ≤
�

Rk

χV dm = m(V ).

On the other hand, from elementary Calculus, m(Kn) = vol(Kn), and vol(Kn) →
vol(V ). By Monotone Convergence,

vol(V ) ≤
�

Rk

lim
n→∞

fn dm ≤ vol(V ). (2.4.3)

Since fn(x) → χV (x), for all x ∈ Rk, we conclude

m(V ) =

�

Rk

χV dm = vol(V ). (2.4.4)

Finally, suppose V is any k-cell. Pick a decreasing sequence of open sets V1 ⊃
V2 ⊃ · · · ⊃ V , with m(V1) < ∞. Then by monotonicity, m(Vn) → m(V ) = vol(V ).

Step 3:1 For property (c), fix x ∈ Rk and define λx(E) := m(E + x), for all
E ∈ M . It is easy to see λx satisfies σ-addivity, hence is a measure. Also, for all
k-cell V , λx(V ) = vol(V ) = m(V ). Since every open set is a countable union of
k-cells, and λx is a measure, λx(E) = m(E) on all open E. Then, λx(K) < ∞, for
all compact K. By Theorem (2.3.6), λx is regular. Therefore, by regularity of λx

and m, m(E + x) = λx(E) = m(E), for every E ∈ B(Rk). Finally, recall that Fσ

and Gδ-sets are also Borel sets. Thus, the equality also holds by property (b).

Step 4: For property (d), let Q0 be a 1-box and define c := µ(Q0). For each
n ∈ N, suppose Qn is a 2−n-box. Note that Q0 is a disjoint union of 2nk many
such Qn boxes. By translation invariance,

2nkµ(Qn) = µ(Q0) = c · 1 = cm(Q0) = 2nkcm(Qn).

We conclude that µ(Qn) = cm(Qn), for all n ∈ N. Finally, since every k-cell V is
a countable disjoint union these Qn boxes, µ(V ) = cm(V ). Hence, similar to Step
3, µ(E) = cm(E), for all Borel set E.

Step 5: For property (e), first suppose rank(T ) < k. Then, m(T (E)) = 0, for
all k-cells E, hence Borel sets; and we let �(T ) := 0. Now suppose rank(T ) = k.
From linear algebra, T is bijective and linear, hence a homeomorphism from Rk

to Rk. More importantly, T (E) is a Borel set for all Borel set E.

Define a positive Borel measure µ by µ(E) := m(T (E)), for all E ∈ B(Rk). For
all x ∈ Rk, by linearity of T and translation invariance of m,

µ(E + x) = m(T (E + x)) = m(T (E) + T (x)) = m(T (E)) = µ(E).

1
This is a standard approach in proving two Borel measures are equal. First show that on open

sets, then Borel sets by regularity. If necessary, all measurable sets with Fσ and Gδ. The usual

tools are Monotone/Dominated Convergence, σ-addivity, monotonicity, and Uryshon’s Lemma.
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Lebesgue Measure

Hence, µ is a positive, translation invariant, Borel measure on Rk, and µ(K) < ∞
for all compact K. By property (d), there is �(T ) ∈ R such that

µ(E) = m(T (E)) = �(T )m(E), ∀E ∈ B(Rk).

In other words, one can compute �(T ) easily by m(T (E))/m(E), for some m(E) ∈
(0,∞). Finally, if T is a rotation, then in particular T (B) = B, where B is the
unit open ball. Therefore, �(T ) = 1 and m(T (E)) = m(E). �
Proposition 2.4.6. Let T : Rk → Rk be a linear map. Then,

�(T ) = |det(T )|, (2.4.5)

where �(T ) is given in Theorem (2.4.4).

Proof. Step 1: From linear algebra, let {e1, . . . , ek} be the standard basis for Rk.
For each j, 1 ≤ j ≤ k,

T (ej) =
n�

i=1

αijei,

for some αij ∈ R. Hence, the matrix representation of T is [T ] := (αij).

Step 2: Note that if T = T1 ◦ T2, then �(T ) = �(T1)�(T2), and det(T ) =
det(T1)det(T2). Recall that every linear operator T on a finite dimensional vector
space is a finite product of the following three types, each corresponds to one
elementary row operation on [T ]:

(I) Switching: T (e1) = e2, T (e2) = e1, and T (ei) = ei, for 3 ≤ i ≤ k.

(II) Scaling: T (e1) = αe1, and T (ei) = ei, for 2 ≤ i ≤ k.

(III) Addition: T (e1) = e1 + e2, and T (ei) = ei, for 2 ≤ i ≤ k.

Thus, it suffices to show that each of these types satisfies equation (2.4.5). To
determine �(T ), let E be a 1-box cornered at 0.

Step 3: If T is of type (I), then T (E) = E, and �(T ) = 1. Also, [T ] has exactly
one 1 on each coloumn and row. Hence, det(T ) = ±1, and �(T ) = |det(T )|. If T
is of type (II), then m(T (E)) = |α|m(E), and �(T ) = |α| = |det(T )|.

Step 4: If T is of type (III), then det(T ) = 1. For �(T ), write x ∈ Rk as
x = (x1, . . . , xk). Then, (x1, x2, . . . , xk) �→ (x1 + x2, x2, . . . , xk), and

T (E) = {y ∈ Rk : y2 ≤ y1 < y2 + 1, 0 ≤ yi < 1, i �= 1}.

Let S1 := {y ∈ T (E) : y1 < 1}, and S2 := T (E) \ S1. Then, S1 ∩ (S2 − e1) = ∅,
and S1 ∪ (S2 − e1) = E.

2 Hence,

�(T ) = m(T (E))/m(E) = m(S1 ∪ S2)

2
To see that, consider I2 be the unit square in R2

. Then T (I2) is the parallelogram with

vertices (0, 0), (1, 0), (1, 1), and (2, 1). S1 is the lower triangle, and S2 is the upper.
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= m(S1) +m(S2) = m(S1) +m(S2 − e1)

= m(E) = 1.

Therefore, �(T ) = 1 = |det(T )|. �

Remark 2.4.7. If m is the Lebesgue measure on Rk, we usually write L
1(Rk)

instead of L1(m). From equation (2.4.1), we see that for every complex continuous
function f supported in a compact set K, the Riemann integral of f agrees with
the Lebesgue integral of f .

Remark 2.4.8. Recall that we are working in M ⊃ B(Rk). It is important
to know which Lebesgue measurable set E ∈ M is a Borel set in B(Rk). By
a cardinality argument (Rudin, p.53), in fact most E ∈ M are not Borel sets.
Finally, we conclude the dicussion with the following observation: Every E ∈ M

with m(E) > 0 has non-measurable subsets. The proof is given as follows.

Proposition 2.4.9. Let M be a σ-algebra on R and λ : M → [0,∞] be a trans-
lation invariant measure with 0 < λ([0, 1)) < ∞. Then there exists E ⊂ [0, 1) such
that E /∈ M .

Proof. Note that (R,+) is a group and (Q,+) is its subgroup. Define an equiva-
lence relation on [0, 1) by x ∼ y ⇐⇒ |x− y| ∈ Q. This gives an partition of [0, 1)
by the equivalence classes. By the Axiom of Choice, we can pick one representative
from each equivlence class, and denote E the set of such representatives. Then E

has the following property:

(E + r) ∩ (E + s) = ∅, ∀r, s ∈ Q, r �= s.

To see it, suppose x ∈ (E + r) ∩ (E + s). Then, y + r = x = z + s, for some
y, z ∈ E, y �= z. Then, y− z = s− r ∈ Q, which is a contradiction because [y] and
[z] are different equivalence classes. Note that

E ⊂ [0, 1) ⊆
�

r∈Q∩[−1,1]

(E + r) ⊂ [−1, 2).

Now, by way of contradiction suppose E ∈ M , then we have

λ([0, 1)) ≤
�

r∈Q∩[−1,1]

λ(E + r) ≤ λ([−1, 2))

=
�

r∈Q∩[−1,1]

λ(E) ≤ 3λ([0, 1)) < ∞

Since there are infinitely many such r’s, λ(E) = 0. However, then λ([0, 1])) = 0,
which is a contradiction. �
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2.5 Continuity Properties of Measurable Functions

The following two theorems establish important relations between continuous and
measurable functions, i.e. approximation using continuous functions. In this sec-
tion, let µ be a positive measure on a locally compact Hausdroff space X, which has
the five properties stated in Riesz Representation Theorem. In particular,
µ could be the Lebesgue measure on Rk.

Theorem 2.5.1 (Lusin’s Theorem). Let f : X → C be measurable. Suppose
A := {x : f(x) �= 0} and µ(A) < ∞. Then, given any ε > 0, there exists
g ∈ CC(X) such that

µ({x : f(x) �= g(x)} < ε, (2.5.1)

and

sup
x∈X

|g(x)| ≤ sup
x∈X

|f(x)|. (2.5.2)

Proof. Step 1: First suppose A is compact. By local compactness, there exists
open V such that A ⊆ V and V is compact. Let us begin with simple functions.
Suppose f is simple,

f :=
n�

j=1

αjχAj , Aj disjoint,
n�

j=1

Aj = A, αj > 0.

By regularity, with µ(Aj) ≤ µ(A) < ∞, there are compact sets Kj ⊆ Aj, such
that µ(Aj \Kj) <

�
2j . Note that there are finitely many disjoint Kj’s. Hence, we

can find disjoint open Vj such that Kj ⊆ Vj ⊆ V , with Vj compact. Moreover, by
outer regularity of µ, we may assume µ(Vj \Kj) <

�
2j .

By Urysohn’s Lemma, there are gj ∈ Cc(X) such that χKj ≤ gj ≤ χVj . Define

g(x) :=
n�

j=1

αjgj, ∀x ∈ X.

Then, g ∈ Cc(X) with supp(g) ⊆ V , and |g(x)| ≤ max{|αj|} = maxx∈X |f(x)|.
Also, if x ∈ (

�
n

j=1 Kj) ∪ (Ac ∩ (
�

n

j=1 V
c

j
)), then f(x) = g(x). Hence,

{x ∈ X : g(x) �= f(x)} ⊆
�

n�

j=1

K
c

j

�
∩
�
A ∪ (

n�

j=1

Vj)

�

=

�
n�

j=1

K
c

j
∩ A

�
∪
�
(

n�

j=1

K
c

j
) ∩ (

n�

j=1

Vj)

�

=

�
n�

j=1

(Aj \Kj)

�
∪
�

n�

j=1

(Vj \Kj)

�
.
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Thus, µ({f �= g}) < 2ε and it concludes the case for simple functions.

Step 2: Next, suppose 0 ≤ f ≤ 1. By Theorem (1.4.4), using the staircase
functions ϕn, there exists a sequence of simple functions {sn} such that 0 ≤ sn ≤
sn+1 and sn(x) � f(x), for all x ∈ X.

Define tn := sn − sn−1, with s0 ≡ 0. Then tn’s are simple, tn = 0 on A
c, and

tn ≥ 0. Moreover, from the definition of ϕn, |tn| ≤ 1
2n−1 . By Step 1, there are

gn ∈ Cc(X) such that (1): µ({gn �= tn}) < ε
2n ; (2): |gn| ≤ max tn ≤ 1

2n−1 ; and (3):
supp(gn) ⊆ V .

Define g :=
�∞

n=1 gn. Then supp(g) =
�∞

n=1 supp(gn) ⊆ V and
�∞

n=1 gn converges
uniformly by the M-test. Hence, g ∈ Cc(X). If for some x ∈ X, gn(x) = tn(x), for
all n ∈ N, then g(x) = f(x). Thus,

µ({f �= g}) ≤ µ

� ∞�

n=1

{tn �= gn}
�

≤
∞�

n=1

µ({tn �= gn}) = ε.

Consequently, if f is bounded, the results follow by scaling f .

Step 3: If f : X → [0,∞) is measurable, then
�∞

n=1{f ≥ n} = ∅. Since µ({f ≥
1}) ≤ µ(A) < ∞ by hypothesis, the monotonicity of µ implies that

µ({f ≥ n}) → µ(∅) = 0.

Hence, given ε > 0, there is n such that µ({f ≥ n}) <
ε
2 , and f

� := fχ{f<n} is
bounded. By Step 2, we obtain g ∈ Cc(X), such that g = f

�, except on a set of
measure <

ε
2 . Therefore, g = f , except on set of measure < ε, and satisfies both

inequalities.

Step 4: Now if f : X → C is measurable, write

f = (u+ − u−) + i(v+ − v−)

and perform the approximation separately on each term. Then we obtain g that
satisifies inequality (2.5.1). To obtain inequality (2.5.2), if |f | is bounded, define
M := sup{|f(x)| : x ∈ X}, and ϕ : C → C by

ϕ(z) :=

�
z, if |z| ≤ M ,
M

z

|z| , if |z| > M .

Note that ϕ ∈ Cc(C). Therefore, ϕ ◦ g satisfies both inequalities. If |f | is un-
bounded, then fχ{|f |<n} is bounded, and µ({|f | ≥ n}) < ε

2 . We can then proceed
as in Step 3.

Step 5: Finally, suppose A is not compact. Since µ(A) < ∞, by inner regularity,
there is a compact K ⊂ A such that µ(A \ K) < ε/2. Now apply the preceding
steps on K, with ε/2 to obtain g ∈ Cc(X). �
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Corollary 2.5.2. Assume that the hypotheses of Lusin’s Theorem are satisfied
and |f | ≤ 1. Then there is a sequence {gn ∈ Cc(X)} such that |gn| ≤ 1, and

f(x) = lim
n→∞

gn(x) a.e.

Proof. By Lusin’s Theorem, ∀n ∈ N, there is a gn ∈ Cc(X) such that |gn| ≤ 1 and
µ(En) ≤ 2−n, where En = {x : f(x) �= g(x)}. Since

�∞
n=1 µ(En) = 1 < ∞, by

Theorem 1.8.9., almost every x ∈ X lies in finitely many of the En’s. Hence, for
every such fixed x, there is a large enough n such that f(x) = gn(x). �

Theorem 2.5.3 (Vitali-Caratheodory Theorem). Let f : X → R, f ∈
L
1(µ). Then, given ε > 0, there are u, v, such that u ≤ f ≤ v, u is upper

semicontinuous and bounded above, v is lower semicontinuous and bounded below,
and

�

X

(v − u) dµ < ε.

Proof. First suppose f ≥ 0. Using the staircase functions, we obtain a sequence
of increasing functions sn � f pointwise. Take s0 ≡ 0 and define tn := sn − sn−1.
Then tn is simple and f =

�∞
n=1 tn.

We can define constants cj > 0 and measurable sets Ej, not necessarily disjoint,
such that f =

�∞
j=1 cjχEj . By Monotone Convergence,

∞�

j=1

cj

�

X

χEj dµ =

�

X

f dµ < ∞.

Hence, µ(Ej) < ∞ for all j. By regularity, there are compact Kj and open Vj such
that Kj ⊆ Ej ⊆ Vj and µ(Vj \Kj) <

ε
2jcj

. Also, since the series converges, there
exists N , such that

�∞
j=N+1 cjµ(Ej) < ε. Define

u :=
N�

j=1

cjχKj and v :=
∞�

j=1

cjχVj .

Then, u is upper semicontinuous and v is lower semicontinuous with u ≤ f ≤ v.
Finally,

�

X

(v − u) dµ =

�

X

� N�

j=1

cjχXVj\Kj

�
dµ+

�

X

� ∞�

j=N+1

cjχVj

�
dµ

=
N�

j=1

cjµ(Vj \Kj) +
∞�

j=N+1

cjµ(Vj)

=
N�

j=1

cjµ(Vj \Kj) +
∞�

j=N+1

cj(µ(Vj \ Ej) + µ(Ej))
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≤
∞�

j=1

cjµ(Vj \Kj) +
∞�

j=1

cjµ(Ej) < 2ε

Thus, the results hold true for f ≥ 0. In general case, write f = f
+ − f

−. Find
u+, v+ for f

+ and u−, v− for f
−. Let u := u+ − v− and v := v+ − u−. Then,

u = u+ − v− ≤ f = f
+ − f

− ≤ v+ − u− = v.

Consequently, u is upper semicontinous, v is lower semicontinouous, and
�

X

(v − u) dµ < 4ε. �
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Chapter 3

L
p
-Spaces

3.1 Convex Functions and Inequalities

Definition 3.1.1. A function ϕ : (a, b) → R is convex if for all x, y ∈ (a, b),
and given λ ∈ [0, 1],

ϕ((1− λ)x+ λy) ≤ (1− λ)ϕ(x) + λϕ(y). (3.1.1)

Let a < x = s < t < y = u < b, λ = t−s

u−s
. It is equivalent to

ϕ(t) ≤ ϕ(s)
u− t

u− s
+ ϕ(u)

t− s

u− s
,

(u− s)ϕ(t) ≤ (u− t)ϕ(s) + (t− s)ϕ(u).

Subtract (t− s)ϕ(t) from both sides and simplify:

(u− t)(ϕ(t)− ϕ(s)) ≤ (t− s)(ϕ(u)− ϕ(t))

ϕ(t)− ϕ(s)

t− s
≤ ϕ(u)− ϕ(t)

u− t
. (3.1.2)

By the Mean Value Theorem for Differentiation, a differentiable function ϕ is
convex in (a, b) iff ϕ�(s) ≤ ϕ�(t), ∀s < t if and only if ϕ� is monotonically increasing.

Proposition 3.1.2. If ϕ is convex on (a, b), then ϕ is continuous on (a, b).

Proof. Suppose a < s < x < y < t < b. Let S := (s,ϕ(s)) and similar for x, y, t.
Then Y is below the line XT and above SX. Check the picture, as y → x, Y → X,
and vice-versa.

29



L
p-Spaces

�
Theorem 3.1.3 (Jensen’s Inequality). Let µ be a positive measure on (X,M)
with µ(X) = 1. Let f : X → [−∞,∞], f ∈ L

1(µ), a < f(x) < b, for all x ∈ X,
and ϕ be convex on (a, b). Then,

ϕ

��

X

f dµ

�
≤

�

X

(ϕ ◦ f) dµ. (3.1.3)

Proof. For all t ∈ (a, b) with a < s ≤ t ≤ u < b, inequality (3.1.2) gives

ϕ(t)− ϕ(s)

t− s
≤ ϕ(u)− ϕ(t)

u− t
.

Define β := sup{ϕ(t)−ϕ(s)
t−s

: s ∈ (a, t)}. Then,

ϕ(t)− ϕ(s)

t− s
≤ β ≤ ϕ(u)− ϕ(t)

u− t
.

Hence,
ϕ(s) ≥ ϕ(t) + β(s− t). (3.1.4)

Let s = f(x), then inequality (3.1.4) gives

ϕ(f(x))− ϕ(t) + β(f(x)− t) ≥ 0. (3.1.5)

Let t =
�
X
f dµ. Then a < t < b because µ(X) = 1. Now, integrating (3.1.5) gives

0 ≤
�

X

ϕ ◦ f dµ− ϕ(t)

�

X

dµ+ β

��

X

f dµ− t

�

X

dµ

�

≤
�

X

ϕ ◦ f dµ− ϕ(t)µ(X) + β(t− tµ(X)).

Since µ(X) = 1, it follows that

ϕ ◦
�

X

f dµ ≤
�

X

ϕ ◦ f dµ. �
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Example 3.1.4. Let µ be the probability measure on S := {1, . . . , n}, µ({j}) =
αj > 0, and

�
n

j=1 αj = 1. Let βj = f(j), ϕ(s) = e
s, which is convex. Then,

ϕ

��

S

f dµ

�
= e

�n
j=1 αjβj =

n�

j=1

e
αjβj ≤

�

S

ϕ ◦ f dµ =
n�

j=1

αje
βj .

Now, let γj = e
βj , then βj = ln(γj) and we have

n�

j=1

γ
αj

j
≤

n�

j=1

αjγj, (3.1.6)

whenever
�

n

j=1 αj = 1. The left and right sides are often called the geometric
mean and arithmetic mean, respectively.

Definition 3.1.5. If p, q > 0 such that p+ q = pq or 1
p
+ 1

q
= 1, then we call p

and q a pair of conjugate exponents.

Theorem 3.1.6 (Hölder’s and Minkowski’s Inequalities). Let p, q be con-
jugate exponents, 1 < p < ∞. Let X be a measure space, with measure µ. Let
f, g : X → [0,∞] be measurable. Then,

�

X

fg dµ ≤
��

X

f
p dµ

�1/p��

X

g
q dµ

�1/q

= �f�p�g�q, (3.1.7)

and ��

X

(f + g)p dµ

�1/p

≤
��

X

f
p dµ

�1/p

+

��

X

g
p dµ

�1/p

. (3.1.8)

The inequality (3.1.7) is Hölder’s; (3.1.8) is Minkowski’s. 1

Proof. For the Hölder’s inequality, let A := �f�p, B := �g�q. If A = 0 or ∞,
it is trivial. Suppose 0 < A,B < ∞. Let F (x) := 1

A
|f(x)|, G(x) := 1

B
|g(x)|.

Let ϕ(z) := e
z. Since e

z ranges over (0,∞), for every x ∈ X, F (x) = e
s/p and

G(x) = e
t/q for some s, t ∈ R. By convexity of ϕ, we have

e
s/p+t/q ≤ 1

p
e
s +

1

q
e
t

F (x)G(x) ≤ 1

p
(F (x))p +

1

q
(G(x))q.

Integrating both sides gives
�

X

FG dµ ≤ 1

p

�

X

F
p dµ+

1

q

�

X

G
q dµ

1

AB

�

X

|fg| dµ ≤ 1

p

�
1

Ap

�

X

|f |p dµ
�
+

1

q

�
1

Bq

�

X

|g|q dµ
�

1
Here we use the shorthand notation �f�p for (

�
X fp dµ)1/p, although we have not yet defined

�f�p for the suitable f .
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≤ 1

p

�
1

Ap

�
(Ap) +

1

q

�
1

Bq

�
(Bq) = 1

�

X

|fg| dµ ≤ AB = �f�p�g�q.

For Minkowski’s inequality, fix p and consider

(f + g)p = (f + g)(f + g)p = f(f + g)p−1 + g(f + g)p−1
.

By Hölder’s inequality,

�f + g�p
p
≤ �f�p�(f + g)p−1�q + �g�p�(f + g)p−1�q
≤ (�f�p + �g�p)�(f + g)p−1�q. (3.1.9)

It is sufficent to prove the case in which �f + g�p > 0 and �f�p + �g�p < ∞.
Consider the following with p

q
= p− 1:

�(f + g)p−1�q
q
=

�

X

((f + g)p−1)q dµ

=

�

X

(f + g)q(p−1) dµ

=

�

X

(f + g)p dµ = �f + g�p
p
.

Hence,

�(f + g)p−1�q = �f + g�p/q
p

= �f + g�p−1
p

.

By convexity of ϕ(t) := t
p,

ϕ

�
1

2
f +

1

2

�
≤ 1

2
ϕ ◦ f +

1

2
ϕ ◦ g

�
f + g

2

�p

≤ 1

2
f
p +

1

2
g
p

(f + g)p ≤ 2p−1
f
p + 2p−1

g
p

Integrating both sides gives

0 < �f + g�p
p
≤ 2p−1

�
�f�p

p
+ �g�p

p

�
< ∞.

Thus, we can divide inequality (3.1.9) by �f + g�p−1
p

,

�f + g�p ≤ �f�p + �g�p. �
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3.2 The L
p-Spaces

In this section, (X,M, µ) is a positive measure space.

Definition 3.2.1. Let 0 < p < ∞, f : X → C be measurable. Define the
Lp-norm of f by

�f�p :=
��

X

|f |p dµ
�1/p

. (3.2.1)

Define the Lp-space of X by L
p(µ) := {f : X → C, measurable with �f�p < ∞}.

Remark 3.2.2. If µ is the counting measure on a countable set A, we denote
the corresponding L

p-space by l
p(A), or l

p. An element in l
p(A) may be regarded

as a complex sequence x = {xn} and

�x�p =
� ∞�

n=1

|xn|p
�1/p

.

Definition 3.2.3. Let f : X → [0,∞] be measurable. The essential supre-
mum is

ess sup(f) := inf{α : µ({x : f(x) > α}) = 0}. (3.2.2)

Remark. Note that

µ({x : f(x) > ess sup(f)}) = µ

� ∞�

n=1

{x : f > ess sup(f) +
1

n
}
�

=
∞�

n=1

µ({x : f > ess sup(f) +
1

n
}) = 0

Definition 3.2.4. If f : X → C is measurable, we define

�f�∞ := ess sup(|f |). (3.2.3)

Define L
∞(µ) := {f : X → C, measurable with �f�∞ < ∞}. Sometimes we call

the members of L∞ essentially bounded measurable functions on X.

Remark. Hence, for almost all x ∈ X, |f(x)| ≤ M ⇐⇒ M ≥ �f�∞.

Theorem 3.2.5 (Hölder’s Inequality for Lp-Spaces). Let p, q be conjugate
exponents, 1 ≤ p ≤ ∞, and f ∈ L

p(µ), g ∈ L
q(µ). Then, fg ∈ L

1(µ) and

�fg�1 ≤ �f�p�g�q.

Proof. For 1 < p < ∞, it is done in Theorem (3.1.6). Suppose p = 1, q = ∞. Let
E := {x ∈ X : |g(x)| > �g�∞}, so µ(E) = 0. Then,

�fg�1 =
�

X

|fg| dµ =

�

X\E
|fg| dµ+

�

E

|fg| dµ
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≤ �g�∞ ·
�

X\E
|f | dµ+ 0

≤ �g�∞ ·
�

X

|f | dµ

= �f�1�g�∞ < ∞.

Therefore, fg ∈ L
1(µ). �

Theorem 3.2.6 (�-Inequality for Lp-Spaces). Let 1 ≤ p ≤ ∞, and f, g ∈
L
p(µ). Then,

�f + g�p ≤ �f�p + �g�p.

Proof. For 1 < p < ∞, it is done in Theorem (3.1.6). The case where p = 1 is
trivial from |f + g| ≤ |f | + |g|. So, suppose p = ∞, f, g ∈ L

∞(µ). Define the
following sets:

A := {x ∈ X : |f(x)|+ |g(x)| > �f�∞ + �g�∞}
B := {x ∈ X : |f(x) + g(x)| > �f�∞ + �g�∞}

Then |f + g| ≤ |f |+ |g| gives B ⊆ A.

By basic set operations,

x /∈ A ⇒ x /∈ {|f(y)| > �f�∞} ∩ {|g(y)| > �g�∞}
⇒ A ⊆ {|f(y)| > �f�∞} ∪ {|g(y)| > �g�∞}.

Hence,
µ(A) ≤ µ({|f | > �f�∞}) + µ({|g| > �g�∞}) = 0 + 0

gives µ(A) = 0 and µ(B) = 0. Recall that �f + g�∞ = inf{α : µ({|f + g| > α}) =
0}. In particular, for α = �f�∞ + �g�∞, we have �f + g�∞ ≤ �f�∞ + �g�∞. �

Remark 3.2.7. For 1 ≤ p ≤ ∞, f ∈ L
p(µ),α ∈ C, it is clear that αf ∈ L

p(µ).
Therefore, the �-inequality implies that L

p(µ) is a vector space. Even better,
we may define a distance function d(f, g) := �f − g�p. The only problem here is
that when f = g µ-a.e., but f �≡ g, we have d(f, g) = 0.

To make such d into a metric on L
p(µ), we simply partition L

p(µ) into equivalence
classes given by f ∼ g ⇐⇒ d(f, g) = 0. In this case, we have a quotient space
of L

p(µ) whose memebers are in the form [f ]. However, for simplicity, we still
view L

p(µ) as a space of functions, and identify each [f ] by its representative f .
Therefore, (Lp(µ), d) is a metric space, hence a normed vector space.

The following results show that L
p(µ) is complete with the norm � · �p.

Lemma 3.2.8. Let {fn} be an Cauchy sequence with respect to � · �p. Then
there exists a subsequence {fnk

} of {fn} which converges pointwise µ-a.e.; that is,
fnk

(x) → f(x), for µ-almost every x.
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Proof. Case 1: 1 ≤ p < ∞. By hypothesis, for each k ∈ N, select fnk
such that

�fnk+1
− fnk

�p ≤
1

2k
.

Define gm :=
�

m

k=1 |fnk+1
− fnk

|, and g := limm→∞ gm. Then, gp
m

≤ g
p

m+1 ≤ . . .

and g
p

m
→ g

p. By Monotone Convergence,
�

X

g
p

m
dµ →

�

X

g
p dµ.

By �-inequality,

�gm�p =

�����

�����

m�

k=1

|fnk+1
− fnk

|

�����

�����
p

≤
m�

k=1

�fnk+1
− fnk

�p ≤
m�

k=1

1

2k
≤ 1.

Therefore, �g�p ≤ 1 and g is finite µ-a.e. Hence,
�∞

k=1(fnk+1
− fnk

) is absolutely
convergent µ-a.e. Thus, for µ-almost all x, define

f(x) := lim
m→∞

m�

k=1

(fnk+1
(x)− fnk

(x)) = lim
m→∞

fnm(x)− fn1(x).

Assume fn1(x) = 0, µ-a.e., we have

lim
k→∞

fnk
= f ∈ L

p(µ).

Case 2: p = ∞. Define the following sets:

Ek,n := {x ∈ X : |fn(x)− fk(x)| > �fn − fk�∞}.

Then, µ(En,k) = 0. Let E :=
�

n,k∈N Ek,n, with µ(E) = 0.

On E
c, |fn(x)−fk(x)| ≤ �fn−fk�∞. By hypothesis, {fn} is L∞-Cauchy. Therefore,

the sequence converges uniformly µ-a.e. �

Theorem 3.2.9. L
p(µ) is a complete metric space with the p-norm. Hence,

every L
p-Cauchy sequence {fn} converges to f ∈ L

P (µ).

Proof. If p = ∞, it is done by the previous Lemma by uniform convergence. We
may define f(x) = 0, for every x ∈ E.

For 1 ≤ p < ∞, supppose {fn} is Lp-Cauchy. By the previous Lemma, there exists
subsequence fnk

→ f pointwise µ-a.e. We will show that f ∈ L
p(µ), and fn

L
p

−→ f .

For every fixed n ∈ N, define gk := |fn − fnk
|p. By Fatou’s Lemma (1.6.9),

lim inf
k→∞

�

X

|fn − fnk
|p dµ ≥

�

X

lim inf
k→∞

|fn − fnk
|p dµ

=

�

X

|fn − f |p dµ. (3.2.4)
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On the other hand, since {fn} is Lp-Cauchy, given ε > 0, there is N ∈ N such that
for all n,m > N ,

�

X

|fn − fm|p dµ = �fn − fm�pp < εp.

For nk > N , with m = nk, by inequality (3.2.4),
�

X

|fn − f |p dµ ≤ lim inf
k→∞

�fn − fnk
�p
p

≤ lim
m→∞

�fn − fm�pp
< εp.

for all n > N . Hence this shows that
��

X

|fn − f |p dµ
�1/p

= �fn − f�p < ε,

for all n > N . Finally, to see f ∈ L
p(µ), note that for some n > N ,

�f�p = �f − fn + fn�p
≤ �f − fn�p + �fn�p
≤ ε+ �fn�p < ∞.

Therefore, f ∈ L
p(µ) and fn

L
p

−→ f . �

3.3 More on L
p-Spaces

In general, for all p �= q, L
p(µ) �⊂ L

q(µ). For example, consider the Lebesgue
measure m on (0,∞). Given q > 0, define f : (0,∞) → R, by fq(x) := x

−q. Then,
fχ(0,1) ∈ L

p if and only if p < q
−1, and fχ(1,∞) ∈ L

p if and only if p > q
−1.

However, under certain conditions, we do have inclusion. In this section, we write
L
p for L

p(µ).

Proposition 3.3.1. If 0 < p < q < r ≤ ∞, then L
q = L

p + L
r. That is, for all

f ∈ L
q, there is g ∈ L

P and h ∈ L
r such that f = g + h.

Proof. Let f ∈ L
q, and define E := {x : |f(x)| ≥ 1}. Define g := fχE, and

h := fχEc . Note that |g|p = |f |pχE ≤ |f |qχE, thus �g�p ≤ �f�q < ∞, and g ∈ L
p.

Similarly, h ∈ L
r. �

Proposition 3.3.2. If 0 < p < q < r ≤ ∞, then L
p ∩ L

r ⊂ L
q. Moreover, for

all f ∈ L
p ∩ L

r, we have

�f�q ≤ �f�λ
p
�f�1−λ

r
, (3.3.1)

where 0 < λ < 1 is given by q
−1 = λp−1 + (1− λ)r−1.
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Proof. First suppose r = ∞. Then q
−1 = λp−1, and for almost every x ∈ X,

|f(x)|q = |f(x)|q−p|f(x)|p ≤ �f�q−p

∞ |f(x)|p.

Integrating both sides and take the q
th-root,

�f�q ≤ �f�(1−p/q)
∞

��

X

|f |p dµ
�1/q

= �f�(1−p/q)
∞ �f�p/q

p

= �f�λ
p
�f�1−λ

r
.

Now suppose r < ∞. Note that

λq

p
+

(1− λ)q

r
= 1.

Hence, p� := p/(λq) and q
� := r/(q(1− λ)) are conjugate expontents. By Hölder’s

inequality (3.1.6),
�

X

|f |q dµ =

�

X

|f |λq|f |(1−λ)q dµ ≤ �|f |λq�p��|f |(1−λ)q�q�

=

��

X

(|f |λq)p� dµ
�1/p���

X

(|f |(1−λ)q)q
�
dµ

�1/q�

= �f�λq
p
�f�(1−λ)q

r
.

Take the q
th-root on both sides, we obtain inequality (3.3.1), and f ∈ L

q. �

Proposition 3.3.3. Let A be a nonempty set, 0 < p < q ≤ ∞. Then, lp(A) ⊂
l
q(A) and for all f ∈ l

p(A), �f�q ≤ �f�p.

Proof. If q = ∞, then

�f�p∞ = (sup
α∈A

|f(α)|)p ≤
�

α∈A

|f(α)|p = �f�p
p
.

Thus, �f�∞ ≤ �f�p. If q < r := ∞, by Proposition (3.3.2), we have λ = p/q, and

�f�q ≤ �f�λ
p
�f�1−λ

∞ ≤ �f�λ
p
�f�1−λ

p
= �f�p. �

Proposition 3.3.4. Let µ(X) < ∞, and 0 < p < q ≤ ∞. Then L
q ⊂ L

p, and
for all f ∈ L

q,

�f�p ≤ �f�qµ(X)(1/p)−(1/q)
. (3.3.2)

Proof. If q = ∞, then 1/q = 0 and

�f�p =
��

X

|f |p dµ
�1/p

≤ �f�∞µ(X)1/p.
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If q < ∞, observe that p
� := q/p and q

� := q/(q − p) are conjugate exponents.
Hence, by Hölder’s inequality,

�f�p
p
=

�

X

|f |p dµ ≤ �|f |p�p��1�q�

=

��

X

(|f |p)p� dµ
�1/p�

µ(X)1/q
�

= �f�p
q
µ(X)1−p/q

.

Taking the p
th-root on both sides, we obtain inequality (3.3.2). �

3.4 Approximations in L
p-Spaces

Proposition 3.4.1. Let

S := {s : X → C | s simple, measurable , µ({s �= 0}) < ∞}.

Then for 1 ≤ p < ∞, S ⊂ L
p(µ) is L

p-dense in L
p(µ).

Proof. Obviously, for all s ∈ S, �s�p < ∞, and S ⊂ L
p(µ). We will show that

whenever f ∈ L
p(µ), there is sn

L
p

−→ f .

First, suppose f : X → [0,∞). Using the staircase functions, there is a sequence
of simple functions sn � f , pointwise. Since 0 ≤ sn ≤ f , we have sn ∈ L

p(µ),
hence sn ∈ S. Note that |f − sn|p ≤ |f |p and by Dominated Convergence, we have

lim
n→∞

�

X

|f − sn|p dµ =

�

X

lim
n→∞

|f − sn| dµ = 0.

Hence, �f − sn�p → 0, or equivalently, sn
L
p

−→ f . In general, if f : X → C, write
f = (u+ − u−) + i(v+ − v−). From the preceding step we obtain corresponding
sequences {s+

n
}, {s−

n
}, {t+

n
}, {t−

n
}. Then apply the �-inequality. �

Approximation by Continuous Functions

Now let µ be a measure on a locally compact Hausdroff space X, which has the
five properties stated in Riesz Representation Theorem. In particular, µ
could be the Lebesgue measure on Rk.

Theorem 3.4.2. For 1 ≤ p < ∞, Cc(X) is L
p-dense in L

p(µ).

Proof. From Propoisition (3.4.1), it suffices to show that Cc(X) is dense in S. For
every s ∈ S, define A := {s �= 0}. By definition of S, µ(A) < ∞ and s(x) = 0, for
all x ∈ A

c. Therefore, by Lusin’s Theorem (2.5.1), given ε > 0, there is g ∈ Cc(X)
such that

|g| ≤ sup{s(x) : x ∈ X} = �s�∞ and µ({g �= s}) < ε.
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Then, using |g − s| < 2�s�∞, we have

�g − s�p =
��

X

|g − s|p dµ
�1/p

=

��

{g �=s}
|g − s|p dµ

�1/p

≤ 2�s�∞
��

X

χ{g �=s} dµ

�1/p

= 2�s�∞ε1/p

Therefore, Cc(X) is dense in S, hence in L
p(µ). �

Remark 3.4.3. Consider the Lebesgue measure m on Rk. For 1 ≤ p ≤ ∞, the
metric �f − g�p on Cc(Rk) is a genuine metric, i.e. we do not have to pass to
equivalence classes. It is because if f �≡ g, then they must differ on some open set
U , and m(U) > 0. Hence, if �f − g�p = 0, then f = g,m-a.e., and f ≡ g. Also,
note that in Cc(Rk), �f�∞ = sup{|f(x)| : x ∈ Rk}.

For 1 ≤ p < ∞, L
p(Rk) is the L

p-completion of Cc(Rk) by Theorem (3.4.2).
In particular, when p = 1, f ∈ Cc(Rk), �f�1 is precisely the Reimann integral�
Rk |f(x)| dx; and L

1(Rk) is the L
1-completion of Cc(Rk).

However, when p = ∞, the L
∞-completion of Cc(Rk) is not L

∞(Rk), but C0(Rk),
the space of continuous functions on Rk which vanish at infinity. We shall see that
in Proposition (3.4.5).

Definition 3.4.4. A complex function f on a locally compact Hausdorff space
X is said to vanish at infinity if given ε > 0, there exists a compact set K ⊆ X

such that |f(x)| < ε, for all x /∈ K.

We denote C0 := {f : X → C | continous f vanishes at infinity.}. Obviously
Cc(X) ⊆ C0(X), and they are equal if X is compact. In this case we simply
denote it as C(X).

Proposition 3.4.5. If X is a locally compact Hausdorff space, then C0(X) is
the completion of Cc(X), relative to the metric defined by

�f� = sup
x∈X

|f(x)|.

Proof. It is obvious that (C0(X), � · �) is a metric space with d(f, g) = �f − g�.
We will show that Cc(X) is dense in C0(X), and C0(X) is complete.

For density, let f ∈ C0(X) and ε > 0. By definition of C0(X), there is a compact
K ⊂ X such that |f(x)| < ε ouside K. By Urysohn’s Lemma (2.2.11), there
is g ∈ Cc(X) such that 0 ≤ g ≤ 1 and g(x) = 1 on K. Define h := fg, then
h ∈ Cc(X) and �f − h� < ε.

For completion, let {fn} be Cauchy in C0(X). Hence, {fn} convereges uniformly
because |fn(x)−fm(x)| < �fn−fm�. Therefore, the pointwise limit f is continuous.
To see f ∈ C0(X), given ε > 0, there is n such that �fn − f� < ε/2. Also there is
a compact K ⊂ X so that |fn(x)| < ε/2, ∀x /∈ K. Hence, ∀x /∈ K,

|f(x)| = |f(x)− fn(x) + fn(x)| ≤ |f(x)− fn(X)|+ |fn(x)| < ε.

Thus f vanishes at infinity and C0(X) is complete. �
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3.5 Additional : Egoroff ’s Theorem

We conclude this chapter with the Egoroff’s Theorem concerning on uniform con-
vergence of a sequence of measurable functions. This type of convergence is some-
times called almost uniform convergence. Moreover, one can prove Lusin’s
Theorem (2.5.1) easily, using Egoroff’s Theorem and Tietze Extension Theorem.

Theorem 3.5.1 (Egoroff ’s Theorem). Let µ(X) < ∞, fn : X → C be mea-
surable and fn(x) → f(x), for µ-almost every x. Then given ε > 0, there is a
measurable set E ⊂ X with µ(Ec) < ε such that {fn} converges uniformly on E.

Proof. Without loss of generality, we assume fn(x) → f(x), for all x ∈ X. Define

Sn,k :=
�

i,j≥n

�
x ∈ X : |fi(x)− fj(x)| <

1

k

�
.

For all x ∈ X, {fn(x)} is Cauchy. Thus, for all k ∈ N, S1,k ⊆ S2,k ⊆ · · · → X.
Hence, for each k ∈ N, there is nk ∈ N such that

µ(Snk,k
) > µ(X)− ε

2k
⇒ µ(Sc

nk,k
) <

ε

2k

⇒ µ

� ∞�

k=1

S
c

nk,k

�
< ε.

Choose such pair (k, kn) and define E :=
�∞

k=1 Snk,k
. We will show that {fn}

converges uniformly on E. For every ε > 0, choose k ∈ N with 1
k
< ε, and let

N := nk. Then if x ∈ E, x ∈ SN,k gives

|fi(x)− fj(x)| <
1

k
< ε, for all i, j > N.

Therefore, {fn} is uniformly Cauchy, hence uniformly convergent to f on E. �

Remark 3.5.2. Egoroff’s Theorem does not hold in σ-finite space. For example,
let X := [0,∞) with the Lebesgue measure m. Define fn = χ[n,∞), then fn(x) → 0.

Let ε = 1
2 and take E such that µ(Ec) < 1

2 . Then for each n > k, [k, n) ∩ E �= ∅
because µ([k, n)) ≥ 1. However, then there is x ∈ E, such that fk(x) = 1, and
fn(x) = 0, for all n > k. Hence,

|fk(x)− fn(x)| = 1

and {fn} does not converge at x. �

Theorem 3.5.3 (Tietze Extension). Let (X, τ) be a locally compact Hausdorff
space, K ⊂ X be compact. Suppose f : K → C is continuous, then there is
g ∈ Cc(X) such that g|K = f . Moreover, supp(g) is a subset of some open U .
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Additional : Egoroff’s Theorem

Proof. It suffices to prove for real-valued f . Since f is continuous on K, f is
bounded on K. Without loss of generality, we assume f(K) ⊆ [−2, 2]. We shall
proceed by induction.

Step 1: Define A1 := f
−1([−2,−2

3 ]) and B1 := f
−1([23 , 2]). Note that A1, B1 are

closed in K, hence closed and compact in X, with B1 ⊂ X \ A1. By Urysohn’s
Lemma (2.2.11), there is h1 ∈ Cc(X), such that h1|B1 = 1, h1|A1 = 0, and h1(X) =
[0, 1]. Define g1 = 1

2(
2
3)(h1 − 1

2). Then g1 ∈ Cc(X), and g1|B1 = 2
3 , g1|A1 = −2

3 ,
and g1(X) = [−2

3 ,
2
3 ]. Let f1 := f , and f2 := f1 − g1 on K. Then, f2 ∈ Cc(K) and

f2(K) = [−4
3 ,

4
3 ].

Step 2: Let A2 := f
−1
2 ([−4

3 ,−(23)
2]) and B2 := f

−1
2 ([(23)

2
,
4
3 ]). There exists h2 ∈

Cc(X), such that h2|B2 = 1, h2|A2 = 0, and h2(X) = [0, 1]. Let g2 := 1
2(

2
3)

2(h2− 1
2).

Then, g2|B2 = (23)
2, g2|A2 = −(23)

2, and g2(X) = [−(23)
2
, (23)

2]. Define f3 := f2 − g2

in Cc(K) and f3(K) = [−3(23)
3
, 3(23)

3].

Step 3: Proceed inductively. For each n, we obtain gn ∈ Cc(X) so that gn(X) =
[−(23)

n
, (23)

n], and fn ∈ Cc(K) with fn(K) = [−3(23)
n
, 3(23)

n]. Also, on K, gn =
fn − fn+1. Finally, define g(x) :=

�∞
n=1 gn(x), for all x ∈ X. Since |gn| ≤ (23)

n,�∞
n=1 gn converges uniformly to g. Hence, g ∈ Cc(X). Moreover on K,

g = lim
N→∞

N�

n=1

(fn − fn+1) = lim
N→∞

f1 − fN+1 = f,

because |fN | ≤ 3(23)
N → 0. �

Theorem (Lusin’s Theorem). Let (X,M, µ) be a locally compact Hausdorff
space, and µ be a regular Borel measure. Suppose f : X → C is measurable,
A := {x : f(x) �= 0} and µ(A) < ∞. Then, given any ε > 0, there exists
g ∈ CC(X) such that

µ({x : f(x) �= g(x)} < ε, (3.5.1)

and

sup
x∈X

|g(x)| ≤ sup
x∈X

|f(x)|. (3.5.2)

Proof. Pick a sequence of simple functions sn(x) � f(x), for all x ∈ X. By the
Egoroff’s Theorem (3.5.1) on A, there is E ∈ M such that µ(A \ E) <

ε
3 , and

sn|E → f |E, uniformly.

By regularity of µ, there is compact K and open U , such that K ⊂ E ⊂ A ⊂ U ,
with µ(E \K) < ε

3 , and µ(U \ A) < ε
3 . By the Tietze Extension (3.5.3), for each

n, there is gn ∈ Cc(X) such that gn|K = sn|K → f |K , uniformly.

Hence, f |K ∈ Cc(K). Apply the Tietze Extension again on f |K , we find g ∈ Cc(X),
such that g|K = f |K and supp(g) ⊂ U . Moreover, {x ∈ A : g(x) �= f(x)} ⊂ U \K,
which has measure < ε.

Finally, we obtain inequality (3.5.2) exactly as in the proof of Theorem (2.5.1). �
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Chapter 4

Elementary Hilbert Space Theory

4.1 Inner Products and Linear Functionals

Definition 4.1.1. Let H be a complex vector space. A sesquilinear form is
a map �·, ·� : H ×H → C satisfying the followings: For all x, y, z ∈ H, α ∈ C,

(a) �x, y� = �y, x�.

(b) �x+ αz, y� = �x, y�+ α�z, y�.

(c) �x, x� ≥ 0. (Positive Semidefinite)

In addition, if �x, x� = 0 if and only x = 0, then H is called an inner product
space.

Remark. (a) implies �x, x� is positive real. (b) implies the map x �→ �x, y� is a
linear functional on H. (a) and (b) imply that �x, y + αz� = �x, y�+ α�x, z�.

Proposition 4.1.2. If �·, ·� is positive semidefinite, and �x, x� = 0, then �x, y� =
0, for each y ∈ H.

Proof. For all α ∈ C \ {0},
�x+ αy, x+ αy� = �x, x+ αy�+ α�y, x+ αy�

= �x, x�+ α�x, y�+ α�y, x�+ |α|2�y, y�
= 0 + 2Re(α�y, x�) + |α|2�y, y�
= 2Re(α�y, x�) + |α|2�y, y� ≥ 0

By way of contradiction, suppose �x, y� �= 0. Then either (1): �y, y� = 0 and
2Re(α�y, x�) ≥ 0, or (2): �y, y� �= 0.

For (1), let α := −1
�y,x� , then 2Re(α�y, x�) = −2 ≥ 0. →←

For (2), let α := − |�x,y�|2
�y,x��y,y� , then |α| = |�x,y�|

�y,y� , and

2Re(α�y, x�) + |α|2�y, y� = − |�x, y�|2

�y, y� ≥ 0. →← �
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Inner Products and Linear Functionals

Definition 4.1.3. If �·, ·� is a sesquilinear positive semidefinite form on H, then
the seminorm of x ∈ H is defined to be

�x� :=
�
�x, x�.

Proposition 4.1.4 (Cauchy-Schwarz Inequality). If �·, ·� is a sesquilinear
positive semidefinite form on H, then for all x, y ∈ H,

|�x, y�| ≤ �x� �y�.

Proof. Suppose �y� �= 0. Let λ := �x,y�
�y,y� . Then,

�x− λy, x− λy� = �x�2 − 2Re(λ�y, x�) + |λ|2�y�2

= �x�2 − 2Re

�
|�x, y�|2

�y, y�

�
+

|�x, y�|2

�y, y� ≥ 0.

Hence, �x�2 ≥ |�x,y�|2
�y,y� and |�x, y�| ≤ �x� �y�. �

Proposition 4.1.5 (�-inequality). For the seminorm, for all x, y ∈ H,

�x+ y� ≤ �x�+ �y�. (4.1.1)

Proof. By the Cauchy-Schwarz Inequality,

�x+ y�2 = �x+ y, x+ y� = �x�2 + 2Re(�x, y�) + �y�2

≤ �x�2 + 2�x��y�+ �y�2 = (�x�+ �y�)2.

Hence, �x+ y� ≤ �x�+ �y�. �

Remark 4.1.6. If H is an inner product space, then �x� is a norm. The metric
d(x, y) := �x− y� gives a metric topology on H.

Proposition 4.1.7 (Parallelogram Law). For the seminorm, for all x, y ∈ H,

�x+ y�2 + �x− y�2 = 2�x�2 + 2�y�2. (4.1.2)

(The sum of the squares of the diagonals of a parallelogram is equal to the sum of
the squares of its sides.)

Proof. Sum the identities �x± y�2 = �x�2 ± 2Re(�x, y�) + �y�. �
Proposition 4.1.8 (Polarization Identity). For all x, y ∈ H,

4�x, y� = �x+ y�2 − �x− y�2 + i(�x+ iy�2 − �x− iy�2). (4.1.3)

Proof. First suppose H is a real vector space. Then �x, y� = �y, x�. Consider

�x+ y�2 − �x− y�2 = �x+ y, x+ y� − �x− y, x− y�
= �x�2 + �x, y�+ �y, x�+ �y�2 − (�x�2 − �x, y� − �y, x�+ �y�2)
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Elementary Hilbert Space Theory

= 2�x, y�+ 2�y, x�
= 4�x, y�.

If H is a complex vector space, then from the previous calculations,

�x+ y�2 − �x− y�2 = 2�x, y�+ 2�y, x�,

and

�x+ iy�2 − �x− iy�2 = 2�x, iy�+ 2�iy, x�.

Subsituting into formula (4.1.3), the RHS gives

RHS = 2�x, y�+ 2�y, x� − 2(i2)�x, y�+ 2(i2)�y, x�
= 2�x, y�+ 2�y, x�+ 2�x, y� − 2�y, x�
= 4�x, y�. �

Definition 4.1.9 (Hilbert Space). Let H be an inner product space. If H is
complete with respect to � · �, then H is an Hilbert Space.

Example 4.1.10. If µ is any positive measure, L2(µ) is an inner product space
with

�f, g� :=
�

X

fg dµ. (4.1.4)

Note that

�f� = �f, f�1/2 =
��

X

|f |2 dµ
�1/2

= �f�2.

Also, recall that Lp(µ) is complete for 1 ≤ p < ∞. Hence, L2(µ) is a Hilbert space.

Throughout this chapter, let H be a Hilbert space.

Proposition 4.1.11. Let g ∈ H, then λg : H → C given by λg(f) := �f, g� is a
linear functional, and uniformly continuous. Consequently, the maps f �→ �g, f�
and f �→ �f� are also uniformly continuous.

Proof. Linearity is done previously. For uniform continuity, ∀ε > 0, if g = 0, then
λg(f) = 0. If g �= 0, pick δ = ε

�g� . Then, ∀f, h ∈ H, with �f − h� <
ε

�g� , we have

|λg(f)− λg(h)| = |�f, g� − �h, g�| = |�f − h, g�| ≤ �f − h��g� < ε. �

Definition 4.1.12. A closed subspace of H is a subspace that is a closed set
under the metric topology of H.

Remark. If M is a closed space of H, so is its closure M . To see it, pick convergent
sequences {xn}, {yn} in H, and α ∈ C. It is easy to see that αxn+yn → αx+y ∈ M .
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Orthogonality

Definition 4.1.13 (Convex Sets). A set E in a complex vector space V is said
to be convex if ∀x, y ∈ E, ∀t ∈ (0, 1),

zt := (1− t)x+ ty ∈ E.

One may visualize zt as a stright line segement from x to y, lying inside E. Ob-
viously, every subspace of V is convex. Also, if E is convex, so is the translate
E + x := {y + x : y ∈ E}.

4.2 Orthogonality

Definition 4.2.1 (Orthogonality). We say x, y ∈ H are orthogonal if �x, y� =
0; we denote it as x ⊥ y. If S ⊂ H, we write S

⊥ := {x ∈ H : �x, y� = 0, ∀y ∈ S}.

Proposition 4.2.2. Let S ⊂ H, then S
⊥ is a closed subspace of H.

Proof. Let z ∈ H, and λz(x) := �z, x�. Then {z}⊥ = λ−1
z
{0}. Observe that {z}⊥

is closed by continuity, and is a subspace by linearity. Now, note that

S
⊥ =

�

z∈S

{z},

which is a closed subspace. �
Remark. There is a subspace that is not closed. For example, C([0, 1]) ⊂
L
2([0, 1]). There exists a sequence of continuous functions converges to a non-

continuous function with respect to the L
2-norm.

Lemma 4.2.3. Let M be a closed subspace in H. Then for all h ∈ H, there is
m ∈ M that is nearest to h.

Proof. For every h ∈ H, define δ := inf{�m − h� : m ∈ M}. Let {mi}∞i=1 be a
sequence such that �mi − h� → δ. We will show that {mi}∞i=1 is Cauchy.

Recall the Parallelogram law, �x−y�2 = 2�x�2+2�y�2−�x+y�2. Let x = mi−h,
y = mj − h. Then,

x+ y

2
=

mi +mj

2
− h and

����

����
x+ y

2

����

���� ≥ δ.

Substitute x, y, we have

�mi −mj�2 = 2(�mi − h�2 + �mj − h�2)− �mi +mj − 2h�2

≤ 2�mi − h�2 + 2�mj − h�2 − 4δ2.

Since �mi − h�2, �mj − h�2 � δ2, given ε > 0, ∃N ∈ N, such that for all i, j > N ,
we have

�mi −mj� < ε.

Therefore, {mi}∞i=1 is Cauchy and converges to m ∈ M because M is closed. Hence,
we have �m− h� = δ, which is the minimum by definition. �
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Theorem 4.2.4 (Orthogonal Projections). If M is a closed subspace of H,
then ∀h ∈ H, there is a unique pair m ∈ M , n ∈ M

⊥ such that h = m + n and
�h�2 = �m�2 + �n�2. Moreover, the maps P : h �→ m, and Q : h �→ n are linear.
We write m = Ph and n = Qh.

Proof. Fix h ∈ H, by the previous Lemma, pick m ∈ M that is nearest to h, and
let n := h−m. We will show that n ∈ M

⊥. For every x ∈ M , given α ∈ C,

�n− αx�2 = �n�2 − 2Re(α�x, n�) + |α|2�x�2.

Suppose �n, x� �= 0. Let α = α(t) = t

�x,n� , t ∈ R. Then,

�n− αx�2 = �n�2 − 2t+
t
2�x�2

|�x, n�|2 . (4.2.1)

However, for sufficiently small t, 2t > t
2�x�2

|�x,n�|2 , and equation (4.2.1) gives

�n− αx�2 < �n�2 ⇒ �h− (m+ αx)�2 < �h−m�2,

which contradicts to m being the nearest point in M . Hence, �n, x� = 0 and
n ∈ M

⊥. Moreover, �h�2 = �m+ n�2 = �m�2 + �n�2.

For uniqueness, let h = m
� + n

�. Then, m−m
�

� �� �
∈M

= n
� − n� �� �
∈M⊥

. Thus, m −m
� = 0 and

m = m
�; n = n

� likewise.

For linearity, let h = h1 + αh2. Then,

h = (m1 + n1) + α(m2 + n2) = (m1 + αm2)� �� �
∈M

+(n1 + αn2)� �� �
∈M⊥

. �

Definition 4.2.5. P and Q are called the orthogonal projections of H onto
M and M

⊥.

Corollary 4.2.6. If M � H is a closed subspace, then M
⊥ �= {0}.

Proof. Let h ∈ H \M , then Qh /∈ {0} because �h− Ph�2 = �Qh�2 �= 0. �

Theorem 4.2.7 (Riesz Representation Theorem on Hilbert Space). Let
Λ : H → C be a continuous (hence bounded) linear functional. Then there is a
unique y ∈ H, such that Λ(x) = �x, y�, for every x ∈ H.

Proof. Suppose Λ �≡ 0. Let M := ker(Λ) = {x ∈ H : Λ(x) = 0}. Then M is a
proper closed subspace in H. Hence, M⊥ �= {0}.

If v, w ∈ M
⊥ and v, w �= 0, then Λ(v),Λ(w) �= 0. Then,

Λ

�
v

Λ(v)
− w

Λ(w)

�
= 1− 1 = 0 ⇒ v

Λ(v)
− w

Λ(w)
∈ M.
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However, linearity of M⊥ gives 1
Λ(v)v −

1
Λ(w)w ∈ M

⊥. Hence,

v

Λ(v)
− w

Λ(w)
= 0 ⇒ w =

Λ(w)

Λ(v)
v,

and M
⊥ = Cv. Using orthogonal projections on M and M

⊥, given any x ∈ H,
x = Px+Qx, where Qx = αv

Λ(v) , for some α ∈ C. Consequently,

Λ(x) = Λ(Px) + Λ

�
αv

Λ(v)

�
= 0 + α

= α

�
v,

v

Λ(v)
· Λ(v)�v�2

�
= α

�
v

Λ(v)
,
Λ(v)v

�v�2

�

=

�
αv

Λ(v)
,
Λ(v)v

�v�2

�
=

�
Px+

αv

Λ(v)� �� �
x

,
Λ(v)v

�v�2� �� �
y

�
.

For uniqueness, suppose �x, y� = �x, y�� for each x ∈ H. Let z := y − y
�, then

�x, z� = 0. In particular, �z, z� = 0 gives z = 0 and y = y
�. �

4.3 Orthonormal Sets

Definition 4.3.1. A family {uα}α∈A ⊂ H is called orthonormal if �uα, uβ� = 0,
∀α �= β, and �uα� = 1, ∀α ∈ A. If x ∈ H, the complex numbers �x, uα� are called
the Fourier coefficients of x relative to the set {uα}, or coordinate orthogonal
projections onto Span(uα : α ∈ A).

We begin with finite othonormal sets.

Proposition 4.3.2. Let {uα}α∈A be an orthonormal set, and F ⊆ A be finite.
Let MF := Span(uα : α ∈ F ).

(a) If ϕ : A → C with ϕ|A\F = 0, then there exists y ∈ MF , namely

y =
�

α∈F

ϕ(α)uα,

such that �y, uα� = ϕ(α), ∀α ∈ A. Also,

�y�2 =
�

α∈F

|�y, uα�|2.

(b) If x ∈ H, then �����

�����x−
�

α∈F

�x, uα�uα

�����

����� < �x− s�, (4.3.1)

for all s ∈ MF , except s =
�

α∈F �x, uα�uα. Moreover,
�

α∈F

|�x, uα�|2 ≤ �x�2. (4.3.2)
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Proof. (a) is a direct calculation using orthonormality.

For (b), let s(x) :=
�

α∈F �x, uα�uα. Note that �s(x), uα� = �x, uα�, ∀α ∈ F .
Hence, �x− s(x), uα� = 0, ∀α ∈ F . Because MF is spanned by uα’s, we have
(x− s(x)) ⊥ (s(x)− s), ∀s ∈ MF . Therefore,

�x− s�2 = �(x− s(x)) + (s(x)− s)�2 = �x− s(x)�2 + �s(x)− s�2. (4.3.3)

Hence, it gives (4.3.1). For (4.3.2), let s = 0 and the result from (a). �
Remark. Note that (4.3.1) states that the “Fourier series”

�
α∈F �x, uα�uα of x is

the unique best approximation to x in MF .

Remark 4.3.3. Note that s(x) = (
�

α∈F �x, uα�uα) ⊥ x, and we have the
Pathagorean Theorem:

�x�2 = �x− s(x)�2 + �s(x)�2. (4.3.4)

Remark 4.3.4. Now we want to extend the results to uncountable sets. Because
of that, we need to clarify the meaning of

�
α∈A ϕ(α). Suppose 0 ≤ ϕ(α) ≤ ∞,

then we define
�

α∈A

ϕ(α) := sup

��

α∈F

ϕ(α) : F ⊂ A,F finite.
�
.

In fact, if µ denotes the counting measure on A, then
�

α∈A

ϕ(α) =

�

A

ϕ dµ.

In this case, we write l
p(A) instead of Lp(µ). Moreover, if ϕ : A → C, then

ϕ ∈ l
2(A) ⇐⇒

�

A

|ϕ|2 dµ =
�

α∈A

|ϕ(α)|2 < ∞.

Example (4.1.10) shows that l
2(A) is a Hilbert space with inner product:

�ϕ,ψ� =
�

A

ϕψ dµ =
�

α∈A

ϕ(α)ψ(α). (4.3.5)

Remark 4.3.5. If ϕ ∈ l
2(A), then S := {α ∈ A : ϕ(α) �= 0} is at most

countable. To see this, let An := {α : |ϕ(α)| > 1/n}. Hence,

|An| <
�

α∈An

|nϕ(α)|2 ≤ n
2
�

α∈An

|ϕ(α)|2 < ∞.

Since every An is finite, S =
�∞

n=1 An is countable.

Theorem 4.3.6 (Bessel’s Inequality). Let {uα} be an orthonormal set in H.
Then ∀h ∈ H,

�h�2 ≥
�

α∈A

|�h, uα�|2. (4.3.6)
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Proof. For every finite F ⊂ A, by Proposition 4.3.2, we have

�h�2 ≥
�

α∈F

|�h, uα�|2.

Let ϕ(α) := �h, uα�. By Remark (4.3.5), S = {α ∈ A : ϕ(α) �= 0} is at most
countable. Therefore, taking the supremum of all finite F , hence all countable S,
we obtain

�h�2 ≥ sup
F⊂A, finite

��

α∈F

|�h, uα�|2
�

= sup
S⊂A

��

α∈S

|�h, uα�|2
�

=
�

α∈A

|�h, uα�|2 �

4.4 Orthonormal Basis

Definition 4.4.1. An orthonormal set {uα}α∈A is called complete or an or-
thonormal basis if for all h ∈ H,

�h�2 =
�

α∈A

|�h, uα�|2. (4.4.1)

Remark. Note that it is not a basis in the sense of vector space.

Definition 4.4.2. The set U = {uα} is called a maximal orthonormal set if
V is an orthonormal set containing U , then V = U .

Theorem 4.4.3. Let {uα}α∈A be an orthonormal set in H. The following are
equivanlent:

(1) {uα} is an orthonormal basis.

(2) The set of all finite linear combinations of {uα}, denoted P , is dense in H.

(3) {uα} is a maximal orthonormal set.

Proof. (1) ⇒ (2). Given h ∈ H, by (1) we have

�h�2 =
�

α∈A

|�h, uα�|2.

Let B ⊂ A be finite, and define gB :=
�

α∈B�h, uα�uα. By Remark (4.3.3),

�h− gB�2 = �h�2 − �gB�2 = �h�2 −
�

α∈B

|�h, uα�|2.
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Now, taking the supremum over all such B, we have
�

α∈B |�h, uα�|2 → �h�2.
Therefore, ∀ε > 0, we can find such B so that �h− gB� < ε. Therefore,

h = sup
B⊂A, finite

��

α∈B

�h, uα�uα

�
,

and P is dense in H.

(2) ⇒ (3). By contrapositive, suppose ∃u ∈ H, �u� = 1, and �u, uα� = 0, ∀α ∈ A.
Then, for all finite B ⊂ A, ∀cα ∈ C,

�����

�����u−
�

α∈B

cαuα

�����

�����

2

= �u�2 +
�

α∈B

|cα|2 ≥ 1.

Hence, u /∈ P , and P is not dense in H.

(3) ⇒ (1). Step 1: By contrapositive, suppose there exists a h ∈ H, such that
�h�2 >

�
α∈A |�h, uα�|2. Let An := {α : |�h, uα�| ≥ 1/n}, and A0 := {α : �h, uα� �=

0}. Recall that A0 =
�∞

n=1 An, A1 ⊆ A2 ⊆ . . . , and every An is finite.

Define gn :=
�

α∈An
�h, uα�uα. Then, given ε > 0, there exists N ∈ N, such that

�

α∈A

|�h, uα�|2 <
�

α∈AN

|�h, uα�|2 + ε.

Step 2: Now, for all m > n > N , by orthogonality,

�gm − gn�2 =

������

������

�

α∈Am\An

�h, uα�uα

������

������

2

=
�

α∈Am\An

|�h, uα�|2

=
�

α∈Am

|�h, uα�|2 −
�

α∈An

|�h, uα�|2

≤
�

α∈A0

|�h, uα�|2 −
�

α∈AN

|�h, uα�|2

=
�

α∈A

|�h, uα�|2 −
�

α∈AN

|�h, uα�|2 < ε

Therefore, {gn} is Cauchy and gn → g ∈ H.

Step 3: By monotonicity of {An}, for all γ ∈ A0, there is N such that γ ∈ An,
whenever n > N . Hence, �h, uγ� = �gn, uγ�, for all n > N . On the other hand,

�h− g, uγ� = �h, uγ� − �g, uγ� = �h, uγ� − lim
k→∞

�gk, uγ�

gives �h− g, uγ� = 0. Thus, h− g ⊥ uγ, for every γ ∈ A0.

Step 4: Moreover, if γ /∈ A0, then �uγ, uα� = 0, for all α ∈ A0, and

�h− g, uγ� = �h, uγ� − �g, uγ� = 0− 0 = 0.
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Hence, h− g ⊥ uα, for every α ∈ A. Now, by assumption and Remark (4.3.3),

�h− g�2 = lim
n→∞

�h− gn�2 = �h�2 − lim
n→∞

�gn�2 > 0.

Finally, let u := h−g

�h−g� . Then {u} ∪ {uα} is a bigger orthonormal set, thus {uα} is
not maximal. �

Corollary 4.4.4 (Parseval’s Identity). Let {uα}α∈A be an orthonormal basis
of H. Then, for every h ∈ H,

�h�2 =
�

α∈A

|�h, uα�|2 ⇐⇒ h =
�

α∈A

�h, uα�uα. (4.4.2)

Moreover, for all x, y ∈ H,
�

α∈A

�x, uα��y, uα� = �x, y�. (4.4.3)

Proof. (⇒) is done in the proof of Theorem (4.4.3): (1) ⇒ (2). Conversely, Let
{cα} ⊂ C be square summable, and {uα} be an orthonormal basis. Define An as
in Theorem (4.4.3), then {gn :=

�
α∈An

cαuα} is Cauchy. Let cα := �h, uα�, and
gn → h completes the proof.

Finally, recall that from Remark (4.3.4), l2(A) is a Hilbert space. For each x ∈ H,
we associate a function x(α) on A by x(α) := �x, uα�. Then, from equation (4.4.2),
�x�2

l2(A) = �x�2
H

. By Polarization Identity, inner products in l
2(A) can be expressed

in terms of norm in l
2(A), which is equivalent to the norm in H. Therefore,

�

α∈A

�x, uα��y, uα� =
�

α∈A

x(α)y(α) = �x, y�l2(A) = �x, y�H . �

Corollary 4.4.5. Let {uα}α∈A be an orthonormal basis of H. For every h ∈ H,
let A0 := {α : �h, uα� �= 0}. Then, there exists nested finite sequence An’s, such
that A0 =

�∞
n=1 An, and

lim
n→∞

n�

α∈Ak

�h, uα�uα = h (4.4.4)

Proof. Done in Theorem (4.4.3). A useful result. �

Remark 4.4.6. If {uα}α∈A is an orthonormal basis of H. Then the map Λ : H →
l
2(A), given by

(Λ(x))(α) := �x, uα�,

is a bijection. Moreover, it preserves the distances, hence an isomorphic isometry.

Example 4.4.7. Let H = l
2(A). The set {χ{α} : α ∈ A} is an orthonormal basis.
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Example 4.4.8. Let H = L
2([−π, π]) with

�f, g� := 1

2π

�

[−π,π]

fg dm. (4.4.5)

Let en(θ) := e
inθ. Then {en : n ∈ Z} is an orthonormal basis, by showing the set

of finite linear combinations is dense.

Idea: For any f ∈ L
2([−π, π]), take g ∈ C([−π, π]) such that �f − g�2 < ε. Note

that g might not be 2π-periodic. Then pick h ∈ C([−π, π]) with h(−π) = h(π) so
that �h− g�2 < ε. Use Stone-Weierstrass to pick trigonometric polynomial p(θ) =�

m

k=−m
ckek(θ) with �h−p�∞ < ε. Then Hölder’s inequality gives �h−p�2 <

√
2πε,

and �f − p�2 < 2ε+
√
2πε.

Corollary 4.4.9 (Riesz-Fischer). If f ∈ L
2([−π, π]), then

f =
�

n∈Z

�f, en�en, and �f�2 =
�

n∈Z

|�f, en�|2.

Moreover, if {cm} ∈ l
2(Z), i.e.

�∞
m=1 |cm|2 < ∞, then

g :=
�

m∈Z

cmem ∈ L
2([−π, π]),

and the partial sum converges to g in L
2.

Proof. Since {en} is an orthonormal basis, all follow from the results above. �

Remark 4.4.10. The complex numbers 1√
2π
�f, en� are precisely the Fourier

coefficients of f .

Theorem 4.4.11. Every nontrivial Hilbert space H has an orthonormal basis.

Proof. We will use the Zorn’s Lemma. Let S := {U ⊆ H : U is orthonormal}.
Then (S,⊆) is partially ordered. Suppose C is a totally ordered subset of S.

Define V :=
�

U∈C U . If x1, x2 ∈ V , then there are U1, U2 ∈ C such that x1 ∈ U1

and x2 ∈ U2. Without loss of generality, suppose U1 ⊂ U2. Hence, x1, x2 ∈ U2,
and

�x1, x2� =
�
1, if x1 = x2,

0, else.

Thus, V is orthonormal and V is an upper bounded of C. By Zorn’s Lemma, S
has a maximal element W , which is an maximal orthonormal set. Therefore, W
is an orthonormal basis for H. �
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4.5 Isometries

Definition 4.5.1. Let (H, �·, ·�H), (K, �·, ·�K) be Hilbert spaces. A linear map
Λ : H → K is called an isometry if for all h, g ∈ H,

�Λ(h),Λ(g)�K = �h, g�H .

In addition, if Λ is surjective, we say Λ is an unitary. If such Λ exists, then H

and K are isomorphic. Then, Λ is a Hilbert space isometric isomorphism.

Remark. Injectivity is automatic since Λ(h) = 0 ⇐⇒ �Λ(h)�2 = 0 ⇐⇒ h = 0.

Theorem. The Parseval’s Identity together with Remark (4.4.6) give the follow-
ing:

If {uα}α∈A is an orthonormal basis of a Hilbert space H, then the map Λ : H →
l
2(A), by

(Λ(x))α∈A := (�x, uα�)α∈A,

is a Hilbert space isometric isomorphism.

Proposition 4.5.2. A linear map Λ : H → K is an isometry if and only if
�Λ(h)� = �h�, for all h ∈ H.

Proof. (⇒) is obvious with g = h. Conversely, first suppose H and K are over R.
By the Parallelogram law,

�Λ(h),Λ(g)�K =
1

4
(�Λ(h) + Λ(g)�2

K
− �Λ(h)− Λ(g)�2

K

=
1

4
(�Λ(h+ g),Λ(h+ g)�K − �Λ(h− g),Λ(h− g)�K)

=
1

4
(�h+ g, h+ g�H − �h− g, h− g�H

=
1

4
(�h+ g�2

H
− �h− g�2

H

= �h, g�H

For complex case, split it into real and imaginary parts. �
Example 4.5.3. Let S : l2(N) → l

2(N) given by (x1, x2, x3, . . . ) �→ (0, x1, x2, . . . ).
Such S an isometry but not unitary; it is known as the shift operation or
unitary shift.

Theorem 4.5.4. Let {uα}α∈A be an orthonormal basis of H. Then there is a
unitary map U : H → l

2(A) such that U(uα) = χ{α}.

Proof. Step 1: Define Q := {
�

n

i=1 ciuαi : αi ∈ A, ci ∈ C, n ∈ N}. Hence, Q is
the set of all finite linear combinations, and Q = H. Consider p ∈ Q as linear
combination of all uα’s with cα = 0 when necesary. We define W : Q → l

2(A), by

W (p) := (cα)α∈A. (4.5.1)

53



Elementary Hilbert Space Theory

Then, by Theorem (4.4.3),

�W (p)�l2(A) = �p�H . (4.5.2)

Step 2: Now, for every h, there is a sequence pn → h. Hence, {pn} is Cauchy in
H and �W (pn − pm)�l2(A) = �pn − pm�H implies that {W (pn)} is Cauchy in l

2(A).
Recall that l2(A) is complete. Thus, there is g ∈ l

2(A) so that W (pn) → g. Define
U(h) := g. However, we need to check that U is well defined, i.e. U(h) does not
depends on the choice of {pn}.

Step 3: Suppose p
�
n
→ h and W (p�

n
) → g. We want show that g

� = g. Given
ε > 0, there is N ∈ N, such that for each n > N ,

�pn − h�H < ε and �p�
n
− h�H < ε.

Hence, by �-inequality,

�pn − p
�
n
�H < �pn − h�H + �p�

n
− h�H < 2ε.

By isometry of W in equation (4.5.2),

�W (pn − p
�
n
)�l2(A) = �W (pn)−W (p�

n
)�l2(A) < 2ε.

Therefore,

�g − g
��l2(A) = �g −W (pn) +W (pn)−W (p�

n
) +W (p�

n
)− g

��l2(A)

≤ �g −W (pn)�l2(A) + �W (pn)−W (p�
n
)�l2(A) + �W (p�

n
)− g

��l2(A)

= 4ε.

By convergence, g = g
�, and U is well defined.

Step 4: Now we will show U is surjective and isometric. For isometry, note that

�U(h)� = lim
n→∞

�W (pn)� = lim
n→∞

�pn� = �h�.

For surjectivity, the set of finite linear combinations of characteristic functions of
{α}, P := {

�
n

i=1 ciχ{αi}} is dense in l
2(A). Also, U(H) is closed by the isometry

above. Hence,
U(H) = U(H) = U(Q) = P = l

2(A).

Therefore, U an unitary from H to l
2(A). �
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Chapter 5

Examples of Banach Space

Techniques

5.1 Banach Spaces

Definition 5.1.1. A complex vector space (X, � · �) , with a norm � · � : X →
[0,∞) is a normed vector space if it satisfies the followings: For all x, y ∈ X,

i. �x+ y� ≤ �x�+ �y�.

ii. �αx� = |α|�x�, for all α ∈ C.

iii. If �x� = 0, then x = 0.

Definition 5.1.2. If {xn} is a sequence in (X, � · �), the series
�∞

n=1 xn is said
to converge to x if for some x ∈ X,

�
N

n=1 xn → x, as N → ∞. The series is called
absolutely convergent if

�∞
n=1 �xn� < ∞.

Proposition 5.1.3. A normed vector space X is complete if and only if every
absolutely convergent series in X converges.

Proof. (⇒). Suppose X is complete and
�∞

n=1 �xn� < ∞. Define sk :=
�

k

n=1 xn.
Given ε > 0, ∃N ∈ N such that ∀k > m > N ,

�∞
n=m

�xn� < ε. Therefore,

�sk − sm� =
k�

n=m+1

�xn� < ε.

Thus, {sn} is Cauchy and sn → x =
�∞

n=1 xn ∈ X.

(⇐). Let {xn} be Cauchy. For each k ∈ N, ∃Nk such that ∀m,n > Nk > Nk−1,
�xm − xn� < 2−k

. Define s1 := xN1 and sk := xNk
− xNk−1

, ∀k > 1. Note that
�sk� ≤ 2−k and s1 + · · ·+ sk = xNk

. Hence,
∞�

k=1

�sk� ≤ �s1�+
∞�

k=2

2−k
< ∞.
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By absolute convergence,

lim
k→∞

sk = lim
k→∞

xNk
= x ∈ X.

Finally, every Cauchy sequence with a convergent subsequence converges to the
same limit. Therefore, xn → x ∈ X. �
Definition 5.1.4. A Banach space is a normed vector space that is complete
in the metric topology induced by the norm.

Example 5.1.5. Every Hilbert space is a Banach space, so is L
p(µ), where 1 ≤

p ≤ ∞.

Definition 5.1.6. Let (X, � · �X) and (Y, � · �Y ) be normed vector spaces. Let
Λ : X → Y be a linear map. We define the operator norm of Λ by

�Λ� := sup{�Λ(x)�Y : �x�X ≤ 1}. (5.1.1)

If �Λ� < ∞, then we say Λ is bounded.

Remark 5.1.7. Note that in (5.1.1), we may modify the definition to

�Λ� = sup{�Λ(x)�Y : �x�X = 1}, (5.1.2)

since if x ∈ X, �Λ(αx)�Y = �αΛ(x)�Y = |α|�Λ(x)�Y .

Remark 5.1.8. Note that �Λ� is the smallest number such that ∀x ∈ X,

�Λ(x)�Y ≤ �Λ��x�X . (5.1.3)

Remark. From formula (5.1.1), Λ maps the closed unit ball in X into a closed
ball in Y with center 0 and radius �Λ�.

Theorem 5.1.9. Let (X, � · �X) and (Y, � · �Y ) be normed vector spaces, and
Λ : X → Y be linear. The following are equivalent:

(1) Λ is bounded.

(2) Λ is uniformly continuous.

(3) Λ is continuous at some x0 ∈ X.

Proof. (1) ⇒ (2). For all x, y ∈ X,

�Λ(x)− Λ(y)�Y = �Λ(x− y)�Y ≤ �Λ��x− y�X .

Hence, given any ε > 0, simply pick δ < ε
�Λ� .

(2) ⇒ (3). Obvious.

(3) ⇒ (1). Given ε > 0, there is δ > 0 such that ∀x ∈ X, with �x − x0�X < δ,
�Λ(x− x0)�Y < ε. Then, if y ∈ X with �y�X < δ, we have

�Λ(x0 + y)− Λ(x0)�X = �Λ(y)�Y < ε.

By linearity, ∀z ∈ X with �z�X < 1, �Λ(z)�Y < ε/δ. By continuities of Λ and the
norm function, �Λ� = sup{�Λ(z)�y : �z�X ≤ 1} ≤ ε/δ < ∞. �
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5.2 Consequences of Baire’s Theorem

The completeness of Banach spaces is useful in application. In fact, two of the
three fundamental theorems in Functional Analysis use completeness and Baire’s
Theorem.

Theorem 5.2.1 (Baire’s Category Theorem). Let (X, d) be a complete
metric space, and Un be an open dense subset of X, ∀n ∈ N. Then,

�∞
n=1 Un is

dense in X.

Proof. We want to show that for all open W , W ∩
�∞

n=1 Un �= ∅. Denote B(x, r)
the open ball with radius r centered at x, and B(x, r) be its closure. (Note:
B(x, r) �= {y : d(x, y) ≤ r} in general.)

Now, since U1 is dense, U1 ∩ W is open and nonempty. Then there is x1 ∈
U1 ∩ W and r1 ∈ (0, 1) such that B(x1, r1) ⊂ V1 ∩ W . Next, since V2 is dense,
V2 ∩ B(x1, r1) ⊂ W . So, there exists B(x2, r2) ⊂ V2 ∩ B(x1, r1) with r2 ∈ (0, 1/2).
Proceed inductively, we obtain

· · · ⊂ B(xn, rn) ⊂ Un ∩B(xn−1, rn−1) ⊂ B(xn−1, rn−1) ⊂ · · · ⊂ W,

with 0 < rn < 1/n.

Also, for all i, j > n, with xi, xj ∈ B(xn, rn), we have d(xi, xj) <
2
n
. Hence, {xn}

is Cauchy and by completeness, xn → x ∈ X. Moreover, x ∈ B(xn, rn) ⊂ Un ∩W ,
for every n ∈ N. Therefore, W ∩

�∞
n=1 Un �= ∅, and

�∞
n=1 Un is dense. �

Corollary 5.2.2. If {Un}∞n=1 is a sequence of Gδ sets, and Un is dense for all
n ∈ N, then

�∞
n=1 Un is dense and Gδ.

Proof. For each n ∈ N, Un =
�∞

kn=1 Vn,kn , where Vn,kn is open, and dense. There-
fore,

∞�

n=1

=
∞�

n=1

∞�

kn=1

Vn,kn

is dense and a countable intersection of open sets, hence Gδ. �

Definition 5.2.3. A set E ⊂ X is called nowhere dense if E does not contain
any open set in X. A countable union of such E is called a set of the first
category. Otherwise, it is of the second category.

Corollary 5.2.4. Let (X, d) be a complete metric space. Then X is of the
second category.

Proof. Let {En} be a sequenece of nowhere dense sets in X. Then {En

c} is
a sequence of open dense sets. By Baire’s Theorem,

�∞
n=1 En

c �= ∅. Hence,�∞
n=1 En ⊂

�∞
n=1 En �= X. �
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Corollary 5.2.5. Contraposition of Baire’s Theorem: Let (X, d) be a complete
metric space, and {Un} be a sequence of open sets. If

�∞
n=1 Un is not dense in

X, then there exists n ∈ N such that Un is not dense in X. Hence, there is a
nonempty open set V ⊆ X \ U.

Corollary 5.2.6. In a complete metric space (X, d) which has no isolated
points, no dense Gδ-subset is countable.

Proof. By way of contradiction, suppose E = {x1, x2, . . . } ⊂ X is a countable
dense Gδ. Then, E =

�∞
k=1 Vk, where Vk is dense and open. Then,

Uk := Vk \
k�

n=1

{xn}

is a dense open set. However,
�∞

k=1 Uk = ∅, contradiction. �
Theorem 5.2.7 (Banach-Steinhaus Theorem). Let (X, � · �X) be a Banach
space and (Y, � · �Y ) be a normed vector space. Let {Λα : α ∈ A} be a collection of
bounded linear maps from X to Y . Then, either

(a) Bounded uniformly: There is M > 0, such that for all α ∈ A, �Λα� ≤ M , or

(b) All blows up: There is a dense Gδ-set S ⊂ X, such that for all x ∈ S,
sup
α∈A

�Λα(x)�Y = ∞.

Remark. Geometrically, either there is a ball B(0,M) in Y such that every Λα

maps the unit ball in X into B; or there is a dense Gδ-set S such that for all x ∈ S

no ball in Y contains Λα(x), for all α.

Proof. For each α ∈ A, let ϕα(x) := �Λα(x)�Y . Since Λα and norm function are
continuous, ϕα is continuous, hence lower semicontinuous. Define

ϕ(x) := sup
α∈A

ϕα(x), and Vn := ϕ−1((n,∞)), ∀n ∈ N.

Note that ϕ is lower semicontinous, so Vn are open sets.

Suppose each Vn is dense in X. Then by Baire’s Theorem (5.2.1), the set S :=�∞
n=1 Vn is Gδ and dense in X with ϕ(S) = {∞}. Hence, it proves (b).

Otherwise, ∃n ∈ N with Vn is not dense. Thus, ∃B(y, δ) ⊂ V
c

n
, for some y ∈ X,

δ > 0. Therefore, for all x ∈ B(y, δ), �Λα(x)�Y ≤ n, for all α ∈ A. By linearity, if
z ∈ X with �z�X < δ,

�Λα(z)�Y = �Λα(z + y)− Λα(y)�Y ≤ 2n.

Hence, for every α ∈ A and z ∈ X with �z�X ≤ 1, �Λα(z)�Y < 2n/δ. Consequently,

sup
α∈A

�Λα� <
2n

δ
= M < ∞,

and it proves (a). �
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Corollary 5.2.8. Let X, Y, and {Λα}α∈A be as in Theorem (5.2.7). If for every
x ∈ X, sup

α∈A
�Λα(x)�Y < ∞, then �Λα� ≤ M , for some M .

Theorem 5.2.9 (Open Mapping Theorem). Let (X, � · �X) and (Y, � · �Y ) be
Banach spaces. If Λ : X → Y is a surjective bounded linear map. then Λ is an
open map.

Proof. Let B
X(x, r) denote the open ball in X with radius r about x ∈ X. We

shall divide the proof into two parts. Let (∗) be the following statement:

There exists δ > 0, such that Λ(BX(0, 1)) ⊃ B
Y (0, δ).

If (∗) is true, then we will be done by the argument below.

Let U ⊆ X be open. We want to find an open neighborhood for each y ∈ Λ(U)
lying inside Λ(U). For each y ∈ Λ(U), ∃u ∈ U so that Λ(u) = y, and ∃ε > 0 with
B

X(u, ε) ⊆ U . Consider B
Y (y, εδ). For each w ∈ B

Y (y, εδ),

1

ε
�w − Λ(u)�Y < δ ⇒ 1

ε
(w − Λ(u)) ∈ B

Y (0, δ).

Thus, by (∗), ∃x ∈ B
X(0, 1), so that Λ(x) = 1

ε(w − Λ(u)), and w = Λ(u + εx).
Define v := u+ εx. Then, Λ(v) = w and

�u− v�X = ε�x� < ε ⇒ v ∈ B
X(u, ε) ⊆ U.

Therefore, BY (y, εδ) ⊂ Λ(U), is an open neighborhood of y. Hence, Λ(U) is open
and this completes the proof.

Proof of (∗)

Step 1: By Corollary 5.2.4., Y is not nowhere dense. Since Λ is surjective, Y =�∞
n=1 Λ(B

X(0, n)). By linearity, for each n, the map y �→ ny is a homeomorphism
from Λ(BX(0, 1)) to Λ(BX(0, n)). Thus, Λ(BX(0, 1)) cannot be nowhere dense.

Step 2: Hence, there exists B
Y (y0, 4r) ⊂ Λ(BX(0, 1)), for some y0 ∈ Y , r > 0.

Pick y
� ∈ B

Y (y0, 2r)∩Λ(BX(0, 1)), with y
� = Λ(x�), for some x

� ∈ B
X(0, 1). Then,

B
Y (y�, 2r) ⊂ B

Y (y0, 4r) ⊂ Λ(BX(0, 1)). For all y ∈ Y , with �y�Y < 2r,

y = −y
� + (y + y

�) ∈ −y
� + Λ(BX(0, 1))

⊆ Λ(−x� +BX(0, 1)) ⊂ Λ(BX(0, 2)).

Dividing both sides by 2, we have

B
Y (0, r) ⊂ Λ(BX(0, 1)). (5.2.1)

If we can pick sufficently small δ < r, such that B
Y (0, δ) ⊂ Λ(BX(0, 1)), then (∗)

is proved.

Step 3: Claim: let δ = r

2 . By linearity, for each n ∈ N, condition (5.2.1) gives

B
Y (0, r2−n) ⊆ Λ(BX(0, 2−n)).
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By definition of closure, given y ∈ B
Y (0, δ), there is x1 ∈ B

X(0, 2−1), such that
�y−Λ(x1)�Y < r2−2. Let y1 := y−Λ(x1), then y1 ∈ B

Y (0, r2−2) ⊆ Λ(BX(0, 2−n)).

Then, we can pick x2 ∈ B
X(0, 2−2), such that

y2 := y1 − Λ(x2) = y − Λ(x1 + x2) ∈ B
Y (0, r2−3).

Proceed inductively, for each n ∈ N, we choose xn ∈ B
X(0, 2−n), such that yn :=

y − Λ(
�

n

i=1 xi) ∈ B
Y (0, r2−n−1), i.e.

�yn�Y =

�����

�����y − Λ

�
n�

i=1

xi

������

�����
Y

<
r

2n+1

Step 4: Note that
�∞

n=1 �xn�X <
�∞

n=1 2
−n = 1. Hence,

�∞
n=1 xn = x for some

x ∈ X, by absolute convergence. On the other hand, yn → 0 since �yn� → 0.
Therefore, Λ(x) = y, and we conclude B

Y (0, δ) ⊂ Λ(BX(0, 1)). �

Corollary 5.2.10 (Bounded Inverse Theorem). Let X, Y be Banach spaces
and Λ : X → Y be bijective. Then Λ−1 is bounded.

Proof. Because Λ is open, Λ−1 is continuous, hence bounded. �

Theorem 5.2.11 (Closed Graph Theorem). Let (X, � · �X) and (Y, � · �Y )
be Banach spaces. Let Λ : X → Y be linear. Then Λ is bounded if and only if
G(Λ) := {(x,Λ(x)) : x ∈ X} is closed in X × Y .

Proof. Define �(x, y)� := �x�X+�y�Y on X×Y . It is easy to check that (X,×Y, �·
�) is a Banach space. (⇒). Since Λ is continuous, the map x �→ (x,Λ(x)) is also
continuous. Hence, by sequential continuity, G(Λ) is closed in X × Y .

(⇐). Let G(Λ) be closed and π : G(Λ) → X be π(x,Λ(x)) := x. Note that π is
linear, bijective, and bounded by �x�X ≤ �(x, y)�. Also, G(Λ) is a Banach space
with the induced norm because of closedness. The Bounded Inverse Theorem gives
�π−1(x)� = �x�X + �Λ(x)�Y ≤ C�x�X , ∀x ∈ X for some C > 0. Therefore, Λ is
bounded. �

5.3 Fourier Series of Continuous Functions

Question (Pointwise Convergence of Fourier Series). Let T := [−π, π], C(T ) :=
{f : T → C | f is 2π-periodic and continuous}. Since C(T ) ⊂ L

2(T ), by Riesz-
Fischer Theorem (4.4.9), if f ∈ C(T ), f has the Fourier series F(f) with coeffi-
cients

cn := �f, en� =
1

2π

� π

−π

f(t)e−int dt, n ∈ Z,
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and

sn(x) :=
n�

k=−n

cke
nkx

, lim
n→∞

sn = F(f) = f, µ-a.e.

Now here is a natural question to ask: Is it true that for all f ∈ C(T ), F(f)(x) =
f(x), for every x ∈ X?

The Banach-Stienhaus Theorem answers it negatively as follows.

Solution. Step 1: Define the Dirichlet kernel,

Dn(t) :=
n�

k=−n

e
ikt =

sin(n+ 1
2t)

sin( t2)
. (5.3.1)

Observe that

1

2π

� π

−π

f(t)Dn(x− t) dt =
n�

k=−n

�
1

2π

� π

−π

f(t)e−ikt dt

�
e
ikx

=
n�

k=−n

cke
ikx = sn(x).

For each n ∈ N, let Λn : C(T ) → C by Λn(f) := sn(0). Then, {Λn}∞n=1 is a
sequence of linear functionals.

Equip C(T ) with the sup-norm �·�∞, then ∀f ∈ C(T ), with �f�∞ ≤ 1, by Hölder’s
inequality,

|Λn(f)| =
����
1

2π

� π

−π

f(t)Dn(t) dt

����

≤ 1

2π
�f�∞�Dn�1

≤ 1

2π
�Dn�1 < ∞.

Hence, for each n, Λn is a bounded linear functional.

Step 2: We will show that {Λn} is not bounded uniformly. First, consider
limn→∞ �Dn�1. With | sin(x)| ≤ |x|, we have

1

2π

� π

−π

|Dn(t)| dt ≥
1

2π

� π

−π

| sin((n+ 1
2)t)|

| t2 |
dt =

2

π

� π

0

| sin((n+ 1
2)t)|

t
dt.

Integrating the right-hand side of the expression with u = (n+ 1/2)t, we have

2

π

� π

0

| sin((n+ 1
2)t)|

t
dt ≥ 2

π

� (n+1/2)π

0

| sin(u)|
u

du

≥ 2

π

n�

k=1

�
kπ

(k−1)π

| sin(u)|
u

du

61



Examples of Banach Space Techniques

≥ 2

π

n�

k=1

�
kπ

(k−1)π

| sin(u)|
kπ

du

=
2

π

n�

k=1

1

kπ

� π

0

| sin(u)| du,

which → ∞, as n → ∞. Hence, �Dn�1 → ∞.

Next, we claim that �Λn� = �Dn�1, for each n ∈ N. Define

g(x) =






1, Dn(t) > 0,

−1, Dn(t) < 0,

0, else.

Note that g /∈ C(T ). Pick {fk} ⊂ C(T ) such that −1 ≤ fk ≤ 1, and fk(t) →
g(t), ∀t ∈ T . Then by Dominated Convergence,

Λn(fk) =
1

2π

� π

−π

fk(t)Dn(t) dt
k→∞−−−→ 1

2π

� π

−π

g(t)Dn(t) dt =
1

2π
�Dn�1.

Thus, �Λn� = �Dn�1 → ∞, and {Λn} is not uniformly bounded.

Step 3: By the Banach-Steinhaus Theorem (5.2.7), there is a dense Gδ-subset G

in (C(T ), � · �∞), such that

F(f)(0) = lim
n→∞

|Λn(f)| = ∞, ∀f ∈ G.

Therefore, the Fourier series of f ∈ G does not converge at x = 0. �
Remark. In fact, if x ∈ T , we can find such a corresponding dense Gδ-subset Gx

in C(T ) so that for all f ∈ Gx, F(f)(x) = ∞. Let us take countably many such
xn ∈ T . Then by Baire’s Theorem, G :=

�∞
n=1 Gn is again a dense Gδ in C(T ) so

that
F(f)(xi) = ∞, ∀f ∈ G, ∀i ∈ N.

Also, if we choose the {xn} such that it is dense (e.g. the rationals) in T , then we
can conclude that for all fixed f ∈ G,

Ef := {x : F(f)(x) = ∞}

is a dense Gδ in R by periodicity. Moreover, by Corollary 5.2.6, each Ef and G

are uncountable.

5.4 Fourier Coefficients of L1-functions

Lemma 5.4.1 (Riemann-Lebesgue). Let T := [−π, π], and f ∈ L
1(T ), and

define

f̂(n) :=
1

2π

� π

−π

f(t)e−int dt. (5.4.1)

Then, lim
n→±∞

f̂(n) = 0.
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Proof. Recall that the set of all trigonometric polynomials is dense in L
1(T ). For

ε > 0, there exists trigonometric polynomial p =
�

m

k=−m
pke

ikt such that �f−p�1 <
2πε. Hence, for every n, by Hölder’s inequality,

|f̂(n)− p̂(n)| = 1

2π

����
� π

−π

(f − p)e−int dt

����

≤ 1

2π
�f − p�1�e−int�∞

=
1

2π
�f − p�1 < ε.

Since p̂(n) → 0, given any ε > 0,

lim
n→±∞

|f̂(n)| < ε ⇒ lim
n→±∞

|f̂(n)| = 0. �

Question. Is the converse of the Riemann-Lebesgue Lemma true?

Solution. Let C0 := {f : Z → C | lim
n→±∞

f(n) = 0}. Then, (C0, � · �∞) is a Banach

space. Define Λ : L1(T ) → C0 by (Λf)(n) := f̂(n).

Step 1: We first show that Λ is bounded. Note that

�Λ� = sup

�
�Λ(f)(n)�∞ : �f�1 ≤ 1

�

= sup

�
sup
n∈Z

|Λ(f)(n)| : �f�1 ≤ 1

�

= sup
�f�1≤1

�
sup
n∈Z

�
1

2π

� π

−π

f(t)e−int dt

��

≤ sup
�f�1≤1

�
sup
n∈Z

�
1

2π

� π

−π

|f(t)| dt
��

=
1

2π
.

In fact, if f = 1
2π , then we obtain �Λ� = 1

2π . Thus, Λ is bounded.

Step 2: To see that Λ is injective, let f ∈ L
1(T ) with f̂ ≡ 0. If p is a trigonometric

polynomial, p =
�

n

k=−n
cke

ikt, then by assumption
� π

−π

fp dt = 0.

Given g ∈ C(T ), there is a sequence of bounded trigonometric polynomials {pn},
such that f(x)pn(x) → f(x)g(x), for each x ∈ T . Thus, by Dominated Conver-
gence (1.7.5), � π

−π

fg dt = lim
n→∞

� π

−π

fpn dt = 0.
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By Corollary (2.5.2), there is {gn} ⊂ C(T ) such that |gn| < |f | and gn(x) → f(x)
a.e. Therefore, by Dominated Convergence, we have

� −π

π

f dt = lim
n→∞

�

{gn=f}
gn dt = 0.

Therefore, by Theorem (1.8.5), f = 0 a.e., and Λ is injective.

Step 3: Finally, if Λ is surjective, then the Bounded Inverse Theorem implies
that �Λ−1� < ∞. Hence, there is M > 0, such that for all f̂ ∈ C0, with �f̂�∞ ≤
1, �Λ−1(f̂)�1 ≤ M . Consider the sequence of Dirichlet’s kernels Dn. By 2π-
periodicity,

Λ(Dn)(k) =
1

2π

� π

−π

� n�

j=−n

e
ijt

�
e
−ikt dt

=
1

2π

n�

j=−n

� π

−π

e
it(j−k) dt

=
1

2π

n�

j=−n

� π

−π

cos((j − k)t) + sin((j − k)t) dt

=

�
1, |k| ≤ n,

0, else.

We see that �D̂n�∞ = 1, but �Dn�1 → ∞, which is a contradiction. So, the inverse
of the Riemann-Lebesgue Lemma does not hold. �

5.5 The Hahn-Banach Theorem

Proposition 5.5.1. Let V be a complex vector space.

(a) Let f : V → C be linear and u := Re(f). Then

f(x) = u(x)− iu(ix), for all x ∈ V. (5.5.1)

(b) If u : V → R is linear and f : V → C defined by (5.5.1), then f is linear.

(c) If V is a a normed vector space and f and u are related as in (5.5.1), then
�u� = �f�.

Proof. (a). Let z = α+iβ, α, β ∈ R. Then Re(iz) = −β, and z = Re(z)−iRe(iz).
Also, Re(if(x)) = Re(f(ix)) = u(ix).

(b). Obviously f is real linear. Moreover,

f(ix) = u(ix)− iu(−x) = u(ix) + iu(x) = i(u(x)− iu(ix)) = if(x).

Hence f is also complex linear.
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(c). It is obvious that |u(x)| ≤ |f(x)| hence �u� ≤ �f�. On the other hand,
∀x �= 0 ∈ V , let α = |f(x)|

f(x) . Then, |f(x)| = αf(x) = f(αx) ∈ R, which equals
u(αx) ≤ �u��αx� = �u�. �

Theorem 5.5.2 (Hahn-Banach Theorem). Let (X, � · �) be a normed vector
space. Let M be a subspace of X, and λ : M → C be bounded linear. Then, λ can
be extended to a bounded linear Λ : X → C, such that Λ|M = λ and �Λ� = �λ�.

Proof. Without loss of generality, we assume that |λ(x)| ≤ �x�, for all x ∈ X, and
M � X. Step 1: First suppose λ : X → R. We will extend λ from M to some
subspace N . Pick x0 ∈ X \M , then for all x, y ∈ M , we have

λ(x)− λ(y) = λ(x− y)

≤ �x− y�
≤ �x− x0�+ �x0 − y�

λ(x)− �x− x0� ≤ λ(y) + �x0 − y�. (5.5.2)

Since inequality (5.5.2) holds for any x, y ∈ M ,

sup
x∈M

{λ(x)− �x− x0�} ≤ inf
x∈M

{λ(x) + �x− x0�},

and there is α ∈ R such that for all x ∈ M ,

λ(x)− �x− x0� ≤ α ≤ λ(x) + �x− x0�.

Hence, |λ(x)− α| ≤ �x− x0�. Now, if c �= 0 ∈ R, then x/c ∈ M and thus

|λ(x/c)− α| ≤ �x/c− x0� ⇒ |c||λ(x/c)− α| ≤ |c|�x/c− x0�
⇒ |λ(x− cα)| ≤ �x− cx0�. (5.5.3)

Define N := {m+cx0 : c ∈ R,m ∈ M}. Then, N is a linear subspace and M � N .
Define f : N → R by

f(m+ cx0) := λ(m) + cα.

We see that f |M = λ. By (5.5.3), |f(m+ cx0)| ≤ �m+ cx0�, hence �f� = �λ�.

Step 2: Use Zorn’s Lemma. Define

S := {(N, f) : M ⊂ N ⊂ X, f |M = λ, f linear , �f� = �λ�}.

From Step 1, we know S is not empty. Define a partial order on S by (N �
, g

�) <
(N, g) ⇐⇒ N

� ⊂ N and g extends g
�. Suppose {(Ni, fi)}i∈I is a totally ordered

chain in S. Then,
�

i∈I Ni is a linear subspace. Define h(x) = fi(x), i ∈ I. Note
that h is well-defined because of extension. Moreover, h is linear, h|M = λ and
|h(x)| = |fi(x)| ≤ �x�. Therefore, (

�
i∈I Ni, h) ∈ S and it is a maximal element of

such chain.

Zorn’s Lemma gives (Z,Λ) ∈ S such that Λ on Z extends λ. Obviously, Z = X;
otherwise, we can pick x

� ∈ X \ Z as in Step 1.
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Step 3: Now, if λ : M → C, let u := Re(λ). Then u : M → R. From the
previous steps, we can extend u to U : X → R. Define F : X → C as in (5.5.1),
Λ(x) := U(x) − iU(ix). By Proposition (5.1.1), Λ is a complex linear functional
with �Λ� = �U� = �u�, and for each x ∈ M,

Λ(x) = U(x)− iU(ix) = u(x)− iu(ix) = λ(x). �

Corollary 5.5.3. Let X,M be the same as above. A point x0 ∈ M ⇐⇒ �
bounded linear functional Λ on X s.t. Λ|M = 0 and Λ(x0) �= 0.

Equivalently, a point x0 /∈ M ⇐⇒ there is a nonzero bounded linear functional
Λ on X such that Λ|M = 0.

Proof. (⇒). Let x0 ∈ M , and Λ|M = 0. Then, by sequential continuity of Λ,
Λ(x0) = 0. (⇐). By contraposition, if x0 /∈ M , then there is a B(x0, δ) ⊂ M

C .
Let N := Span(M, {x0}), and λ : N → C, by λ(x + cx0) := c. Note that λ is a
linear functional on N , and

�x+ cx0� = |c|�x/c+ x0� ≤ |c|δ.

By the Hahn-Banach Theorem, we can extend λ to Λ on X, then we see that
Λ(x0) = λ(x0) = 1. �

Definition 5.5.4 (Dual spaces). Let X be a nomred vector space. We define
the dual space of X as

X
∗ := {Λ : X → C | Λ is bounded linear}.

It is trivial to see that X
∗ is a normed vector space. In fact, if X is a Banach

space, then so is X
∗.

Corollary 5.5.5. Let (X, � · �) be a normed vector space and x0 �= 0 ∈ X.
Then ∃Λ ∈ X

∗ such that �Λ� = 1 and Λ(x0) = �x0�.

Proof. Let M := Cx0 and λ : M → C by λ(cx0) := c�x0�. Then, λ is a bounded
linear functional with �λ� = 1. By Hahn-Banach Theorem, we obtain Λ : X → C
as desired. �

Corollary 5.5.6. Let X be a normed vector space.

(i) If x1 �= x2 ∈ X, then there is Λ ∈ X
∗ such that Λ(x1) �= Λ(x2).

(ii) For each x ∈ X, define λx : X∗ → C by λx(f) := f(x). Then the map x �→ λx

is an isometry from X to (X∗)∗.

Proof. To see (i), simply apply the previous corollary on x1−x2 �= 0. For (ii), it is
not hard to check that λx is a linear functional on X

∗. We call such map point-
evaluation functional. Also, |λx(f)| = |f(x)| ≤ �f��x�, thus �λx� ≤ �x�. On
the other hand, the previous corollary gives f ∈ X

∗ with �λx� ≥ |f(x)| = �x�. �
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Remark. Note that in (ii), the map x �→ λx is just an isometry, not necessarily
bijective. In general, if X is infinite dimensional, then (X∗)∗ is a “superset” of X.

Question. Is the extension given by the Hahn-Banach Theorem unique?

Solution. No. Consider X := L
∞(T ) with only real-valued functions and let M :=

C(T ) ⊂ X . Define Λ : M → R by Λ(f) := f(0). Then Λ is linear and bounded
since |Λ(f)| = |f(0)| ≤ �f�∞. By the Hahn-Banach Theorem, there is an extension
�Λ on X. We will find another extension.

Consider C
� := {f ∈ X | f is continuous at x �= 0, and f(0−), f(0+) exist}. We

see that C(T ) � C
� � X. Now, for all α ∈ [0, 1], define Λ�

α : C
� → R by

Λ�
α(f) := αf(0−) + (1− α)f(0+).

Note that if f ∈ C(T ), then Λ�
α(f) = Λ(f) = f(0). Hence, Λ�

α extends Λ. Also,

|Λ�
α(f)| = |αf(0−) + (1− α)f(0+)|

≤ α|f(0−)|+ (1− α)|f(0+)|
≤ (α + 1− α)�f�∞ = �f�∞.

So Λ�
α is a bounded linear functional on C

�. Now, applying the Hahn-Banach
Theorem on {Λ�

α : α ∈ [0, 1]}, we obtain distinct extensions of Λ on X. �

5.6 Uniqueness of Point Evaluation Funcionals and
the Poisson Integral

In the previous section, we see that in general not all point-evaluation functionals
can be extended uniquely. We shall see that there is a unique extension of such
functional on certain spaces. We begin with the following theorem.

Theorem 5.6.1. Let D := {z ∈ C : |z| < 1} be the open unit disk. Let p(z) :=�
n

k=0 pkz
k be a polynomial on D. Then, max{|p(z)| : z ∈ D} = max{|p(z)| : z ∈

∂D}. Equivalently, �p�∞,D
= �p�∞,∂D.

Proof. First, since D is compact, we know |p| attains its maxium at some z ∈ D.
Suppose there is z0 ∈ D such that p(z0) ≥ p(z), for all z ∈ D. We will show that
p must be a constant function. Write

p(z) =
n�

k=0

qk(z − z0)
k
,

for some qk ∈ C. Since z0 ∈ D, there is an open disk B(z0, r) ⊂ D, and if
z ∈ B(z0, r), z = zθ = z0 + re

iθ, for some θ. Since
� 2π

0 (eiθ)m dθ = 0, given m �= 0,

1

2π

� 2π

0

|p(zθ)|2 dθ =
1

2π

� 2π

0

����
n�

k=0

qk(re
iθ)k

����
2

dθ
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=
n�

k=0

|qk|2.

On the other hand,

1

2π

� 2π

0

|p(zθ)|2 dθ ≤ 1

2π

� 2π

0

|p(z0)|2 dθ = |q0|2.

Thus, for every k > 0, qk = 0, and p(z) = q0, is constant on D.

In conclusion, every polynomial attains its maxium modulus on ∂D. �
Remark. This is a special case of the maxmium modulus theorem.

Solution. Let D be the open unit disk in C, A(D) be a subspace of C(D) such
that if f ∈ A(D), �f�∞,D

= �f�∞,∂D. In this example, we choose A(D) to be the
closure of all the polynomials on D, with the � ·�∞ norm, for the following reason:

Claim: For all f ∈ A(D), �f�∞,D
= �f�∞,∂D. In fact, if f ∈ C(D), there

exists polynomials pn → f uniformly by the Stone-Weierstrass Theorem. Hence,
�pn − f�∞,D

→ 0. By the previous theorem, for all polynomial p on D, �p�∞,D
=

�p�∞,∂D. Therefore, �f�∞,D
= �f�∞,∂D.

Step 1: Let A(∂D) ⊂ A(D) be the subspace whose functions are restriced on ∂D.
From the norm-preserving property, we see that the linear functional f �→ f |∂D
is an isomorphic isometry from A(D) to A(∂D), with respect to � · �∞. In other
words, A(∂D) = A(D) as Banach spaces.

Step 2: For each z ∈ D, define λz : A(D) → C by λz(f) := f(z). Thus,

|λz(f)| = |f(z)| ≤ �f�∞,D.

is bounded. In fact, �λz� = 1 since λz(1) = 1. From Step 1, A(D) = A(∂D) ⊂
C(∂D). By the Hahn-Banach Theorem, we extend λz to Λz on C(∂D). Thus,
Λz(f) = λz(f) = f(z), for all f ∈ A(D), and �Λz� = �λz� = 1.

Step 3: Claim: Λz is a positive linear functional. To see this, without loss of
generality, suppose f ∈ C(∂D), with 0 ≤ f ≤ 1. Define g := 2f−1, so −1 ≤ g ≤ 1
and |Λz(g)| ≤ 1. Then, given r ∈ R,

|g + ir|2 ≤ �g�2∞,∂D + |r|2 ≤ 1 + r
2
.

Thus, viewing ir as a constant function, we see that

(Im(Λz(g)) + r)2 ≤ |Re(Λz(g)) + i(Im(Λz(g)) + r)|2

= |Λz(g) + ir|2 = |Λz(g + ir)|2

≤ �Λz�2 · |g + ir|2 ≤ 1 + r
2
.

It follows that

0 ≤ (1 + r)2 − (Im(Λz(g)) + r)2
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= −(Im(Λz(g)))
2 − 2r Im(Λz(g)) + 1, ∀r ∈ R,

which is only possible if Im(Λz(g)) = 0. Hence, Λz(g) ∈ R. Moreover,

Λz(f) = Λz(
1

2
+

g

2
) =

1

2
Λz(1) +

1

2
Λz(g).

Recall that Λz(g) ∈ [−1, 1]. Then, Λz(f) ≥ 0, for all f ≥ 0, and Λz is a positive
linear functional.

Step 4: By the Riesz Representation Theorem (2.3.1), for each z ∈ D, there
is a unique regular positive Borel measure µz on ∂D such that

Λz(f) =

�

∂D

f dµz, for all f ∈ Cc(∂D) = C(∂D). (5.6.1)

In particular, we have

f(z) = Λz(f) =

�

∂D

f dµz, for all f ∈ A(D) = A(∂D). (5.6.2)

Step 5: Finally, for each f ∈ C(∂D), the Stone-Weierstrass Theorem gives us
a sequence of trigonometric polynomials {pn}∞n=1 in A(D), such that pn → f

uniformly. So, we may assume |pn| ≤ |f |. By Dominated Convergence,
�

∂D

|pn − f | dµz0 → 0 ⇒
�

∂D

pn dµz0 →
�

∂D

f dµz0 .

Consequently,
lim
n→∞

pn(z0) = lim
n→∞

Λz0(pn) = Λz0(f),

which must be unique. �

Remark 5.6.2. Note that from Step 1 to Step 4, it can be done abstractly by
replacing D by a compact Hausdorff space K, and ∂D by a compact subset H of
K. All the results hold true up to this point. In equation (5.6.1), we see that µz is
uniquely determined by Λz, but the extension itself might not be unique. In Step
5, the Stone-Weierstrass Theorem passes the functional to sequential limit, which
is then unique.

Remark 5.6.3. When we identify A(D) with A(∂D), it seems like we are losing
information on D. However, we can determine the value of f on D by the repre-
sentation in equation (5.6.2). This result is remarkable as it proves that in fact, we
do not lose anything. However, in practice the problem in equation (5.6.2) arises
when it comes to finding the measure µz. We want to find a more concrete formula
to compute f(z). Here we introduce the Poisson integral.

Poisson Integral.
Step 1: A consequence of equation (5.6.2): Fix z0 = re

inθ ∈ D, for some 0 ≤ r <

1, θ ∈ R. For each f ∈ C(∂D),

Λz0(f) =

�

∂D

f dµz0 =

�

∂D

f dµz)
= Λz0(f).
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For n ∈ N, define un(x) := x
n. Then un ∈ C(∂D), and u−n(x) = x

−n = x
n =

un(x). We conclude that

Λz0(u−n) = Λz0(un) = Λz0(un) = rneinθ = r
n
e
−inθ

.

Therefore, for each n ∈ Z,

Λz0(un) =

�

∂D

un dµz0 = r
|n|
e
inθ

. (5.6.3)

Step 2: Consider the function Pr,θ ∈ C(∂D), for t ∈ [0, 2π],

Pr,θ(t) :=
�

n∈Z

r
|n|
e
in(θ−t) =

�

n∈Z

un(z0)e
−int

. (5.6.4)

Since |r| < 1, Pr,θ(t) is absolutely convergent. For each k ∈ Z, we can integrate
the following term by term:

1

2π

� 2π

0

Pr,θ(t)e
ikt dt =

1

2π

� 2π

0

�

n∈Z

un(z0)e
−int · eikt dt

=
1

2π

�

n∈Z

� 2π

0

un(z0)e
i(−n+k)t dt

= uk(z0) = r
|k|
e
ikθ

. (5.6.5)

Step 3: Therefore, if f = un, by equations (5.6.3) and (5.6.5), we see that
�

∂D

f dµz0 =
1

2π

� 2π

0

Pr,θ(t)f(e
it) dt. (5.6.6)

Since every trigonometric polynomial p is a finite linear combination of the un’s,
(5.6.6) also holds for p. By the Stone-Weierstrass and Dominated Convergence,
it also holds for all f ∈ C(∂D). In particular, if f ∈ A(D) = A(∂D), equation
(5.6.2) gives

f(z0) =
1

2π

� 2π

0

Pr,θ(t)f(e
it) dt. (5.6.7)

Step 4: From equation (5.6.4), Pr,θ = Pr,θ shows that Pr,θ is a real-valued function.
So,

Pr,θ(t) = Re

��

n∈Z

r
|n|
e
in(θ−t)

�
= 1 + 2Re

� ∞�

n=1

r
n
e
in(θ−t)

�

= 1 + 2Re

� ∞�

n=1

(z0e
−it)n

�
= 1 + Re

�
2z0e−it

1− z0e
−it

�

= Re

�
1 + z0e

−it

1− z0e
−it

�
=

Re((1 + z0e
−it)(1− z0e

−it))

|1− z0e
−it|2
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=
Re(1 + 2ir sin(θ − t)− r

2)

|1− z0e
−it|2 =

1− r
2

1− 2r cos(θ − t) + r2
.

We call
Pr,θ(t) =

1− r
2

1− 2r cos(θ − t) + r2
(5.6.8)

the Poisson kernel. �

Finally, we conclude this section by summarizing the result.

Theorem 5.6.4. Let A(D) be the space of continuous complex functions on D.
Suppose A contains all polynomials and for each f ∈ A,

sup{|f(z)| : z ∈ D} = sup{|f(z)| : z ∈ ∂D}.

Then for all f ∈ A(D), the Poisson integral representation

f(z) =
1

2π

� 2π

0

1− r
2

1− 2r cos(θ − t) + r2
f(eit) dt (5.6.9)

holds for every z ∈ D, where z = re
iθ.
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Chapter 6

Complex Measure

Let (X,M) be a measure space throughout the chapter.

6.1 Total Variation Measure

Definition 6.1.1. A measurable partition of E ∈ M is a sequence {En}∞n=1 ⊂
M , such that Ei ∩ Ej = ∅, for all i �= j and

�∞
n=1 = E.

Definition 6.1.2 (Complex measure). Let M be a σ-algebra. A complex
measure µ on M is a set function µ : M → C such that

µ(E) =
∞�

n=1

µ(En), (6.1.1)

for each measurable partition {En}∞n=1 of E.

Remark 6.1.3. Unlike positive measure, the convergence of the series in C in
equality (6.1.1) is now required. Thus, a positive measure is not necessarily a
complex measure!

Remark 6.1.4. Permutation of the µ(En)’s does not change µ(E). Hence,�∞
n=1 µ(En) is absolutely convergent by the Riemann Series Theorem.

Definition 6.1.5 (Total variation). The total variation of µ is a set function
|µ| : M → R, defined as

|µ|(E) := sup

� ∞�

n=1

|µ(En)| : {En}∞n=1 is a partition of E
�
. (6.1.2)

Remark. For all E ∈ M , |µ(E)| ≤ |µ|(E).

Proposition 6.1.6. The total variation |µ| is a positive measure on X.
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Proof. We will prove (6.1.1). Let E ∈ M and {En}∞n=1 be a partition of E. For
each n ∈ N, ∀tn ∈ R, such that tn < |µ|(En), there exists partition {An,m}∞m=1 of
En such that

tn <

∞�

m=1

|µ(An,m)|,

by definition of |µ|(En). Note that {An,m : n,m ∈ N} is a partition of E. Hence,

∞�

n=1

tn ≤
∞�

n=1

� ∞�

m=1

|µ(An,m)|
�

≤ |µ|(E).

Take the supremum over all tn < |µ|(En), we have
∞�

n=1

|µ|(En) ≤ |µ|(E).

On the other hand, for each partition {Am}∞m=1 of E, we have
∞�

m=1

|µ(Am)| =
∞�

m=1

����
∞�

n=1

µ(Am ∩ En)

���� ≤
∞�

m=1

∞�

n=1

|µ(Am ∩ En)|

=
∞�

n=1

∞�

m=1

|µ(Am ∩ En)| ≤
∞�

n=1

|µ|(En).

Since it holds for any partition {Am}∞m=1, so does the supremum over all partitions,

|µ|(E) ≤
∞�

n=1

|µ|(En).

Hence, |µ| satisfies countable addivity. Also, |µ|(∅) = 0. We will see |µ|(X) < ∞
in the next proposition. �
Lemma 6.1.7. If {z1, . . . , zN} ⊂ C, then there is S ⊆ {1, . . . , N} such that

����
�

k∈S

zk

���� ≥
1

π

N�

i=k

|zi|.

Proof. Write zk = |zk|eiαk . Fix θ ∈ [0, 2π], and define S(θ) := {k : cos(θ−αk) > 0}.
Then,

����
�

k∈S(θ)

zk

���� =
����|e

−iθ|
�

k∈S(θ)

zk

���� =
����
�

k∈S(θ)

e
−iθ

zk

����

≥ Re

� �

k∈S(θ)

e
−iθ

zk

�
=

�

k∈S(θ)

Re(|zk|ei(αk−θ))

=
�

k∈S(θ)

|zk| cos(αk − θ) =
N�

k=

|zk| cos+(αk − θ), (6.1.3)
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where cos+(x) := max{cos(x), 0}. Integrating inequality (6.1.3) over θ gives

1

2π

� 2π

0

����
�

k∈S(θ)

zk

���� dθ ≥ 1

2π

� 2π

0

N�

k=1

|zk| cos+(αk − θ) dθ

=
1

2π

N�

k=1

|zk|
� 2π

0

cos+(αk − θ) dθ

=
1

π

N�

k=1

|zk|.

The Mean Value Theorem for Integration asserts there is a θ such that
����
�

k∈S(θ)

zk

���� ≥
1

π

N�

k=1

|zk|. �

Proposition 6.1.8. Let µ be a complex measure on X. Then |µ|(X) < ∞.

Proof. Suppose there is E ∈ M with |µ|(E) = ∞. Define t := π(1 + |µ(E)|) < ∞.
The definition of |µ| asserts a finite partition {Ek}Nk=1 of E such that

N�

k=1

|µ(Ek)| > t.

Lemma (6.1.7) gives S ⊂ {1, . . . , N}, with A :=
�

k∈S Ek such that

|µ(A)| =
����
�

k∈S

µ(Ek)

���� ≥
1

π

N�

k=1

|µ(Ek)| >
t

π
> 1.

Let B := E \ A, then A ∩ B = ∅ and

|µ(B)| = |µ(E)− µ(A)| ≥ |µ(A)|− |µ(E)| > t

π
− |µ(E)| > 1.

Since |µ|(E) = ∞, without loss of generality, we assume |µ|(B) = ∞. Now, let
E = X, then X = A1 ∪ B1, with |µ|(B1) = ∞. Then let B1 = A2 ∪ B2 with
|µ(B2) = ∞ and proceed inductively. Observe that Ai ∩ Aj = ∅, ∀i �= j. Hence,

µ

� ∞�

i=1

Ai

�
=

∞�

i=1

µ(Ai),

with |µ(Ai)| > 1. However, then
�∞

i=1 µ(Ai) diverges, which is a contradiction to
µ being a complex measure. �
Remark. Hence the range of µ is a subset of a finite disk in C. We sometime say
µ is of bounded variation.
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Definition 6.1.9. Define M(M) to be the set of all complex measures on
(X,M). For all µ, ν ∈ M(M), α ∈ C, define µ + αν : M → C by (µ + αν)(E) :=
µ(E) + αν(E). Hence, M(M) is a complex vector space. Moreover, define
�µ� := |µ|(X). Then, M(M) is a normed vector space.

Definition 6.1.10 (Positive and Negative Variations). Let µ be a real measure
on X, define

µ+ :=
1

2
(|µ|+ µ) and µ− :=

1

2
(|µ|− µ). (6.1.4)

Both µ+ and µ− are positive real measures. They are called positive and nega-
tive variations of µ, respectively. The representation is also called the Jordan
decomposition.

6.2 Absolute Continuity

Definition 6.2.1. Let µ be a positive measure, and λ be any measure (positive
or complex) on (X,M). Let A,B ∈ M .

- λ is absolutely continuous with respect to µ if λ(E) = 0 ⇒ µ(E) =
0, ∀E ∈ M . We write it as µ � λ.

- λ is concentrated on A if λ(E) = λ(E ∩ A), ∀E ∈ M .

- Suppose A ∩ B = ∅ and λ1, λ2 are measures on M . If λ1 is concentrated
on A and λ2 is concentrated on B, then we say λ1 and λ2 are mutually
disjoint, and denote it λ1 ⊥ λ2.

Proposition 6.2.2. Let µ,λ,λ1,λ2 be measures on (X,M) and µ be positive.

(a) If λ is concentrated on A, so is |λ|.

(b) λ1 ⊥ λ2 ⇒ |λ1| ⊥ |λ2|.

(c) λ1 ⊥ µ and λ2 ⊥ µ ⇒ (λ1 + λ2) ⊥ µ.

(d) λ1 � µ and λ2 � µ ⇒ (λ1 + λ2) � µ.

(e) λ � µ ⇒ |λ| � µ.

(f) λ1 � µ and λ2 ⊥ µ ⇒ λ1 ⊥ λ2.

(g) λ � µ and λ ⊥ µ ⇒ λ ≡ 0.

Proof. All are obvious from the definitions. �

We now come the core of this chapter, the Lebesgue-Radon-Nikodym Theorem. It
is one of the most important theorems in measure thoery. It uniquely decomposes
any complex measure into its absolute continuous and mutually singular parts
relative to a positive σ-finite measure. More importantly, it provides a conditional
converse to Theorem (1.6.8), which passes integrals to measures. This result is
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remarkable as we have seen the deep connections among integrals, measures and
linear functionals throughout the course.

Theorem 6.2.3 (Lebesgue-Radon-Nikodym Theorem). Let µ be a positive
σ-finite, λ be a complex measure on (X,M), λ. Then,

(a) There is a unique pair of complex measures λa and λs such that

λ = λa + λs, λa � µ, λs ⊥ µ.

(b) There is a unique h ∈ L
1(µ) such that

λa(E) =

�

E

h dµ, ∀E ∈ M. (6.2.1)

Remark 6.2.4. The pair (λa,λs) is called the Lebesgue decomposition of λ
relative to µ. Note that if λ � µ, then λa = λ, and we can pass measure to
integral: λ(E) =

�
E
h dµ. The function h ∈ L

1(µ) is called the Radon-Nikodym
derivative of λa with respect to µ. We write dλa = h dµ or h = dλa

dµ
.

Proof of Uniqueness. Due to the length of the proof, we shall show the uniqueness
part here. If (λa,λs) and (λ�

a
,λ�

s
) both satisfies (a), then λ�

a
− λa = λs − λ�

s
. Since

λ�
a
− λa � µ and λs − λ�

s
⊥ µ, the equality must be 0, and the uniqueness follows.

For h, if h� − h �= 0 on E ∈ M , then µ(E) = 0, and so h = h
�, µ-a.e. �

Proof. Step 1: First suppose λ, µ are positive finite measures. Define ϕ := µ+ λ.
Let f ≥ 0 be measurable, then by characteristic, simple functions and the definition
of integral, �

X

f dϕ =

�

X

f dµ+

�

X

f dλ.

For all f ∈ L
2(ϕ), the Cauchy-Schwarz inequality asserts that

����
�

X

f dλ

���� ≤
�

X

|f | dλ ≤
�

X

|f | dϕ

≤
��

X

|f |2 dϕ
�1/2

+

��

X

12 dϕ

�1/2

= �f�L2(ϕ) · (ϕ(X))1/2 < ∞.

Hence, Λ : L2(ϕ) → C, by Λ(f) :=
�
X
f dλ is a bouned linear functional.

Step 2: By the Riesz Representation Theorem on Hilbert space (4.2.7),
there is a unique g ∈ L

2(ϕ) such that

Λ(f) =

�

X

f dλ = �f, g� =
�

X

fg dϕ, ∀f ∈ L
2(ϕ). (6.2.2)

Note that g is unique as a point function on X up to ϕ-a.e.
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Step 3: Let f := χE for E ∈ M , with ϕ(E) > 0. Then,

λ(E) =

�

E

g dϕ ≥ 0.

Dividing both sides by ϕ(E), we have

0 ≤ 1

ϕ(E)

�

E

g dϕ =
λ(E)

ϕ(E)
≤ 1.

Therefore, by the average argument Propoistion (1.8.8), 0 ≤ g ≤ 1, ϕ-a.e. We may
assume g(x) ∈ [0, 1], for all x ∈ X. Thus, g = g ranges in [0, 1], and we conclude
that

�

X

f dλ =

�

X

fg dϕ =

�

X

f dλ+

�

X

f dµ
�

X

f(1− g) dλ =

�

X

fg dµ (6.2.3)

Step 4: Define A := {x : g(x) < 1}, B := {x : g(x) = 1}. Define the measures

λa(E) := λ(E ∩ A) and λs := λ(E ∩B).

Consider f := χB, then equation (6.2.3) gives

µ(B) =

�

B

dµ =

�

X

χBg dµ =

�

X

χB(1− g) dλ = 0.

Hence, µ(E) = µ(E ∩ A), ∀E ∈ M , and λs ⊥ µ since A and B are disjoint.

Step 5: To see λa � µ, define fn :=
�

n

k=0 g
k. By equation (6.2.3),

�

X

(1− g
n+1) dλ =

�

X

n�

k=0

g
k(1− g) dλ =

�

X

n�

k=0

g
k · g dµ. (6.2.4)

For each E ∈ M , by definition of A and Dominated Convergence, the LHS of
equation (6.2.4) yields

lim
n→∞

�

E

(1− g
n+1) dλ = lim

n→∞

�

E∩A
(1− g

n+1) dλ

= λ(E ∩ A) = λa(E).

On the RHS of equation (6.2.4), by Monotone Convergence, we have

lim
n→∞

�

E

n�

k=0

g
k · g dµ =

�

E

∞�

k=0

g
k · g dµ

=

�

E

1

1− g
g dµ.
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Step 6: Hence,
λa(E) =

�

E

g

1− g
dµ, ∀E ∈ M.

Now, define

h(x) :=

�
g

1−g
(x), x ∈ A,

0, x /∈ A.

Because λa(A) =
�
A
h dµ =

�
X
|h| dµ < ∞, (b) is proved. Also, µ(E) = 0 gives�

E
h dµ = λa(E) = 0 which shows λa � µ and completes the proof of (a).

Step 7: Now we will generalize the proof. Let µ be σ-finite and λ be finite
positive. By σ-finiteness, let {Xi}∞i=1 be a paritition of X and µ(Xi) < ∞, ∀i.
Define λi(E) := λ(E ∩Xi), ∀E ∈ M , and Mi := {E ∩Xi : E ∈ M}.

Apply the previous result on each (Xi,Mi) with µ and λi. Then we obtain (λia ,λis)
on Xi with Ai, Bi, and hi ∈ L

1(µ) such that ∀E ∈ Mi,

λia(Ei) =

�

Ei

hi dµ.

Define λa(E) :=
�∞

i=1 λia(E ∩Xi), ∀E ∈ M , and likewise for λs with A :=
�∞

i=1 Ai

and B :=
�∞

i=1 Bi. Define h(x) := hi(x), where x ∈ Xi, which is well-defined
because Xi’s are disjoint. By Monotone Convergence, λa(E) =

�
E
h dµ, and

λ(X) < ∞ gives h ∈ L
1(µ).

Finally suppose µ is σ-finite and λ = λ1+ iλ2 is complex. For k = 1, 2, use Jordan
decomposition on λk = λ+

k
− λ−

k
and apply the previous results. �

Remark 6.2.5. If both µ and λ are σ-finite positive measure, using the tech-
niques above, we can still obtain a function h which satisfies equation (6.2.1).
However, in general h /∈ L

1(µ), although
�
Xn

|h| dµ < ∞ for each n. If we go be-
yond σ-finiteness, then both (a) and (b) fail. To see this, take µ to be the Lebesgue
measure, and λ the counting measure on (0, 1) and consider a singleton {x}.

Proposition 6.2.6 (Absolute Continuity). Let µ be positive and λ be complex
measures on (X,M). Then, the followings are equivalent:

1. λ � µ.

2. Given ε > 0, there is δ > 0, such that for every E ∈ M with µ(E) < δ,
|λ(E)| < ε.

Proof. (2) ⇒ (1). Given E ∈ M with µ(E) = 0 < δ, ∀δ. Hence, |λ(E)| < ε, ∀ε > 0
and |λ(E)| = 0, thus λ � µ.

(1) ⇒ (2). Proof by contrapositive. Suppose there is ε > 0 such that for each
δn := 2−n

> 0, there is En ∈ M so that µ(En) < δn but |λ(En)| ≥ ε. Let
An :=

�∞
i=n

Ei, then

µ(An) ≤
∞�

i=n

µ(Ei) ≤
∞�

i=n

1

2i
=

1

2n−1
.
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Also, µ(A1) < ∞ and A1 ⊇ A2 ⊇ . . . , thus by monotonicity of µ,

µ

� ∞�

n=1

An

�
= lim

n→∞
µ(An) = 0.

On the other hand, for each n, |λ|(An) ≥ |λ|(En) ≥ |λ(En)| ≥ ε gives

|λ|
� ∞�

n=1

An

�
= lim

n→∞
|λ|(An) ≥ ε > 0. (6.2.5)

Then, λ � |λ| �� µ concludes that λ �� µ. �

Remark 6.2.7. Note that if λ is a positive unbounded measure, then (1) �⇒ (2),
as we use the boundedness in inequality (6.2.5).

6.3 Consequences of the Radon-Nikodym Theorem

Theorem 6.3.1 (Polar Decomposition/Representation Theorem). Let µ
be a complex measure on (X,M). Then is a measurable function h such that
|h(x)| = 1, ∀x ∈ X, and dµ = h d|µ|.

Proof. Observe that |µ| is finite and µ � |µ|. Hence, by Radon-Nikodym Theorem
(6.2.3), there is h ∈ L

1(µ) such that dµ = h d|µ|. Consider the set An := {x :
|h(x)| < 1− 1

n
}, for each n. For every partition {Ek}∞k=1 of An,
∞�

k=1

|µ(Ek)| =
∞�

k=1

����
�

Ek

h d|µ|
���� ≤

∞�

k=1

�

Ek

(1− 1

n
) d|µ|

= (1− 1

n
)

∞�

k=1

�

Ek

d|µ| = (1− 1

n
)

∞�

k=1

|µ|(Ek)

= (1− 1

n
)|µ|(An).

By taking the supremum over all such partitions, we see that |µ|(An) ≤ (1 −
1
n
)|µ|(A), which is only possible when |µ|(An) = 0. Hence,

|µ|({x : |h(x)| < 1}) = |µ|
� ∞�

n=1

An

�
= lim

n→∞
|µ|(An) = 0. (6.3.1)

On the other hand, if |µ|(E) > 0, then

1 ≥ |µ(E)|
|µ|(E)

=
1

|µ|(E)

�

E

h d|µ| ≥ 0.

By the average argument (1.8.8), |h| ≤ 1 |µ|-a.e. Together with equation (6.3.1),
we conclude that |h| = 1, |µ|-a.e. Finally, we redefine h(x) := 1 on the set of
|µ|-measure zero and complete the proof. �
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Corollary 6.3.2. Let µ be a positive measure on (X,M), g ∈ L
1(µ) and

λ(E) :=
�
E
g dµ. Then,

|λ|(E) =

�

E

|g| dµ. (6.3.2)

Proof. Since g ∈ L
1(µ), λ is a complex measure. By Polar decomposition (6.3.1),

there is measurable h so that |h| = 1 and dλ = h d|λ|. By hypothesis,

dλ = g dµ = h d|λ|.

By viewing h d|λ| as a measure, we obtain d|λ| = hg dµ, hence |λ| � µ. Then
by Radon-Nikodym Theorem (6.2.3), there is ϕ ∈ L

1(µ) such that d|λ| = ϕ dµ.
Thus, g dµ = hϕ dµ. By positivity of |λ| and µ, ϕ ≥ 0. By uniqueness,

g = hϕ ⇒ hg = ϕ ≥ 0, µ-a.e.
⇒ hg = |g|, µ-a.e.

Therefore, d|λ| = ϕ dµ = |g| dµ, and |λ|(E) =
�
E
|g| dµ. �

Theorem 6.3.3 (Hahn Decomposition Theorem). Let µ be a real measure
on (X,M). Then there are A,B ∈ M , A ∪ B = X,A ∩ B = ∅, such that
µ
+(E) = µ(E ∩ A) and µ

−(E) = −µ(E ∩ B), ∀E ∈ M .

Remark 6.3.4. Recall the Jordan decomposition: µ
+ = 1

2(|µ| + µ), µ
− =

1
2(|µ| − µ). The pair (A,B) is called a Hahn decomposition of X, induced
by µ. Basically, X is split into two, where A contains the “positive mass” of µ, and
B contains the “negative mass” of µ.

Proof. By Polar Decomposition (6.3.1), there is measurable h so that |h| = 1 and
dµ = h d|µ|. Since µ is real, so is h and h = ±1 everywhere by redefining. Define
A := {x : h(x) = 1} and B := {x : h(x) = −1}. Note that

1

2
(1 + h) =

�
h, on A,

0, on B.
(6.3.3)

Hence, ∀E ∈ M ,

µ
+(E) =

1

2
(|µ|(E) + µ(E)) =

1

2

��

E

d|µ|+
�

E

h d|µ|
�

=
1

2

�

E

(1 + h) d|µ| =
�

E∩A
h d|µ|

= µ(E ∩ A).

Since µ(E) = µ(E ∩ A) + µ(E ∩ A) = µ
+(E)− µ

−(E), µ−(E) = −µ(E ∩B). �

Corollary 6.3.5. If µ = λ1 − λ2, where λ1 and λ2 are positive measures, then
µ
+ ≤ λ1 and µ

− ≤ λ2.
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Proof. If µ = λ1 − λ2, then by positivity of λ1 and λ2, for all E ∈ M ,

µ
+(E) = µ(E ∩ A) = λ1(E ∩ A)− λ2(E ∩ A)

≤ λ1(E ∩ A) ≤ λ1(E).

Similarly, we obtain µ
−(E) ≤ λ2(E), for all E ∈ M . �

6.4 Bounded Linear Functionals on L
p

Lemma 6.4.1. If µ is a σ-finite positive measure on (X,M), then there exists
w ∈ L

1(µ) such that 0 < w(x) < 1, ∀x ∈ X.

Proof. Let {Xn}∞n=1 be a partition of X with µ(Xn) < ∞, for each n. Define

w(x) :=
∞�

n=1

1

2n
· 1

1 + µ(Xn)
χXn(x).

Then 0 < w(x) < 1 as claimed. �

Remark 6.4.2. If µ is σ-finite, then µ̃ given by dµ̃ := w dµ is finite. Moreover,
because of the strictly positivity of w, µ̃ has precisely the same sets of measure 0
as µ. Moreover, the map f �→ ω1/p

f is a linear isometry of Lp(µ̂) onto L
p(µ).

Theorem 6.4.3 (Lp-Isometry). Let 1 ≤ p < ∞, q be conjugate exponent, µ

be σ-finite positive measure on (X,M). Then, for all bounded linear functional
Λ ∈ L

p(µ)∗ , there is a unique g ∈ L
q, such that for each f ∈ L

p(µ),

Λ(f) =

�

X

fg dµ. (6.4.1)

Moreover, �Λ� = �g�q. Hence, Lq(µ) is isometrically isomorphic to L
p(µ)∗.

Proof. Step 1: First suppose µ(X) < ∞, Λ ∈ L
p(µ)∗. Define λ : M → C by

λ(E) := Λ(χE). Let {En}∞n=1 be a partition of E ∈ M . By linearity, for each
N ∈ N,

λ

� N�

n=1

En

�
=

N�

n=1

λ(En).

Also, �χE − χ�N
n=1 En

�p → 0, as N → ∞. Hence, by continuity of Λ, we have
|λ(E) − λ(

�
N

n=1 En)| → 0, and λ is a complex measure. Moreover, if µ(E) = 0,
then χE = 0 and λ(E) = 0. So, λ � µ.

Step 2: By Radon-Nikodym Theorem (6.2.3), there is a unique g ∈ L
1(µ) such

that dλ = g dµ. Thererfore,

Λ(f) =

�

X

f dλ =

�

X

fg dµ (6.4.2)
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holds for characteristic functions f , hence simple functions. Also, if f ∈ L
∞(µ),

there exists simple functions sn → f uniformly. Hence, �sn − f�p → 0 as n → ∞,
and equation (6.4.2) holds for all f ∈ L

∞(µ). In order to complete the proof, we
divide it into two cases.

Step 3: Case 1. p = 1. We will show every f ∈ L
1(µ) satisfies equation (6.4.2),

and �g�∞ = �Λ�. By assumption, µ(X) < ∞, so L
∞(µ) is dense in L

1(µ), by
density of simple functions. Let {fn} be a sequence in L

∞ and fn
L
1

−→ f . By
continuity of Λ, the LHS of equation (6.4.2) gives Λ(fn) → Λ(f).

Recall that Λ is bounded. For all E ∈ M with µ(E) > 0,

Λ(χE) ≤ �Λ� · �χE�1 = �Λ� · µ(E).

Dividing both sides by µ(E), we see that
����

1

µ(E)

�

E

g dµ

���� ≤ �Λ�.

By the average argument (1.8.8), |g(x)| ≤ �Λ� µ-a.e., thus �g�∞ ≤ �Λ�. On the
RHS of equation (6.4.2), by Hölder’s inequality,

����
�

X

|fn − f |g dµ
���� ≤ �g�∞ · �fn − f�1 ≤ �Λ� · �fn − f�1,

which → 0, as n → ∞. Hence,
�
X
fng dµ →

�
X
fg dµ, and equation (6.4.2) holds

for all f ∈ L
1(µ). Finally, by Hölder’s inequality, for all f ∈ L

1(µ) with �f�1 ≤ 1,

Λ(f) =

�

X

fg dµ ≤ �f�1 · �g�∞ ≤ �g�∞.

Thus, �Λ� ≤ �g�∞, and we conclude Case 1.

Step 4: Case 2. 1 < p < ∞. Define En := {x : |g(x)| ≤ n}. For each n ∈ N,
define

fn :=
g

|g| |g|
q−1χEn . (6.4.3)

Note that |fn| = |g|q−1 and fn ∈ L
∞(µ). Moreover,

�

X

|fn|p dµ =

�

En

|g|p(q−1) dµ

=

�

En

|g|q dµ ≤ n
q
µ(En) < ∞.

So, fn ∈ L
∞(µ) ∩ L

p(µ). Restricting Λ on L
∞(µ) ∩ L

p(µ), as a Banach space
with � · �p, we see that

����
�

En

|g|q dµ
���� = |Λ(fn)| ≤ �Λ� · �fn�p = �Λ�

��

En

|g|q dµ
�1/p

.
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Therefore,

�Λ� ≥
����
�

X

|gχEn |q dµ
����
1−1/p

=

����
�

X

|gχEn |q dµ
����
1/q

= �gχEn�q. (6.4.4)

Note that |gχE1 | ≤ |gχE2 | < . . . . By Monotone Convergence on equation (6.4.4),

�g�q = � lim
n→∞

|gχEn |�q = lim
n→∞

�|gχEn |�q ≤ �Λ�. (6.4.5)

Hence, g ∈ L
q(µ) and by letting f = 1, µ-a.e., we obtain �g�q = �Λ�.

Finally, by hypothesis Λ is continuous on L
p(µ). On the other hand, by Hölder’s

inequality, if �fn − f�p → 0,
�

X

|fn − f |g dµ ≤ �fn − f�p�g�q → 0.

By sequential continuity, the map f �→
�
X
fg dµ is continuous on L

p(µ) . By
equation (6.4.2), both continuous maps agree on the dense subset L

∞(µ) ∩ L
p(µ)

of L
p(µ). Therefore, they conincide everywhere on L

p(µ), and equation (6.4.2)
holds for all f ∈ L

p(µ).

Step 5: Now suppose µ is σ-finite. By Lemma (6.4.1), define dµ̃ := w dµ, and µ̃

is a finite measure on X. Moreover, the map ι : Lp(µ̃) → L
p(µ) given by

ι(f̃) := w
1/p

f̃ , (6.4.6)

is linearly isometric, and bijective since w(x) �= 0, ∀x ∈ X. Consequently, the map
Λ �→ Λ ◦ ι defines an isomorphic isometry from L

p(µ)∗ to L
p(µ̃)∗.

Step 6: Let Λ ∈ L
p(µ)∗. Define Λ̃ := Λ ◦ ι ∈ L

p(µ̃)∗. From the preceding steps,
we obtain g̃ ∈ L

q(µ̃) so that �g̃�q,µ̃ = �Λ̃� = �Λ�, and

Λ̃(f̃) =

�

X

f̃ g̃ dµ̃, ∀f̃ ∈ L
p(µ̃). (6.4.7)

Define g := ι(g̃) = w
1/q

g̃. Then,
�

X

|g|q dµ =

�

X

|w1/q
g̃|q dµ =

�

X

|g̃|qw dµ

=

�

X

|g̃|q dµ̃ = �Λ̃�q = �Λ�q.

Therefore, �g�q = �Λ�, and for each f ∈ L
p(µ),

Λ(f) = Λ̃ ◦ ι−1(f) = Λ̃(w−1/p
f)

=

�

X

(w−1/p
f)g̃ dµ̃ =

�

X

(w−1/p
f)(w−1/q

g) dµ̃

=

�

X

fgw
−1 dµ̃ =

�

X

fg dµ. �
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6.5 The Riesz Representation Theorem

In this section, X denotes a locally compact Hausdorff space, C0(X) denotes the
space of all complex continuous functions on X which vanish to infinity, and
Cc(X) ⊂ C0(X) contains functions with compact support. By Riesz Representa-
tion Theorem (2.3.1), we have seen that every positive linear functional on Cc(X)
can be represented uniquely by a Borel measure on X. Now we will characterize
all bounded linear functionals on C0(X) similarly.

Proposition 6.5.1. The space C0(X) with the supremum norm � · �∞ is a
Banach space; and Cc(X) is dense in (C0(X), � · �∞).

Proof. Step 1: Obviously, C0(X) is a normed vector space. For completeness, let
{fn}∞n=1 be a Cauchy sequence in C0(X). Then, given ε > 0, there is N ∈ N, such
that for all m,n > N , for all x ∈ X,

|fn(x)− fm(x)| ≤ �fn − fm�∞ < ε.

Thus, {fn}∞n=1 is uniformly Cauchy and converges to a continuous function f

uniformly.1

Step 2: To see that f vanishes at infinity, let ε > 0, and choose N as above.
Then, there is a compact K so that |fN | < ε on K

c. Then for all x ∈ K
c,

|f(x)| = |f(x)− fN(x) + fN(x)| ≤ |f(x)− fN(x)|+ |fN(x)| ≤ 2ε.

Therefore, f ∈ C0(X) and C0(X) is Banach Space.

Step 3: Finally, suppose f ∈ C0(X). Then given ε > 0, there is a compact set K
such that |f | < ε on K

c. By the Urysohn’s Lemman (2.2.11), choose g ∈ Cc(X)
such that 0 ≤ g ≤ 1 and g = 1 on K. Then the function fg ∈ Cc(X), and

|fg(x)− f(x)|
�
= 0, x ∈ K,

≤ �f�∞ < ε, x ∈ K
c
.

Hence, �fg − f�∞ < ε and Cc(X) is dense. �
1
Since {fn(x)}∞n=1 is Cauchy at each x ∈ X, define f by fn(x) → f(x), pointwise. Fix x0 ∈ X,

for every ε > 0, let U := f−1
N (B(fN (x0), ε)). Then x0 ∈ U , and for all x ∈ U ,

|f(x)− f(x0)| = |f(x)− fN (x) + fN (x)− fN (x0) + fN (x0)− f(x0)|
≤ |f(x)− fN (x)|+ |fN (x)− fN (x0)|+ |fN (x0)− f(x0)|
≤ 3ε.

So, U ⊂ f−1(B(f(x0), 3ε)). Now suppose V is open in C. For each x0 ∈ f−1(V ), pick ε such

that B(f(x0), 3ε) ⊂ V . Then pick U as above, we obtain

x0 ∈ U ⊂ f−1(B(f(x0), 3ε) ⊂ f−1(V ).

Thus, x0 is an interior point of f−1(V ). It follows that f−1(V ) is open and f is continuous.
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Remark. Let S be a topological space, M be a complete metric space, and
fn : S → M be continuous. If {fn} is uniformly Cauchy, then fn → f uniformly
and f is continuous. The proof is the same.

Definition 6.5.2. A complex Borel measure µ on X is regular if |µ| is regular
on X. Denote M(X) := {µ : regular complex Borel measure on X}. Note that
M(X) is a Banach space with the norm �µ� := |µ|(X).

Remark 6.5.3. Let µ be a complex Borel measure on X. By Polar decomposition
(6.3.1), there is a complex Borel function h, with |h| = 1 so that dµ = h d|µ|. Thus,
for all f ∈ C0(X),

����
�

X

f dµ

���� =
����
�

X

fh d|µ|
���� ≤ �fh�∞

�

X

d|µ| = �f�∞|µ|(X).

Therefore, Λµ(f) :=
�
X
f dµ defines a bounded linear functional on C0(X), and

�Λµ� ≤ |µ|(X).

Remark 6.5.4. Now suppose µ is complex regular Borel measure. Given a
compact K, by the Urysohn’s Lemma (2.2.11), there is gK ∈ Cc(X) such that
gK = 1 on K and 0 ≤ gK ≤ 1. Then,

Λµ(hgK) =

�

X

gK d|µ| ≥
�

X

χK d|µ| = |µ|(K).

By regularity and taking the supremum over all K, we see that

�Λµ� ≥ | sup
K⊂X

Λµ(hgK)| ≥ sup
K⊂X

|µ|(K) = |µ|(X).

Hence, �Λµ� = |µ|(X). In other words, if we restrict to regular complex Borel
measures, the map µ �→ Λµ is an isometry.

Question. Can every bounded linear functional on C0(X) be obtained this way,
while preseving the norm? The answer is positive, and it is another version of
the Riesz Representation Theorem. To prove it, we first introduce the following
lemma which in fact is the technical part of the proof.

Lemma 6.5.5. Let λ : Cc(X) → R be a bounded linear functional. Then there
is a positive linear functional ρ on Cc(X) such that |λ(f)| ≤ ρ(f) ≤ �f�∞.

Proof. Step 1: First consider for f ≥ 0, define ρ(f) := sup{|λ(h)| : h ∈
Cc(X), |h| ≤ f}. Observe that ρ(f) ≥ 0, |Λ(f)| ≤ ρ(f) ≤ �f�∞, and ρ pre-
serves scalar multiplication. Also, if f1 ≥ f2, then ρ(f1) ≥ ρ(f2). We shall prove
addivity.

Step 2: Suppose f, g ∈ Cc(X), f, g ≥ 0. Given ε > 0, by definition of ρ, there is
h1, h2 ∈ Cc(X), |h1| ≤ f, |h2| ≤ g, such that

ρ(f) ≤ |λ(h1)|+ ε and ρ(g) ≤ |λ(h2)|+ ε.
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Hence,
ρ(f) + ρ(g) ≤ |λ(h1)|+ |λ(h2)|+ 2ε.

Moreover, for i = 1, 2 there is αi ∈ C with |αi| = 1 so that λ(αihi) = |λ(hi)|. It
follows that

ρ(f) + ρ(g) ≤ λ(α1h1 + α2h2) + 2ε. (6.5.1)
Since |α1h1 + α2h2| ≤ f + g, inequality (6.5.1) gives

ρ(f) + ρ(g) ≤ |λ(α1h1 + α2h2)|+ 2ε

≤ ρ(|α1h1 + α2h2|) + 2ε

≤ ρ(f + g) + 2ε,

for all ε > 0. Therefore, ρ(f) + ρ(g) ≤ ρ(f + g).

Step 3: For the other inequality, pick h ∈ Cc(X) such that |h| ≤ f + g. Define
the followings:

h1(x) :=

�
f(x)

f(x)+g(x)h(x), f(x) + g(x) > 0,

0, else.
and

h2(x) := h(x)− h1(x).

Note that |h1| ≤ f and |h2| ≤ g, and both are continuous everywhere. Consider

|λ(h)| = |λ(h1) + λ(h2)|
≤ |λ(h1)|+ |λ(h2)|
≤ ρ(f) + ρ(g).

By taking the supremum over all such h, we obtain ρ(f + g) ≤ ρ(f) + ρ(g).
Consequently, ρ(f) + ρ(g) = ρ(f + g).

Step 4: Now suppose f ∈ Cc(X), f is real-valued. Define f
+ := 1

2(|f | + f)
and f

− := 1
2(|f | − f). Then f = f

+ − f
− and f

+, f− ≥ 0. We define ρ(f) :=
ρ(f+)− ρ(f−).

Given real-valued f, g ∈ Cc(X), let h := f + g. Then,

f
+ + g

+ + h
− = f

− + g
− + h

+

ρ(f+) + ρ(g+) + ρ(h−) = ρ(f−) + ρ(g−) + ρ(h+)

ρ(f) + ρ(g) = ρ(h) = ρ(f + g).

Also, for c ∈ R, it is easy to see that ρ(cf) = cρ(f). Finally, if f is complex-valued,
write f = u+ iv. Define ρ(f) := ρ(u) + iρ(v) and proceed similarly. �

Theorem 6.5.6 (Riesz Representation Theorem of Bounded Linear Func-
tionals). Let X be a locally compact Hausdorff space. Then every bounded
linear functional Φ on (C0(X), � · �∞) is represented uniquely by a regular
complex Borel measure µ such that

Φ(f) =

�

X

f dµ, for all f ∈ C0(X). (6.5.2)

Moreover, �Φ� = |µ|(X). In other words, M(X) ∼= (C0(X))∗.
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Proof of Uniqueness. Because both M(X) and (C0(X))∗ are vector spaces and
we proved surjectivity, it suffices to show that Φ ≡ 0 implies µ ≡ 0. Suppose
Φ(f) = 0, for all f ∈ C0(X), and µ is the corresponding measure.

By Polar decomposition (6.3.1), there is a complex Borel function h with |h| = 1,
such that dµ = h d|µ|. Note that h ∈ L

1(|µ|). Since Cc(X) is dense in L
1(|µ|),

there is a sequence fn in Cc(X) such that fn
L
1(|µ|)−−−−→ h. Therefore,

|µ|(X) =

�

X

1 d|µ|+ 0 =

�

X

(h− fn)h d|µ| ≤
�

X

|h− fn| d|µ|.

As n → ∞, |µ|(X) = 0. It follows that |µ| ≡ 0 implies µ ≡ 0. �

Proof. Step 1: Let Φ be a bounded linear functional on C0(X). Without loss of
generality, we assume �Φ� = 1. By Lemma (6.6.5), there is a positive linear
functional Λ on Cc(X) such that

|Φ(f)| ≤ Λ(|f |) ≤ �f�∞. (6.5.3)

By Riesz Representation Theorem (2.3.1), there is a positive Borel measure
λ such that

Λ(f) =

�

X

f dλ, for all f ∈ Cc(X). (6.5.4)

Step 2: Note that λ is outer regular. To show inner regularity, it suffices to show
λ(X) < ∞. (Then every E ∈ M has finite measure and automatically is inner
regular by Riesz.) Since X is open,

λ(X) = sup{λ(K) : K ⊂ X,K is compact}.

By the Urysohn’s Lemma (2.2.11), for every such K, there is f ∈ Cc(X), with
0 ≤ f ≤ 1 so that χK ≤ f ≤ χX . Conversely, every f ∈ Cc(X) with 0 ≤ f ≤ 1 is
bounded above by χK , where K = supp(f). Thus,

λ(X) = sup{Λ(f) : 0 ≤ f ≤ 1, f ∈ Cc(X)}.

Recall that Λ is bounded. Hence, for �f�∞ ≤ 1, |Λ(f)| ≤ �Λ� · �f�∞ ≤ 1.
Consequently, λ(X) ≤ 1 and λ is a positive regular Borel measure.

Step 3: From equation (6.5.4), note that

|Φ(f)| = Λ(|f |) =
�

X

|f | dλ = �f�1, for all f ∈ Cc(X). (6.5.5)

Now, consider (Cc(X), � · �1) as a L
1(λ)-space. Then, Φ is a bounded linear

functional on L
1(λ). By Lp-Isometry Theorem (6.4.3), there is a complex Borel

measurable function g ∈ L
∞(λ), with �g�∞ = �Φ� = 1 such that

Φ(f) =

�

X

fg dλ, for all f ∈ Cc(X). (6.5.6)

87



Complex Measure

Step 4: Next, we will extend equation (6.5.6) to C0(X). Recall that Φ is con-
tinuous on (C0(X), � · �∞). On the other hand, given f ∈ Cc(X), and a sequence
fn

L
∞

−−→ f , by Hölder’s inequality, we see that
�

X

|fn − f |g dλ ≤ �|fn − f |g�∞
�

X

dλ

≤ �fn − f�∞�g�∞λ(X)

≤ �fn − f� → 0,

as n → ∞. Thus, by sequential continuity, the map f �→
�
X
fg dλ is also con-

tinuous. Since both continuous maps conincide on the dense subset Cc(X) in
(C0(X), � · �∞), they agree everywhere. Define dµ := g dλ. So, µ is a regular
complex Borel measure, and we conclude that

Φ(f) =

�

X

fg dλ =

�

X

f dµ, for all f ∈ C0(X). (6.5.7)

Step 5: Finally, we will show the isometry: �Φ� = |µ|(X) = 1. Since �Φ� = 1,
for all f ∈ C0(X) with �f�∞ ≤ 1, we see that

|Φ(f)| =
����
�

X

fg dλ

���� =
�

X

|fg| dλ

≤ �|f |�∞ ·
�

X

|g| dλ ≤
�

X

|g| dλ.

Hence,
�
X
|g| dλ ≥ sup{|Φ(f) : �f�∞ ≤ 1} = �Φ� = 1. However, recall that

|g| ≤ 1 and λ(X) ≤ 1. It is only possible when λ(X) = 1, and g = 1, λ-a.e. It
follows that g ∈ L

1(λ), and by Corollary (6.3.2), d|µ| = |g| dλ = dλ. Therefore,

|µ|(X) = λ(X) = 1 = �Φ�. �
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Chapter 7

Differentiation

In this chapter, Rk denotes the k-dimensional Eucliean space; m is the Lebesgue
measure on Rk; M denotes its complete Borel σ-algebra; µ is a complex Borel
measure on Rk. We write B(x, r) for the open ball in Rk centered at x ∈ Rk with
radius r > 0.

7.1 Derivatives of Measures

Definition 7.1.1. A function f : R → C is differentiable at x0 ∈ R if there
exists A(x0) ∈ C, such that given ε > 0, there is δ > 0, so that

����
f(b)− f(a)

b− a
− A(x0)

���� < ε, (7.1.1)

whenever |b − a| < δ, and for all x ∈ (a, b). If such A(x0) exists, we denote it by
f
�(x0).

Remark 7.1.2. Note that m((a, b)) = b − a. Hence, if we define f : R → C by
f(x) := µ((−∞, x)), then

����
µ((a, b))

m((a, b))
− f

�(x)

���� < ε, (7.1.2)

provided that f
�(x) exists for x ∈ R.

Remark 7.1.3. Observe that in Rk, (a, b) can be replaced by B(x, r), which is
a Borel set. Thus, inequality (7.1.2) sugguests that we might want to define the
“derivative of µ with respect to m” as the limit of the quotient µ(B(x,r))

m(B(x,r)) , as r → 0.
To do so, we now introduce some definitions.

Definition 7.1.4. The symmetric derivative of µ at x is defined to be

(Dµ)(x) := lim
r→0

µ(B(x, r))

m(B(x, r))
, (7.1.3)

if it exists (in sense of C). If it exists for every x, we simply denote it as Dµ.
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Remark. Just as we have a dominating positive measure |µ| on µ, we also want
to introduce a dominating positive function on Dµ.

Definition 7.1.5. The maximal function of µ is defined to be Mµ : Rk →
[0,∞],

(Mµ)(x) := sup
r>0

|µ|(B(x, r))

m(B(x, r))
. (7.1.4)

Note that Mµ always exists since its range includes infinity.

Proposition 7.1.6. The maximal function Mµ is lower semicontinuous, i.e.
(Mµ)−1((α,∞)) is open for all α > 0. Hence, Mµ is both µ and m-measurable.

Proof. Given α > 0 and x ∈ E := (Mµ)−1((α,∞)), we will show that x is an
interior point of E. By definition,

Mµ(x) = sup
r>0

|µ|(B(x, r))

m(B(x, r))
> α.

Hence, there exists r, t > 0 such that

|µ|(B(x, r))

m(B(x, r))
= t > α, and |µ|(B(x, r)) = tm(B(x, r)).

Since t > α, there is δ such that (r + δ)k < r
k t

α . Consider the open ball B(x, δ).
We will show that B(x, δ) ⊂ E. In fact, for each y ∈ B(x, r), �-inequality gives
B(y, r + δ) ⊃ B(x, r). Therefore, by the ratio of radii and translation invariance
of the Lebesgue measure,

Mµ(y) ≥ |µ|(B(y, r + δ)

m(B(y, r + δ))
≥ |µ|(B(x, r))

m(B(y, r + δ))

=
tm(B(x, r))

m(B(y, r + δ))
= t · r

k

(r + δ)k

> α.

Hence, Mµ(y) ∈ (α,∞), and B(x, δ) ⊂ E. Consequently, E is open, and Mµ is
lower-semicontinuous. �

Lemma 7.1.7. Let W :=
�

N

i=1 B(xi, ri) ⊂ Rk. Then there exists S ⊂ {1, . . . , N}
such that

(a) For i �= j ∈ S, B(xi, ri) ∩ B(xj, rj) = ∅.

(b) W ⊂
�

i∈S B(xi, 3ri).

(c) m(W ) ≤ 3km(
�

i∈S B(xi, ri)) = 3k
�

i∈S m(B(xi, ri)).

Proof. (a). Denote Bi = B(xi, ri). Order {Bi} such that r1 ≥ r2 ≥ · · · ≥ rN .
Choose Bi1 := B1 with the largest radius ri1 = r1. Remove Bj from the collection
{Bi} if Bj∩Bi1 �= ∅. Add i1 to S and reorder the remaining collection. Then, pick

90



Derivatives of Measures

Bi2 with the second largest radius ri2 from the remaining collection and iterate.
Since the collection is finite, after finitly many iterations, we will obtain (a).

(b). If Bj is removed in iteration n, then Bin ∩ Bj �= ∅, and rj < rin . Hence, for
each y ∈ B(xj, rj),

|y − xin | = |y − xj + xj − xin |
≤ |y − xj|+ |xj − xin |
≤ rin + 2rin = 3rin .

So, B(xj, rj) ⊂ B(xin , 3rin) for 1 ≤ j ≤ N . It follows that W ⊂
�

i∈S B(xi, 3ri).

(c). By scaling (more precisely, by property (e) in Theorem (2.4.4) with the linear
map T (x) := 3x, and �(T ) = det(T ) = 3k), from (b) we see that

m(W ) ≤ m

��

i∈S

B(xi, 3ri)

�
=

�

i∈S

m(B(xi, 3ri)) ≤ 3k
�

i∈S

m(B(xi, ri)). �

Proposition 7.1.8. For all λ > 0, m({x : Mµ(x) > λ}) ≤ 3kλ−1|µ|(Rk).

Remark. Recall that |µ|(X) < ∞. Thus, as λ → 0, m({x : Mµ > λ}) → 0. In
other words, the maximal function cannot be large on a large set, in sense of the
Lebesgue measure.

Proof. Given λ > 0, define E := {x : Mµ(x) > λ}. Since Mµ is lower semi-
continuous, E is open. Suppose K ⊂ E is compact. For each x ∈ K, by definition
of Mµ, there is rx > 0 such that

|µ|(B(x, rx)) > λm(B(x, rx)).

Hence, {B(x, rx) : x ∈ K} is an open cover of K. By compactness, K ⊂�
N

i=1 B(xi, ri), for some N ∈ N. By Lemma (7.1.7), there is a finite S ⊂ {1, . . . , N}
such that

m(K) ≤ 3k
�

i∈S

m(B(xi, ri))

≤ 3k
1

λ

�

i∈S

|µ|(B(xi, ri))

≤ 3k
1

λ
|µ|(Rk). (7.1.5)

Since inequality (7.1.5) holds for all compact K ⊂ E, by inner regularity of m,
m(E) ≤ 3kλ−1|µ|(Rk). �

Definition 7.1.9 (Weak L
1). Let f : Rk → C be m-measurable. We say f ∈

weak L1 if there is M > 0, such that for all λ ∈ (0,∞),

λ ·m({|f | > λ}) ≤ M. (7.1.6)
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Remark 7.1.10. Every f ∈ L
1(Rk) is in weak L

1 because

�f�1 ≥
�

{|f |>λ}
|f | dm > λ ·m({|f | > λ}).

Certainly weak L
1 is strictly large than L

1. Consider the function f(x) := 1/x on
(0, 1). Then f /∈ L

1, but

λ ·m({1/x > λ}) = λ ·m((0, 1/λ)) = 1, ∀λ > 0.

Definition 7.1.11. Let f : Rk → C. Define the maximal function of f to be

(Mf)(x) := sup
r>0

1

m(B(x, r))

�

B(x,r)

|f | dm. (7.1.7)

Remark 7.1.12. Let f ∈ L
1(Rk) and define the a complex Borel measure µ by

dµ := f dm. Then, Mf is exactly Mµ, and by Proposition (7.1.8)

λm({Mf > λ}) ≤ 3k|µ|(Rk) = 3k�f�1, (7.1.8)

for all λ > 0. This is a special case of Hardy-Littlewood maximal inequality.
Moreover, the operator M sends L1 to weak L1 with a bound 3k.

7.2 Lebesgue Points

Definition 7.2.1 (Lebesgue points). If f ∈ L
1(Rk), we say x0 ∈ Rk is a

Lebesgue point of f if

lim
r→0

1

m(B(x0, r))

�

B(x0,r)

|f(x)− f(x0)| dm(x) = 0. (7.2.1)

Remark 7.2.2. If x0 is a Lebesgue point of f , then

lim
r→0

1

m(B(x0, r))

����
�

B(x0,r)

f(x)− f(x0) dm(x)

���� = 0

���� lim
r→0

1

m(B(x0, r))

�

B(x0,r)

f(x) dm(x)− f(x0)

���� = 0

lim
r→0

1

m(B(x0, r))

�

B(x0,r)

f(x) dm(x) = f(x0). (7.2.2)

In general, equation (7.2.1) asserts that the averages of |f − f(x)| are small on
small open balls at x. Thus, the Lebesgue points of f are the points where f

does not oscillate too much in average. Also, if f is continuous at x, then x is a
Lebesgue point of f because |f(y)− f(x)| < ε → 0, as |y − x| < r → 0.

Theorem 7.2.3 (Lebesgue Differentiation Theorem). If f ∈ L
1(Rk), then

m-almost every x ∈ Rk is a Lebesgue point of f .
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Proof. Step 1: For each r > 0, define Trf : Rk → [0,∞], by

(Trf)(x) :=
1

m(B(x, r))

�

B(x,r)

|f − f(x)| dm. (7.2.3)

Also, define Tf : Rk → [0,∞], by

(Tf)(x) := lim sup
r→0

(Trf)(x). (7.2.4)

We want to show (Tf)(x) = 0, for m-almost every x ∈ Rk.

Step 2: Fix an n ∈ N. Since Cc(Rk) is dense in L
1(Rk), we can pick g ∈ Cc(Rk)

such that �f − g�1 < 1/n. Moreover, by continuity of g, (Tg)(x) = 0, for all
x ∈ Rk.

Step 3: Let h := f − g ∈ L
1(Rk). Then for all x ∈ Rk,

(Trh)(x) =
1

m(B(x, r))

�

B(x,r)

|(f − g)− (f(x)− g(x))| dm

≤
�

1

m(B(x, r))

�

B(x,r)

|(f − g) dm

�
+ |f(x)− g(x)|

≤
�

1

m(B(x, r))

�

B(x,r)

|h| dm
�
+ |h(x)|. (7.2.5)

Step 4: Also, for all x ∈ Rk,

(Trf)(x) = (Tr(g + h)(x) =
1

m(B(x, r))

�

B(x,r)

|g + h− (g(x) + h(x))| dm

≤ 1

m(B(x, r))

��

B(x,r)

|g − g(x)| dm+

�

B(x,r)

|h− h(x)| dm
�

≤ (Trg)(x) + (Trh)(x). (7.2.6)

Step 5: Take the lim sup
r→0 on inequality (7.2.6) and apply inequality (7.2.5):

(Tf)(x) ≤ (Tg)(x) + lim sup
r→0

(Trh)(x)

≤ 0 + sup
r>0

(Trh)(x)

≤ sup
r>0

1

m(B(x, r))

�

B(x,r)

|h| dm+ |h(x)|

= (Mh)(x) + |h(x)|. (7.2.7)

Step 6: For all y > 0 such that (Tf)(x) > 2y, we have (Mh)(x) > y or |h(x)| > y.
Thus,

{x : (Tf)(x) > 2y} ⊂ {x : (Mh)(x) > y} ∪ {x : |h(x)| > y}. (7.2.8)
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By inequality (7.1.8), and ym({|h| > y}) ≤ �h�1, we see that

m({Tf > 2y}) ≤ m({Mh > y}) +m({|h| > y})

≤ 3k
1

y
�h�1 +

1

y
�h�1

≤ (3k + 1)
1

ny
, (7.2.9)

where the last part is given by �h�1 ≤ 1/n.

Step 7: Note that m({Tf > 2y}) is independent of n. (Although we have done
a lot of approximations starting with n, the Lebesgue measure is fixed once we
pick y.) Since inequality (7.2.9) holds for all n ∈ N, as n → ∞, we obtain
m({Tf > 2y}) = 0. By completeness of m, {Tf > 2y} is m-measurable, for all
y > 0. By monotonicity,

m({Tf > 0}) = lim
N→∞

m({Tf > 1/N}) = 0.

Therefore, the set for which Tf �= 0 has Lebesgue measure 0; equivalently, m-
almost every x ∈ Rk is a Lebesgue point of f . �

Corollary 7.2.4. If µ � m and f := dµ
dm is the Radon-Nikodym derivative of

µ with respect to m, then f = Dµ, m-a.e.

Proof. If x is a Lebesgue point of f ,

f(x) = lim
r→0

1

m(B(x, r))

�

B(x,r)

f dm

= lim
r→0

µ(B(x, r))

m(B(x, r))
= Dµ(x).

By Lebesgue Differentiation Theorem (7.2.3), Dµ(x) exists and Dµ(x) = f(x) for
m-a.e. all x ∈ Rk. �
Corollary 7.2.5. If f ∈ L

1(R), then for m-a.e. x ∈ R,

f(x) = lim
ε→0

1

ε

�
x+ε

x

f dm. (7.2.10)

Proof. We will show that

1

ε

�
x+ε

x

|f − f(x)| dm → 0, as ε → 0.

In fact, by positivity of m and |f − f(x)|,

1

ε

�
x+ε

x

|f − f(x)| dm ≤ 2

2ε

�
x+ε

x−ε

|f − f(x)| dm

≤ 2

m(B(x, ε))

�

B(x,ε)

|f − f(x)| dm.
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By Lebesgue Differentiation Theorem (7.2.3), almost every x is a Lebesgue point.
Thus, as ε → 0, RHS → 0, and we obtain

1

ε

�
x+ε

x

|f − f(x)| dm → 0. �

Definition 7.2.6 (Nicely shrinking sets). Let x ∈ Rk and {En} be a sequence
of Borel sets in Rk. We say {En} shrinks to x nicely if there is α > 0 and a
sequence of positive numbers rn → 0, such that for all n ∈ N, En ⊆ B(x, rn), and
m(En) ≥ αm(B(x, rn)).

Remark 7.2.7. Note that En need not contain x itself. For example, En := (0, 1
n
)

shrinks to 0 nicely in R. The condition of α requires each En to occupy certain
portion of the ball B(x, rn). To illustrate this, En := (0, 1

n
) × (0, 1

n2 ) does not
shrink nicely to (0, 0) in R2.

Proposition 7.2.8. Suppose f ∈ L
1(Rk) and x ∈ Rk is a Lebesgue point of f .

If {En} shrinks to x nicely, then

f(x) = lim
n→∞

1

m(En)

�

En

f dm. (7.2.11)

Hence, it holds for almost every x ∈ Rk.

Proof. Let α and {rn} be the positive number and sequence that are associated
to {En}. Hence, En ⊂ B(x, rn) and

1

m(En)

�

En

|f − f(x)| dm ≤ 1

m(En)

�

B(x,rn)

|f − f(x)| dm

≤ 1

αm(B(x, rn)

�

B(x,rn)

|f − f(x)| dm.

Since rn → 0, the RHS → 0 by definition of Lebesgue point, and we obtain
equation (7.2.11). �
Theorem 7.2.9. Let f ∈ L

1(R) and for all x ∈ R,

F (x) :=

�
x

∞
f dm.

Then, F �(x) = f(x), at every Lebesgue point x of f , hence F
� = f , m-a.e.

Proof. Let x be a Lebesgue point of f . Suppose rn > 0, for all n ∈ N, and rn → 0.
Then En := [x, x+ rn] shrinks to x nicely. By Proposition (7.2.8),

F
�
+(x) = lim

n→∞

1

rn
(F (x+ rn)− F (rn))

= lim
n→∞

1

rn

�
x+rn

x

f dm = f(x).

Likewise, Sn := [x, x − rn] also shrinks to x nicely, and F
�
−(x) = f(x). Hence,

F
� = f , m-a.e. �
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7.3 The Fundamental Theorem of Calculus

Question. Let f : [a, b] → C. Recall that if f is continuous on [a, b] and differen-
tiable everywhere on (a, b), then

f(x)− f(a) =

�
x

a

f
� dm, x ∈ [a, b]. (7.3.1)

However, if f � no longer exists everywhere on (a, b), what other assumptions are
necessary?

Remark 7.3.1. It turns out it is not enough even with f continuous on [a, b],
f
� defined m-a.e. on [a, b], and f

� ∈ L
1([a, b]). We shall see that in the following

example.

Example 7.3.2 (The Cantor Function). Step 1: We proceed the standard
Cantor set construction on [0, 1]. For n = 0, remove E0,1 := (13 ,

2
3) from [0, 1]. Let

f := 1
2 on E0,1. We denote that f(E0,1) =

1
2 . For n = 1, remove the middle third

intervals of the remaing intervals [0, 1]\E0,1. We have E1,1 := (19 ,
2
9), E1,2 := (79 ,

8
9).

Let f(E1,0) :=
1
22 , f(E1,2) :=

3
22 .

Step 2: In general, for each n, there are 2n many disjoint En,kn ’s, each with
measure 3−n−1, from the remaining disjoint intervals. Hence, En :=

�2n

k=1 En,kn

has measure 1
3 · (

2
3)

n. Let E :=
�∞

n=0 En. We see that

m(E) =
∞�

n=0

1

3

�
2

3

�n

= 1.

Define f : E → [0, 1], given by

f(x) :=
2kn − 1

2n+1
, x ∈ En,kn . (7.3.2)

Note that f(E) := {1
2 ,

1
4 ,

3
4 ,

1
8 , . . . }, which is dense in [0, 1]. Moreover, since f is

constant on each open set En,kn , f �|En,kn
= 0. Thus, f � = 0 on E.

Step 3: Now we want to extend f continuously from E to [0, 1]. Let f(0) := 0,
for all x ∈ [0, 1] \ E, define f(x) := sup{f(t) : t < x}. Note that f is increasing.
To see that f is continuous, we first show that f is surjective.

For each y ∈ [0, 1], let S := {x ∈ E : f(x) ≤ y}, and t := sup(S). By monotonicty,
f(t) ≤ y. Suppose f(t) < y, then by density of f(E), there is En,kn such that
f(t) < f(En,kn) < f(y). Hence, t �= sup(S), which is a contradiction; and f is
surjective.

Step 4: For all x ∈ [0, 1], ε > 0, there are En,kn = (a, b) and En�,k�n = (a�, b�), such
that b < x < a

�, and

f(x)− ε < f(En,kn) < f(x) < f(En�,k�n) < f(x) + ε.
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By monotonicity and surjectivity, f((b, a�)) ⊂ (f(x)− ε, f(x) + ε). Therefore, f is
continuous from [0, 1] to [0, 1].

Step 5: Finally, recall that m(E) = 1, and the Cantor set C = [0, 1] \ E has
measure zero. Thus, f � = 0, m-a.e. and f

� ∈ L
1([a, b]). However,

f(1)− f(0) = 1 �=
� 1

0

f
� dm.

Answer. In order to obtain equation (7.3.1), we need to introduce a stronger con-
dition than merely continuity on f : absolute continuity.

Definition 7.3.3 (Absolute continuity). A function f : I := [a, b] → C is
called absolutely continuous if for any ε > 0, there is δ > 0, such that whenever
{(αi, βi)}ni=1 is a finite collection of disjoint intervals in I, with

�
n

i=1(βi −αi) < δ,
we have

n�

i=1

|f(βi)− f(αi)| < ε.

Remark 7.3.4. Obviously, absolute continuity implies uniform continuity, hence
continuity. Also, the space of absolutely continuous functions is a vector space.

Theorem 7.3.5. Let I = [a, b], f : I → R be continuous and non-decreasing.
Then, the following are equivalent:

(i) f is absolutely continuous.

(ii) f maps sets of measure zero to sets of measure zero.

(iii) f is differentiable m-a.e. on I, f � ∈ L
1(I), and f(x)− f(a) =

�
x

a
f
� dm.

Proof. (i) ⇒ (ii). Let M be the σ-algebra of Lebesgue measurable sets. Let
E ⊂ I, E ∈ M and m(E) = 0. We will show that m(f(E)) = 0.

Step 1: Without loss of generality, supose E ⊂ (a, b). Given ε > 0, by absolute
continuity there is δ > 0 such that there exists an open set V ⊃ E with m(V ) < δ,
by outer regularity.

Step 2: Since V is open, we may write V =
�∞

i=1(αi, βi), where (αi, βi)’s are
disjoint. (To see this, let {q1, q2, . . . } be rationals in V , let B(q1, r1) ⊂ V with r1

maximum. Remove B(q1, r1) and iterate.) Thus,

∞�

i=1

(βi − αi) = m(V ) < δ ⇒
∞�

i=1

|f(βi)− f(αi)| ≤ ε.

Step 3: Since m is a positive measure and E ⊂ V , we have

m(f(E)) ≤ m(f(V )) =
∞�

i=1

|f(βi)− f(αi)| ≤ ε.

Let ε → 0, then m(f(E)) = 0, and we conclude (ii).
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(ii) ⇒ (iii). Suppose f maps sets of measure zero to sets of measure zero.

Step 1: Define g(x) := x+ f(x), x ∈ I. For all segment (a, b) ⊂ I,

m(g((a, b))) = m((a, b)) +m(f((a, b))) = (b− a) +m(f((a, b))).

If m(E) = 0, then m(f(E)) = 0 and E does not contain any segments. Hence, g
also satisfies (ii).

Step 2: Since g is continuous, and strictly increasing on [g(a), g(b)], g−1 is also
continuous. Thus, g : I → [g(a), g(b)] is a homeomorphism. Consequently, g

preserves all the topological properties. Then, E is a Borel set in [g(a), g(b)] if and
only if g−1(E) is a Borel set in I.

Step 3: Moreover, for all E ⊂ I, E ∈ M , by regularity E = K ∪ F , where K is
an Fδ-set and m(F ) = 0 by Theorem (2.3.1)(c). Thus, K =

�∞
i=1 Ci, where Ci is

closed, hence compact in I. Since g is a homeomorphism, g(Ci) is compact and
closed in [g(a), g(b)]. Also, recall that g satisfies (ii), so m(g(F )) = 0. Hence, g(E)
is also a union of an Fδ-set, which is measurable, and a set of measure zero. We
conclude that g(E) ∈ M .

Step 4: Define a measure µ : M → R by µ(E) := m(g(E)). Note that µ is well-
defined because g(E) ∈ M . Since g is injective, disjoint sets in I are mapped
to disjoint images. By σ-addivity of m, we see that µ is indeed a positive and
bounded measure. Moreover, µ � m because satisfies (ii).

Step 5: By Radon-Nikodym Theorem (6.2.3), dµ = h dm, for some h ∈ L
1(m).

If follows that

g(x)− g(a) = m([g(a), g(x)]) = m(g([a, x]))

= µ([a, x]) =

�
x

a

h dm.

Hence,

(x+ f(x))− (a+ f(a)) =

�
x

a

h dm

f(x)− f(a) =

�
x

a

(h− 1) dm.

By Theorem (7.2.9), f �(x) = h(x)− 1 for m-a.e. x, and we conclude (iii).

(iii) ⇒ (i). Let f be differentiable m-a.e. on I, f � ∈ L
1(m) with f(x) − f(a) =�

x

a
f
� dm. Define a measure µ : M(I) → R, by

µ(E) :=

�

E

f
� dm. (7.3.3)

It follows that µ � m. By absolute continuity of measures, Proposition (6.2.6),
given ε > 0, there is δ such that whenever m(E) < δ, then |µ(E)| < ε. Moreover,
since it holds for all E ∈ M , we conclude that |µ|(E) ≤ ε, and thus |µ| � m.
(Because |µ| takes supremum of µ over all finite partitions, and m is positive.)
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Finally, suppose E :=
�

n

i=1(αi, βi) is a finite union of disjoint intervals with
m(E) =

�
n

i=1(βi − αi) < δ. Then,

n�

i=1

|f(βi)− f(αi)| =
n�

i=1

|µ((αi, βi))|

≤
n�

i=1

|µ|((αi, βi))

≤ |µ|(E) ≤ ε.

Therefore, f is absolutely continuous and we conclude (i). �

Definition 7.3.6 (Total variation function). Let f : [a, b] → R be absolutely
continuous. The total variation function F : [a, b] → [0,∞) is defined by

F (x) := sup
{ti}Ni=0

N�

i=1

|f(ti)− f(ti−1)|, (7.3.4)

where {ti}Ni=0 is any finite partition of [a, b] with a = t0 < t1 < · · · < tN = b.

Lemma 7.3.7. If f : [a, b] → R is absolutely continuous, then the total variation
function F , F + f , and F − f are absolutely continuous and non-decreasing.

Proof. First, we will show they are non-decreasing. Suppose x, y ∈ I, with x < y,
and {ti}ni=1 is a partition of [a, x]. Then, the set {ti}ni=1∪{tn+1 := y} is a partition
of [a, y]. By definition of F , we have

F (y) ≥ |f(y)− f(x)|+
n�

i=1

|f(ti)− f(ti−1)|. (7.3.5)

Since it holds for any partition, by taking the supremum on the RHS of inequality
(7.3.5), we see that

F (y) ≥ |f(y)− f(x)|+ F (x). (7.3.6)

By simple arithmetics,

F (y) ≥ F (x),

F (y)− f(y) ≥ F (x)− f(x),

F (y) + f(y) ≥ F (x) + f(x).

Therefore, F , F − f , and F + f are all non-decreasing.

Step 1: Now to show that F is abolutely continuous, first observe that by defini-
tion of F , for all (α, β) ⊂ I,

F (β)− F (α) = sup
{ti}Ni=0

N�

i=1

|f(ti)− f(ti−1)|, (7.3.7)
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where {ti}Ni=0 is a finite partition of [α, β].

Step 2: Since f is absolutely continuous, for all ε > 0, there is δ > 0 such that
if {(αi, βi)}ni=1 is a collection of disjoint intervals with

�
n

i=1(βi − αi) < δ, we have�
n

i=1 |f(βi − f(αi)| < ε. For each i, let {ti,j}
Nj

j=0 be an arbitrary finite partition of
(αi, βi). Then,

N�

i=1

� Nj�

j=1

(ti,j − ti,j−1)

�
=

n�

i=1

(βi − αi) < δ.

Note that {(ti,j, ti,j+1) : 0 ≤ i ≤ n, 0 ≤ j ≤ Nj} is also a finite partition of disjoint
intervals. Thus,

N�

i=1

Nj�

j=1

|f(ti,j)− f(ti,j−1)| < ε. (7.3.8)

Step 3: Again, since equation (7.3.8) holds for any finite partition {ti,j}, taking
the supremum over all {ti,j : 0 ≤ j ≤ Nj} gives

N�

i=1

F (βi)− F (αi) ≤ ε. (7.3.9)

Since F is non-decreasing, F (βi)−F (αi) = |F (βi)−F (αi)|, and we obtain absolute
continuity for F simply by using ε

2 . Therefore, F +f and F −f are also absolutely
continuous. �

Theorem 7.3.8 (The Fundamental Theorem of Calculus). If f : I → C is
absolutely continuous, then f

� exists m-a.e., f � ∈ L
1(I) and for all x ∈ I,

f(x)− f(a) =

�

[a,x]

f
� dm. (7.3.10)

Remark. Note that f need not be non-decreasing.

Proof. It suffices to prove for f : I → R, by taking Re(f) and Im(f) as usual.
Consider the total variation F of f . Define f1 := 1

2(F + f) and f2 := 1
2(F − f).

By the previous Lemma, f1 and f2 are absolutley continuous and non-decreasing.
Applying the previous results, we see that

f1(x)− f1(a) =

�

[a,x]

f
�
1 dm and f2(x)− f2(a) =

�

[a,x]

f
�
2 dm.

Hence,

f(x)− f(a) =

�

[a,x]

f
� dm,

where f
� = f

�
1 − f

�
2. �
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Chapter 8

Product Spaces

8.1 Measurability on Cartesian Products

In this section, let (X,M) and (Y,N) be measurable spaces. We want to extend our
results on integrability, measurability, as well as measures, from measure spaces to
thier Cartesian products. Hence, it is essential to construct a σ-algebra on X × Y

from a set-theoretic approach that is relevant to both (X,M) and (Y,N).

Definition 8.1.1 (Algebra). An algebra A ⊂ P(X) is a nonempty collection of
subsets in X such that A is closed under finite unions and complement. Note that
by the De’Morgan’s Laws, A is closed under finite intersections and set differences.
Obviously, if in addition A is closed under infinite unions, then A is a σ-algebra.

Definition 8.1.2 (Monotone class). A monotone class M ⊂ P(X) is a
nonempty collection of subsets in X such that M is closed under countable in-
creasing unions and countable decreasing intersections. That is, if for each i ∈ N,
Ai ⊂ Ai+1, Bi ⊃ Bi+1, and Ai, Bi ∈ M, then

�∞
i=1 Ai and

�∞
i=1 Bi ∈ M.

Let S ⊂ P(X). The monotone class generated by S is the intersection of all
monotone classes that contains S. It is defined similarly as in Proposition (1.2.1).
Thus, it is the smallest monotone class that contains S.

Remark 8.1.3. Hence every σ-algebra is a monotone class.

Theorem 8.1.4 (Monotone Class Theorem). If A is an algebra of a set X, then
the monotone class M generated by A is precisely the σ-algebra Σ generated by A.

Proof. Obviously, M ⊆ Σ, we will show Σ ⊆ M. By assumption, A ⊂ M.
Observe that given disjoint sequence {Ei}∞i=1 in M, if we let E

�
k
:=

�
k

i=1 Ei, then
{E �

k
}∞
k=1 is an increasing sequence, and let

E :=
∞�

i=1

Ei =
∞�

i=1

E
�
i
.
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If M is an algebra, then E
�
k
∈ M and by definition of monotone class, E ∈ M.

Hence, M is a σ-algebra of A, and we obtain Σ ⊆ M . Claim: M is an algebra.

Step 1: For all E ∈ M, define

M(E) := {F ∈ M : E \ F, F \ E,E ∩ F ∈ M}. (8.1.1)

Note that ∅, E ∈ M. Also, the properties listed above are symmetric. That is,
F ∈ M(F ) if and only if E ∈ M(E).

Step 2: We will show M(E) is a monotone class. Suppose F1 ⊆ F2 ⊆ . . . is an
increasing sequence in M(E). Let F :=

�∞
i=1 Fi. We need to show E \ F , F \ E,

and E ∩ F ∈ M(E). Observe that (E \ Fi) ⊇ (E \ Fi+1) are in M, thus

E \ F =
∞�

i=1

(E \ Fi) ∈ M.

Similarly, F \ E and E ∩ F ∈ M and it follows that F ∈ M(E). Likewise, for
a decreasing sequence F1 ⊇ F2 ⊇ . . . in M(E),

�∞
i=1 Fi ∈ M(E). Consequently,

M(E) is a monotone class.

Step 3: Fix an E ∈ A. For all F ∈ A, by definition of algebra, F \ E, E \ F ,
F ∩E ∈ A ⊂ M. Then, F ∈ M(E) and thus A ⊂ M(E). Recall that M(E) is a
monotone class. Therefore, M ⊆ M(E), for every E ∈ A.

Moreover, if F ∈ M, then F ∈ M(E), for all E ∈ A. From Step 1, we see that
E ∈ M(F ). Thus A ⊆ M(F ) and M ⊆ M(F ). Conclusion1: For all E ∈ M,
M ⊆ M(E).

Step 4: Finally, given any E,F ∈ M ⊆ M(E), by definition of M(E), E \F, F \
F,E ∩ F ∈ M. Furthermore, since X ∈ A ⊆ M, Ec ∈ M. Together with the
finite unions property of monotone class, M is an algebra. �

Definition 8.1.5. A measurable rectangle E ∈ X ×Y is in the form A×B,
where A ∈ M , B ∈ N . An elementary set is a finite union of disjoint measurable
rectangles. Denote E the collection of all elementary sets, and M⊗N the σ-algebra
generated by E . Note that E is an algebra.

Corollary 8.1.6. The σ-algebra M ⊗ N is the smallest monotone class con-
taining E .

Proof. Since E is an algebra, M ⊗N is the monotone class generated by E , by the
Monotone Class Theorem. �
Definition 8.1.7 (Cross section). Let E ⊂ X × Y . Define the x-section and
y-section respectively by

Ex := {y ∈ Y : (x, y) ∈ E} and E
y := {x ∈ X : (x, y) ∈ E}.

1
This step is purely set-theoretic and definition-based. Read and proceed carefully. The main

idea here is to extend the fact that M(E) is a monotone class that contains M for all E ∈ A to

that for all E ∈ M, which leads to the argument in Step 4.
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Proposition 8.1.8. If E ∈ M ⊗ N , then E
y ∈ M and Ex ∈ N , for all x ∈ X

and y ∈ Y .

Proof. Let Ω := {E : Ey ∈ M, ∀y ∈ Y }. We will show that Ω is a σ-algebra that
contains M ⊗ N . First, we begin with rectangle. Suppose E = A × B, where
A ∈ M and B ∈ N . Then,

E
y =

�
A if y ∈ B,

∅ y /∈ B,

and E
y ∈ M . Next, we show that Ω is a σ-algebra. In fact,

(i) X × Y ∈ Ω because it is a rectangle.

(ii) If En ∈ Ω for each n, then (
�∞

n=1 En)y =
�∞

n=1 E
y

n
∈ M .

(iii) Given E ∈ Ω, (Ec)y = {x : (x, y) /∈ E} = {x : (x, y) ∈ E}c = (Ey)c ∈ M .

Thus, Ω is a σ-algebra that contains all measurable recetangles. Hence, Ω ⊃ E ,
and Ω ⊃ M ⊗N . The proof for Ex is the same. �

Proposition 8.1.9. If f : X × Y → C is M ⊗ N-measurable, then f
y(x) :=

f(x, y) is M-measurable. Likewise, fx(y) := f(x, y) is N-measurable.

Proof. Let V be open in C, by measurability of f , f−1(V ) ∈ M ⊗N . Hence,

(f−1(V ))y = {x : (x, y) ∈ f
−1(V )} = {x : f(x, y) ∈ V }

= {x : (f y)(x) ∈ V } = (f y)−1(V ) ∈ M,

by Proposition (8.1.8). Thus, f y is M -measurable; likewise for fx. �

8.2 Product Measures

In this section, let (X,M, µ) and (Y,N, ν) be positive σ-finite measure spaces.
After the construction of the σ-algebra M ⊗N on X × Y , we want to construct a
natural measure on M ⊗N , again relevant to both µ and ν.

Theorem 8.2.1. Suppose Q ∈ M⊗N . Define ϕ(x) := ν(Qx) and ψ(y) := µ(Qy).
Then, ϕ is M-measurable and ψ is N-measurable. Also,

�

X

ν(Qx) dµ(x) =

�

Y

µ(Qy) dν(y). (8.2.1)

Proof. First suppose Q is a measurable rectangle, Q = A × B, for some A ∈ M ,
B ∈ N . Then,

ϕ(x) = ν(Qx) = ν(B)χA(x), and ψ(y) = µ(Qy) = µ(A)χB(y).
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Both functions are respectively M and N -measurable. Also,
�

X

ν(Qx) dµ(x) = ν(B)µ(A) =

�

Y

µ(Qy) dν(y).

Let Ω be the collection of Q ∈ M ⊗ N for which the conclusions hold. Recall
that M ⊗ N is the monotone class generated by E . Thus, if we can show Ω is a
monotone class that contains E , then M ⊗N = Ω.

We will first show E ⊂ Ω. Let {Qi}Ni=1 be a finite collection of disjoint measurable
rectangles. Then, by addivity of ν,

ν

�
(
N�

i=1

Qi)x

�
= ν

� N�

i=1

(Qi)x

�
=

N�

i=1

ν((Qi)x),

which is M -measurable. Similarly, we have N -measurability by

µ

�
(
N�

i=1

Qi)
y

�
=

n�

i=1

µ((Qi)
y).

To check equation (8.2.1),

�

X

ν

�
(
N�

i=1

Qi)x

�
dµ(x) =

N�

i=1

�

X

ν((Qi)x) dµ(x)

=
N�

i=1

�

Y

µ((Qi)
y) dν(y)

=

�

X

µ

�
(
N�

i=1

Qi)
y

�
dν(y).

Therefore, E ⊂ Ω. To see that Ω is a monotone class, let {Qn}∞n=1 be a sequence
in Ω. We will show countable union and intersection properties as follows.

Step 1: Suppose Qn ⊆ Qn+1. We will show Q :=
�∞

n=1 Qn ∈ Ω. For each
x ∈ X, by countable addivitiy and positivity of ν, ν((Qn)x) ≤ ν((Qn+1)x), and
ν((Qn)x) → ν(Qx) by monotonicty. By Monotone Convergence, ϕ(x) = ν((Qx))
is M -measurable. Likewise, ψ(y) = µ(Qy) is N -measurable. Moreover,

lim
n→∞

�

X

ν((Qn)x) dµ(x) =

�

X

ν(Qx) dµ(x),

lim
n→∞

�

Y

µ((Qn)
y) dν(y) =

�

Y

µ(Qy) dν(y).

Recall that
�

X

ν((Qn)x) dµ(x) =

�

Y

µ((Qn)
y) dν(y),

for all n. So, the limits are equal and Q ∈ Ω.
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Step 2: Suppose the Qn’s are disjoint. We will show
�∞

n=1 Qn ∈ Ω. From Step
1, it suffices to show that if Q,Q

� ∈ Ω and Q ∩ Q
� = ∅, then Q ∪ Q

� ∈ Ω. In
fact, ν((Q ∪ Q

�)x) = ν(Qx) + ν(Q�
x
). So, ϕ(x) is M -measurable; and ψ(y) is N -

measurable likewise. Moreover, the equality of integral follows simply by linearity.
We conclude that

�∞
n=1 Qn ∈ Ω.

Step 3: Now suppose Qn ⊇ Qn+1. We will show Q :=
�∞

n=1 ∈ Ω. We first assume
Q1 ⊆ A × B, for some measurable rectangle with µ(A), ν(B) < ∞. Similar to
Step 1, ν((Qn)x) → ν(Qx) by monotonicity of ν, and hence ϕ(x) is M -measurable
by Corollary 1.3.5. Likewise, ψ(y) is N -measurable. Also, ν((Qn)x), µ((Qn)y) ≤
µ(A)ν(B) < ∞. By Dominated Convergence,

lim
n→∞

�

X

ν((Qn)x) dµ(x) =

�

X

ν(Qx) dµ(x),

lim
n→∞

�

Y

µ((Qn)
y) dν(y) =

�

Y

µ(Qy) dν(y).

Thus, the limits are equal.

Step 4: In general, by σ-finiteness, there are disjoint partitions {Xi}∞i=1 and
{Yj}∞j=1 of X and Y with µ(Xi), ν(Yj) < ∞. For each Qn, let Qn,(i,j) := Qn ∩
(Xi×Yj). By Step 3,

�∞
n=1 Qn,(i,j) ∈ Ω. Since {

�∞
n=1 Qn,(i,j) : i, j ∈ N} is a disjoint

sequence, from Step 2,
�

i,j∈N

� ∞�

n=1

Qn,(i,j)

�
=

∞�

n=1

� �

i,j∈N

Qn,(i,j)

�

=
∞�

n=1

Qn = Q ∈ Ω.

Therefore, Ω = M ⊗N . �
Definition 8.2.2. The product measure µ× ν : M ⊗N → [0,∞] is defined

(µ× ν)(Q) :=

�

X

ν(Qx) dµ(x) =

�

Y

µ(Qy) dν(y). (8.2.2)

Remark 8.2.3. Note that µ× ν is indeed a measure because σ-addivity follows
from Step 2 in the proof of Theorem (8.2.1), using Monotone Convergence for
series.

Remark 8.2.4. Note that M ⊗N is not necessarily the completion of µ×ν even
if M,N are the completions of µ, ν. To see that, pick A := ∅, B /∈ N . Then
(µ× ν)(A× Y ) = 0, but A× B /∈ M ⊗N .

Theorem 8.2.5 (Fubini’s Theorem). Let (X,M, µ) and (Y,N, ν) be σ-finite
measure spaces, f be complex M ⊗N-measurable.

(a) If f ≥ 0, then
�

X

�

Y

fx dν
� �� �

M-measurable

dµ =

�

X×Y

f d(µ× ν) =

�

Y

�

X

f
y dµ

� �� �
N-measurable

dν. (8.2.3)
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(b) If f ∈ L
1(µ× ν), then for µ-a.e. x ∈ X, fx ∈ L

1(ν),
�

Y

|fx| dν < ∞,

and ψ(x) :=
�
Y
fx dν ∈ L

1(µ). Likewise for f
y and ϕ(y) :=

�
X
f
y dµ.

(c) If f is complex and
�

X

��

Y

|fx| dν
�
dµ < ∞,

then f ∈ L
1(µ× ν) and (b) holds.

(d) For all M ⊗N-measurable f ∈ L
1(µ× ν),

�

X

��

Y

fx dν

�
dµ =

�

X×Y

f d(µ× ν) =

�

Y

��

X

f
y dµ

�
dν.

Remark 8.2.6. From (b) and (c), if f is complex M ⊗N -measurable and
�

X

dµ

�

Y

|f(x, y)| dν < ∞,

then
�

X

dµ

�

Y

f(x, y) dν =

�

Y

dν

�

X

f(x, y) dµ < ∞.

Proof. (a). From Theorem (8.2.1), we see that equation (8.2.3) holds for char-
acteristic functions, hence simple functions. Now choose a sequence of simple
measurable simple functions sn ≥ 0, such that sn(x, y) � f(x, y) pointwise. Thus,
(sn)x, and sn are increasing sequences to fx and f , respectively. By Monotone
Convergence on (Y,N, ν) and (X × Y,M ⊗N, µ× ν),

lim
n→∞

�

Y

(sn)x dν =

�

Y

fx dν,

lim
n→∞

�

X×Y

sn d(µ× ν) =

�

X×Y

f d(µ× ν).

Also, ψn(x) =
�
Y
(sn)x dν is M -measurable. By Monotone Convergence on (X,M, µ),�

Y
fx dν is M -measurable, and

�

X

lim
n→∞

ψn dµ = lim
n→∞

�

X

ψn dµ.

Hence,
�

X

��

Y

fx dν

�
dµ =

�

X

�
lim
n→∞

�

Y

(sn)x dν

�
dµ

106



Product Measures

= lim
n→∞

�

X

(

�

Y

(sn)x dν) dµ

= lim
n→∞

�

X×Y

sn d(µ× ν)

=

�

X×Y

f d(µ× ν).

Likewise, the proof for f
y is the same. �

(b). Since |f | ∈ L
1(µ× ν), from (a) on |f |,
�

X

����
�

Y

fx dν

���� dµ ≤
�

X

�

Y

|fx| dν dµ

=

�

X×Y

|f | d(µ× ν) < ∞.

Therefore, ψ ∈ L
1(µ) and likewise for f

y and ϕ. �

(c). Again from (a),

∞ >

�

X

��

Y

|fx| dν
�
dµ ≥

�

X×Y

|f | d(µ× ν).

Hence, f ∈ L
1(µ× ν). �

(d). Write f = (u+−u
−)+i(v+−v

−), then apply (a) on each function as usual. �

We will see that the hypotheses in Fubini’s Theorem are necessary with the fol-
lowing counterexamples.

Example 8.2.7 (L1). Suppose X, Y := N, and µ, ν are the counting measures.
Consider the function a : X × Y → R, by

a =





1 0 0 0 . . .

−1
2 1 0 0 . . .

−1
4 −1

2 1 0 . . .

−1
8 −1

4 −1
2 1 . . .

...
...

...
... . . .




.

Note that a /∈ L
1(µ× ν). Then, the row sum is given by

�

X

�

Y

a dν dµ =
∞�

n=1

∞�

m=1

an,m = 2.

On the other hand, the coloum sum is
�

Y

�

X

a dµ dν =
∞�

m=1

∞�

n=1

an,m = 0.

Hence, the integrals are not equal.
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Example 8.2.8 (σ-finiteness). Let X, Y := [0, 1], µ be the Lebesgue measure, and
ν be the counting measure. Note that ν is not σ-finite on Y . Define

f(x, y) :=

�
1, x = y,

0, x �= y.
(8.2.4)

Then, f y = 0, µ-a.e., so
�

Y

�

X

f
y dµ dν =

�

Y

0 dν = 0.

On the other hand,
�

X

�

Y

fx dν dµ =

�

X

1 dµ = 1.

Thus, again the integrals are not equal.

Example 8.2.9 (M ⊗ N -measurability). Assume the continuum hypothesis. By
Zermelo-Frankel, there is bijective j : [0, 1] → W , where W is well-ordered. More-
over, for all x ∈ W , {y : y < x} is at most countable. Define Q := {(x, y) ∈ [0, 1]2 :
j(x) < j(y)}. Define f := χQ and Consider

fx(y) =

�
1, (x, y) ∈ Q, j(x) < j(y),

0, else.

Thus, fx is N -measurable. Fix x, then {y : j(y) < j(x)} = {y : fx(y) = 0} is at
most countable. Therefore, integrating with the Lebesgue measure gives

�

[0,1]

�

[0,1]

fx dm dm = 1.

On the other hand, f y is M -measurable, and {x : f y(x) = 1} = {x : f(x, y) =
1} = {x : j(x) < j(y)} is also at most countable. Hence,

�

[0,1]

�

[0,1]

f
y dm dm = 0.

Since m is finite and f ≥ 0, f must not be M ⊗N -measurable.

8.3 Completion of Product Measures

As we have seen, in general M⊗N is not the completion of the σ-algebra underlying
µ × ν even though M and N belong to, respectively, the completions of µ and
ν. In this section, we will see that the completion of mr × m

s is in fact m
k on

Rr × Rs = Rk. Also, we will present an alternative statement of the Fubini’s
Theorem with complete measure spaces.
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Proposition 8.3.1. Let mk be the Lebesgue measure on Rk = Rr × Rs. Then,
m

k is the completion of mr ×m
s.

Proof. Step 1: Denote Bk the Borel algebra of Rk, and M
k the completion of Bk.

First, we want to show Bk ⊂ M
r ⊗M

s ⊂ M
k. Every k-cell E can be written as

E =
r�

i=1

Ii ×
s�

i=1

Ii,

where Ii is an finite interval, so E ∈ M
r ⊗ M

s. Also, every open set in Rk

is a countable union of the k-cells. Since Bk is generated by these open sets,
Bk ⊂ M

r ⊗M
s.

Step 2: Suppose E ∈ M
r
, F ∈ M

s. By Theorem (2.4.4), there is Fσ-set A and
Gδ-set B in M

r such that A ⊂ E ⊂ B and m
r(B \A) = 0. Note that A×Rs and

B×Rs are Fσ and Gδ in M
k, respectively. Thus, A×Rs ⊂ E×Rs ⊂ B×Rs, and

m
k ((B × Rs) \ (A× Rs)) = m

k((B \ A)× Rs) = 0.

We conclude that E × Rs ∈ M
k. Likewise, Rr × F ∈ M

k. Therefore, E × F =
E × Rs ∩ Rr × F ∈ M

k; and M
r ⊗M

s ⊂ M
k.

Step 3: Let Q ∈ M
r ⊗M

s, we will show m
k(Q) = (mr ×m

s)(Q). Since Q ∈ M
k,

there are Borel sets P1, P2 ∈ Bk, such that P1 ⊂ Q ⊂ P2, and m
k(P2 \ P1) = 0.

However, recall from Step 1 that m
k and m

r × m
s agree on k-cells, hence open

sets, hence Borel sets. Thus,

(mr ×m
s)(Q \ P1) ≤ (mr ×m

s)(P2 \ P1) = m
k(P1 \ P2) = 0,

we conclude that (mr ×m
s)(Q) = (mr ×m

s)(P1) = m
k(P1) = m

k(Q).2 Therefore,
M

k is the completion of M r ⊗M
s because m

k is a complete measure on M
k. �

Lemma 8.3.2. Let (X,M
∗
, µ) be the completion of (X,M, µ). If f is M∗-measurable,

then there is M-measurable g such that f = g µ-a.e.

Proof. Suppose f is M
∗-measurable and f ≥ 0. Let {sn} be a sequence of M∗-

measurable non-negative simple functions such that sn � f . Note that

f =
∞�

n=1

(sn+1 − sn),

and sn → f . Since each sn+1 − sn is a finite linear combination of characteristics
functions,

f =
∞�

i=1

ciχEi , (8.3.1)

2
This is not hard to see using regularity.
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for some ci > 0, and Ei ∈ M
∗. By definition of M

∗, for each Ei, there are
Ai, Bi ∈ M such that Ai ⊆ Ei ⊆ Bi, and µ(Bi \ Ai) = 0. Define

g :=
∞�

i=1

ciχAi ,

which is M -measurable. Also, g �= f on (Ei \Ai) ⊂ (Bi \Ai). Hence, g = f , µ-a.e.
The general case follows as usual. �

Lemma 8.3.3. Let (X,M, µ) and (Y,N, ν) be complete measure spaces. If h is
(M × N)∗-measurable and h = 0 (µ × ν)-a.e., then for ν-almost all y ∈ Y , hy is
M-measurable and h

y(x) = 0 for µ-a.e. x ∈ X. Analogous statement can be made
for hx.

Proof. Let P := {(x, y) : h(x, y) �= 0}. Then P ∈ (M ⊗N)∗ and (µ× ν)(P ) = 0.
By completeness, there is Q ∈ M ⊗N so that P ⊂ Q and (µ× ν)(Q) = 0. Then
by Theorem (8.2.1),

�

X

µ(Qy) dν = 0,

and µ(Qy) > 0 on a set T with ν(T ) = 0. Hence, if y /∈ T , then µ(Qy) = 0, and
P

y ∈ M by completeness. Therefore, for ν-almost all y ∈ Y , hy is M -measurable
and h

y = 0, µ-a.e.; likewise for hx. �

Proof. Let P := {(x, y) : h(x, y) �= 0}. Then P ∈ (M ×N)∗ and (µ× ν)(P ) = 0.
Let Q ⊃ P with Q ∈ M × N and (µ × ν)(Q) = 0. Use Fubini on Q

y, use
completeness of µ to show P

y ∈ M . Definition of P y and all subset of P y ∈ M . �

Theorem 8.3.4 (Fubini’s Theorem with Completion). Let (X,M, µ) and (Y,N, ν)
be complete σ-finite measure spaces. Let (M ⊗ N)∗ be the completion of M ⊗ N

with respect to µ × ν. Suppose f is a (M ⊗ N)∗-measurable function on X × Y .
Then, the conclusions of Fubini’s Theorem (8.2.5) still hold, except that fx is
N-measurable for µ-a.e. x ∈ X and f

y is M-measurable for ν-a.e. y ∈ Y .

Proof. By Lemma (8.3.1), we can replace f by an M ⊗ N -measurable function
g such that g = f , (µ × ν)-a.e. Applying Fubini’s Theorem on g, together with
Lemma (8.3.2), we see that for µ-almost all x ∈ X, and ν-almost all y ∈ Y ,

fx = gx, ν-a.e. and f
y = g

y
, µ-a.e.

Therefore,
�

X×Y

f d(µ× ν) =

�

X×Y

g d(µ× ν)
�

Y

�

X

f
y dµ dν =

�

Y

�

X

g
y dµ dν
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�

X

�

Y

fx dν dµ =

�

X

�

Y

gx dν dµ

Since the right-hand sides are all equal by Fubini’s Theorem, so are the left-hand
sides. �

8.4 Convolutions

Theorem 8.4.1 (Convolution). Suppose f, g ∈ L
1(R). Define F on R2, given by

F (x, y) := f(x − y)g(y). Then, for m-almost all x ∈ R, Fx ∈ L
1(R). Moreover,

for these x’s, the function

h(x) :=

�

R
f(x− y)g(y) dy (8.4.1)

is in L
1(R), with �h�1 ≤ �f�1�g�1.

Proof. Without loss of generality, we assume both f and g are Borel measurable
functions. Thus, F is also m

2-measurable since (x, y) �→ x− y and y �→ y are both
measurable maps. By Fubini’s Theorem (8.2.5)(a),

�

R2

|F | dx dy =

�

R

�

R
|Fx| dx dy =

�

R

�

R
|f(x− y)| dx|g(y)| dy

=

�

R

�

R
|f(x)| dx|g(y)| dy =

�

R
�f�1|g(y)| dy

= �f�1�g�1,

where the third equality is given by translation invariance of the Lebesgue measure.
Hence, F ∈ L

1(R). By Fubini’s Theorem (8.2.5)(b), Fx ∈ L
1(R) for m-almost all

x ∈ R. Moreover,

h(x) =

�

R
Fx dy

is in L
1(R) and

�

R
|h(x)| dx =

�

R

����
�

R
Fx dy

���� dx ≤
�

R

�

R
|Fx| dy dx = �f�1�g�1. �

Definition 8.4.2. We call h the convolution of f and g, and denote it by f ∗g.

Convolution of Measures

Let µ and λ be complex Borel measures on R. Let F : R2 → R, by F (x, y) = x+y.
Define the convolution of µ and λ by

(µ ∗ λ)(E) := (µ× λ)(F−1(E)), (8.4.2)

for all Borel set E in R.
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Theorem 8.4.3. The convolution µ ∗ λ defines a complex Borel measure on R.

Proof. Since F is continuous, F−1(E) is a Borel set in R2. Recall that Fubini’s
Theorem applies on positive σ-finite measures. We will first show that µ×λ defines
a complex Borel measure. It will follow that µ ∗ λ is well-defined.

By polar decomposition (6.3.1), there are Borel measurable h1 ∈ L
1(µ), h2 ∈ L

1(λ),
such that

dµ = h1 d|µ| and dλ = h2 d|λ|,

with |h1| = 1, µ-a.e., and |h2| = 1, λ-a.e. Thus, for all Borel set B in R2,

(µ× λ)(B) =

�

R
λ(Bx) dµ =

�

R

��

Bx

h2(y) d|λ|(y)
�
h1(x) d|µ|(x)

=

�

R

��

R
χBxh1(x)h2(y) d|λ|(y)

�
d|µ|(x).

Also, because |χBxh1h2| ≤ 1, for µ-a.e. x and ν-a.e. y,
�

R
|χBxh1h2| d|λ| ≤ �λ�, and

�

R

��

R
|χBxh1h2| d|λ|

�
d|µ| ≤ �µ��λ� < ∞.

By Fubini’s Theorem (8.2.5)(c), χBxh1h2 ∈ L
1(µ×λ). Define h(x, y) := h1(x)h2(y).

Then, h ∈ L
1(R2) is Borel measurable and |h(x, y)| = 1, (|µ| × |λ|)-a.e. More

importantly,

(µ× λ)(B) =

�

R2

χBh d(|µ|× |λ|) (8.4.3)

shows that µ× λ is indeed a complex Borel measure. 3

Finally, if {En} are disjoint Borel sets in R, then {Bn := F
−1(En)} are disjoint

Borel sets in R2. Consequently, µ ∗ λ satisfies σ-addivity and defines a complex
Borel measure on R. �
Remark 8.4.4. Observe that |µ| ∗ |λ| = |µ ∗ λ| by Polar decomposition. Also,
all open sets are σ-compact because the collection {(a, b) : a, b ∈ Q} is a basis for
R. Since |µ|, |λ|, and |µ ∗ λ| are finite on all Borel sets, µ, λ, and µ ∗ λ are regular
complex Borel measures.

Theorem 8.4.5. The convolution µ ∗ λ is a unique complex Borel measure ν on
R such that �

R
f dν =

�

R

�

R
f(x+ y) dµ(x) dλ(y), (8.4.4)

for all f ∈ C0(R).
3
By now, we should be able to prove that easily by: Theorem (1.6.8), Monotone Convergence

with splitting, or Dominated Convergence.

112



Convolutions

Proof. Define L : C0(R) → C by

L(f) :=

�

R

�

R
f(x+ y) dµ(x) dλ(y). (8.4.5)

We will show that L is a bouned linear functional on C0(R). From equation (8.4.3),
for all f ∈ C0(R), with �f�∞ ≤ 1, by Hölder’s inequality,

����
�

R

�

R
f(x+ y)h(x, y) d|µ|(x) d|λ|(y)

���� ≤
�

R

�

R
|f(x+ y)| d|µ|(x) d|λ|(y)

≤ �µ��λ� < ∞.

Therefore, �L� ≤ �µ��λ�. By Riesz Representation Theorem of bounded lin-
ear functionals over C0, Theorem (6.5.6), there is a unique complex Borel measure
ν on R such that

L(f) =

�

R
f dν. (8.4.6)

We will show ν = µ×λ. Suppose E is an open set in R. By inner regularity, there
is an increasing sequence of compact sets {Kn}∞n=1 in E such that

�∞
n=1 Kn = E.

Moreover, by the Urysohn’s Lemma (2.2.11), there is fn ∈ Cc(R) ⊂ C0(R) such
that χKn ≤ fn ≤ χE, fn � χE. Hence, equations (8.4.5) and (8.4.6) give

�

R
fn dν =

�

R

�

R
fn(x+ y)h(x, y) d|µ|(x) d|λ|(y)

=

�

R

�

R
(fn ◦ F ) dµ(x) dλ(y). (8.4.7)

By Monotone Convergence on both sides of equation (8.4.7),

lim
n→∞

�

R
fn dν = lim

n→∞

�

R

�

R
(fn ◦ F ) dµ(x) dλ(y)

ν(E) =

�

R

�

R
(χE ◦ F ) dµ(x) dλ(y)

=

�

R2

χF−1(E) d(µ× λ)

= (µ ∗ λ)(E).

Hence, ν = µ ∗λ on all open sets. Finally, since |ν| and |µ ∗λ| are finite measures,
by outer regularity, ν(E) = (µ ∗ λ)(E) on all measurable sets E. �
Remark 8.4.6. The motivation is to see that �f ∗ g� ≤ �f��g� and �µ ∗ λ� ≤
�µ��λ� in L

1(R) and M(R). If we view ∗ as a multiplication on these Banach
spaces, then they become algebras. In general, a Banach algebra is a Banach space
B with � · � and ∗ such that (B, ∗) is an algebra (not necessarily commutative),
and �x ∗ y� ≤ �x��y� for all x, y ∈ B.

Note that (M(R), ∗) is commutative. Moreover, there is a unit in M(R), by

δo(E) :=

�
1, o ∈ E,

0, else.

It is not hard to see δo ∗ µ = µ.
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Chapter 9

The Fourier Transform

9.1 Formal Properties

Definition 9.1.1. Let f, g ∈ L
1
. We define the convolution of f and g by

(f ∗ g)(x) :=
�

R
f(x− y)g(y) dy, x ∈ R, (9.1.1)

and the Fourier transform of f as

f̂(t) :=
1√
2π

�

R
f(x)e−ixt dx, t ∈ R. (9.1.2)

Sometimes we also call the map F : f �→ f̂ the Fourier transform.

Remark 9.1.2. Observe that |f̂(t)| ≤ 1√
2π
�f�1, for all t ∈ R. Thus, F : L1 → L

∞

is a bounded linear translation. Hence, we can show that it is uniformly continuous.

Definition 9.1.3. A function ϕ : R → C is a character if |ϕ(t)| = 1 and ϕ(s +
t) = ϕ(s)ϕ(t), for all s, t ∈ R. In particular, ϕ is a homomorphism from the
additive group (R,+) to the multiplicative group (C\{0}, ·). Hence, for all α ∈ R,
x �→ e

iαx is a character.

Proposition 9.1.4. Elementary Properties of the Fourier Transform

(a) If g(x) = e
iαx

f(x), then ĝ(t) = f̂(t− α).

(b) If g(x) = f(x− α), then ĝ(t) = e
−iαt

f(t).

(c) If f, g ∈ L
1(R), then 1√

2π
�(f ∗ g) = f̂ ĝ

(d) If g(x) = f(−x), then ĝ(t) = f̂(t).

(e) For λ �= 0, if g(x) = f(xλ), then ĝ(t) = λf̂(λt).

(f) If g(x) = −ixf(x) and g ∈ L
1, then f̂ is differentiable and f̂

�(t) = ĝ(t).
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Proof. (c). By Fubini’s Theorem (8.2.5) and translation invariance,

1√
2π

�(f ∗ g)(t) = 1√
2π

�

R

�
1√
2π

�

R
f(x− y)g(y) dy

�
e
−ixt dx

=
1

2π

�

R

�

R
f(x− y)e−i(x−y)t

g(y)e−iyt dy dx

=
1√
2π

�

R
f(x− y)e−i(x−y)t dx · 1√

2π

�

R
g(y)e−iyt dy

=
1√
2π

�

R
f(x)e−ixt dx · 1√

2π

�

R
g(y)e−iyt dy

= f̂(t)ĝ(t). �

(f). Consider 1
h
(f̂(t+ h)− f̂(t)), h �= 0. Observe that by Hölder’s inequality,

�

R

����
1

h
(e−ihx − 1)f(x)

���� dx ≤ 2

h
�f�1 < ∞,

and 1
h
(e−ihx − 1)f(x) ∈ L

1. By (a) and linearity,

1

h
(f̂(t+ h)− f̂(t)) =

1

h
F
�
(e−ihx

f(x)− f(x))

�
(t)

= F
�
1

h
(e−ihx − 1)f(x)

�
(t). (9.1.3)

Note that the RHS of equation (9.1.3) is valid and well-defined. Then, given any
sequence hn → 0,

lim
n→∞

1

hn

(e−ihnx − 1)f(x) =
d

dy
[e−iyx]

����
y=0

f(x)

= −ixf(x) = g(x) ∈ L
1
.

By sequential continuity of F ,1

lim
n→∞

1

hn

�
f̂(t+ hn)− f̂(t)

�
= F

�
lim
n→∞

1

h
(e−ihx − 1)f(x)

�
(t)

= F(g)(t). (9.1.4)

Since equation (9.1.4) holds for all sequence hn → 0, it holds for h → 0. Therefore,
by the definition of derivative,

f̂
�(t) = ĝ(t), t ∈ R. �

Other properties can be proved by direct substitution. �
Remark 9.1.5. Here are some basic observations of the Fourier transform: By
(a) and (b), it converts multiplication by a character into translation, and
vice-versa. By (c), it converts convolutions to pointwise products. Property
(f) shows that it converts differentiations to products with ti.

1
We can also use Dominated Convergence. Since | 1

hn
(e−ihnx − 1)f(x)| ≤ |xf(x)| and g ∈ L1

,

we can carry the limit inside the integral, without continuity of F and L∞
.
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9.2 The Inversion Theorem

In this section, we are working toward the inverse of the Fourier transform. We
will first characterize the range of F . To prepare this, we need a continuity result
for translation.

Proposition 9.2.1. Let f : R → C, y ∈ R, and 1 ≤ p < ∞. Define the translate
of f by fy(x) := f(x − y). If f ∈ L

p, the map y �→ fy is uniformly continuous
from R to L

p.

Proof. Given ε > 0, by density of Cc(R) in L
p(R), p < ∞, there is g ∈ Cc(R) such

that �f − g�p < ε. Also, there is [−A,A] such that supp(g) ⊂ [−A,A], for some
A > 0. Thus, g is uniformly continuous on [−A,A] and g = 0 outside. By uniform
continuity, there is 0 < δ < min{1, A}, so that for all y, z ∈ R with |y− z| < δ, we
have |g(y)− g(z)| < (3A)−1/pε. Then,

�

R
|g(x− y)− g(x− z)|p dx =

�
A+δ

−A−δ

|g(x− y)− g(x− z)|p dx

<

�
A+δ

−A−δ

�
(3A)−1/pε

�p

dx

= (3A)−1εp(2A+ δ) < εp.

Thus, �gy − gz�p < ε. Finally by �-inequality,

�fy − fz�p = �fy − gy + gy − gz + gz − fz�p
≤ �fy − gy�p + �gy − gz�p + �gz − fz�p
< 3ε,

whenever |y− z| < δ. Therefore, y �→ fy is a uniformly continuous map from R to
L
p. �

Proposition 9.2.2. If f ∈ L
1, then f̂ ∈ C0(R) and �f̂�∞ ≤ 1√

2π
�f�1.

Proof. Inequality is shown in Remark (9.1.2). For the continuity of f̂ , let tn → t

in R. Note that for all n,

|f(x)(e−itnx − e
−itx)| ≤ |2f(x)|.

So, f ∈ L
1(R). By Dominated Convergence,

lim
n→∞

|f̂(tn)− f̂(t)| = lim
n→∞

1√
2π

����
�

R
f(x)(e−itnx − e

−itx) dx

����

=
1√
2π

����
�

R
lim
n→∞

f(x)(e−itnx − e
−itx) dx

����

= 0.
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By sequential continuity, f̂ is continuous from R to C. To see f ∈ C0(R), consider
e
−iπ = −1. By translation invariance and change of variable,

f̂(t) = − 1√
2π

�

R
f(x)e−itx

e
−iπ dx

= − 1√
2π

�

R
f(x)e−it(x+π/t) dx

= − 1√
2π

�

R
f(x− π

t
)e−itx dx

Hence,

2f̂(t) =
1√
2π

�

R
(f0 − fπ/t)e

−itx dx,

and we conclude |2f̂(t)| ≤ 1√
2π
�f0−fπ/t�1. By Proposition (9.2.1), the map y �→ fy

is uniformly continuous. Therefore, as t → ±∞, |f̂(t)| → 0. �

Definition 9.2.3. Let H(t) := e
−|t|. For λ > 0, define

hλ(x) :=
1√
2π

�

R
H(λt)eitx dt =

�
2

π

λ

λ2 + x2
. (9.2.1)

Remark 9.2.4. Note that 0 < H(λt) ≤ 1 and H(λt) → 1 as λ → 0. The
last equality comes from

�∞
0 H(λt)eitx dt = 1

λ−ix
, and

� 0

−∞ H(λt)eitx dt = 1
λ+ix

.
Moreover, 1√

2π

�
R hλ(x) dx = 1.

Lemma 9.2.5. Let f ∈ L
1, then

(f ∗ hλ)(x) =

�

R
H(λt)eixtf̂(t) dt. (9.2.2)

Proof. By definitions,

(f ∗ hλ)(x) =

�

R
f(x− y)hλ(y) dy

=

�

R
f(x− y)

��

R

1√
2π

H(λt)eity dt

�
dy

=
1√
2π

�

R

�

R
f(x− y)H(λt)eity dt dy.

Note that for each x, f(x−y)H(λt)eity ∈ L
1(m(t)×m(y)). By Fubini’s Theorem

(8.2.5), we can switch the order of integrations. Also, eity = e
−it(x−y) · eitx. Hence,

(f ∗ hλ)(x) =

�

R
H(λt)

�
1√
2π

�

R
f(x− y)eit(x−y) dy

�
e
itx dt

=

�

R
H(λt)eitxf̂(t) dt. �
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Lemma 9.2.6. If g ∈ L
∞ and g is continuous at x ∈ R, then

lim
λ→0

1√
2π

(g ∗ hλ)(x) = g(x). (9.2.3)

Proof. Recall that 1√
2π

�
R hλ(x) dx = 1. Also, note that for λ > 0,

1

λ
h1(

x

λ
) =

1

λ
·
�

2

π

�
1

1 + x2

λ2

�

=

�
2

π

λ

λ2 + x2
= hλ(x).

Now consider the following:

1√
2π

(g ∗ hλ)(x)− g(x) =
1√
2π

�

R
g(x− y)hλ(y) dy −

1√
2π

�

R
g(x)hλ(y) dy

=
1√
2π

�

R
(g(x− y)− g(x))hλ(y) dy

=
1√
2π

�

R
(g(x− y)− g(x))

1

λ
h1(

y

λ
) dy

=
1√
2π

�

R
(g(x− λs)− g(x))h1(s) ds,

where the last equality is given by change of variable and translation invariance.
Now, suppose λn → 0. Since |g(x − λs) − g(x)| ≤ 2�g�∞, and h1 ∈ L

1, by
Dominated Convergence,

lim
n→∞

1√
2π

(g ∗ hλ)(x)− g(x) =
1√
2π

�

R
lim
n→∞

(g(x− λns)− g(x))h1(s) ds

= 0. (9.2.4)

Note that the continuity of g is used in carrying the limit inside g(x−λns). Finally,
since equation (9.2.4) holds for all λn → 0, it also holds for λ → 0. �

Lemma 9.2.7. Let 1 ≤ p < ∞ and f ∈ L
p. Then

lim
λ→0

����

����
1√
2π

(f ∗ hλ)− f

����

����
p

= 0. (9.2.5)

Proof. Step 1: Observe that hλ ∈ L
q, where q is the exponent conjugate to p,

q ∈ [1,∞]. By Hölder’s inequality, for all x ∈ X,

(f ∗ hλ)(x) =
1√
2π

�

R
f(x− y)hλ(y) dy ≤ �f�p�hλ�q < ∞,

Hence, (f(x− y)− f(x))hλ(y) ∈ L1(m(y)). By Jensen’s inequality (3.1.3),
����

1√
2π

(f ∗ hλ)(x)− f(x)

����
p

=

����
1√
2π

�

R
(f(x− y)− f(x))hλ(y) dy

����
p
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≤ 1√
2π

�

R

����(f(x− y)− f(x))hλ(y)

����
p

dy

≤ 1√
2π

�

R
|f(x− y)− f(x)|phλ(y) dy. (9.2.6)

Step 2: Integrating equation (9.2.6) over x, we see that
����

����
1√
2π

(f ∗ hλ)− f

����

����
p

p

≤ 1√
2π

�

R

�

R
|f(x− y)− f(x)|phλ(y) dy dx. (9.2.7)

Recall that f ∈ L
p. Thus, by Hölder’s inequality, | 1√

2π
f(x − y) − f(x)|phλ(y) ∈

L
1(m(y)). By Fubini’s Theorem (8.2.5)(c), we can switch the order of integra-

tions in inequality (9.2.7).

Step 3: Define g : R → [0,∞], given by

g(y) :=

�

R
|f(x− y)− f(x)|p dx = �fy − f�p

p
. (9.2.8)

Then, we have
����

����
1√
2π

(f ∗ hλ)− f

����

����
p

p

≤ 1√
2π

�

R
g(y)hλ(y) dy. (9.2.9)

Observe that �g�∞ ≤ �fy�pp + �f�p
p
≤ 2�f�p

p
< ∞. Thus, g ∈ L∞. Moreover,

since y �→ fy is uniformly continuous in L
p, g is continuous on R.

Step 4: Finally, note that g(0) = 0, by Lemma (9.2.6),

lim
λ→0

1√
2π

�

R
g(y)hλ(y) dy = lim

λ→0

1√
2π

�

R
g(0− (−y))hλ(−y) dy

= lim
λ→0

1√
2π

�

R
g(0− s)hλ(s) ds

= lim
λ→0

1√
2π

(g ∗ hλ)(0)

= g(0) = 0.

Therefore, equation (9.2.5) follows from equation (9.2.9) as λ → 0. �
Theorem 9.2.8 (The Inversion Theorem). If f, f̂ ∈ L

1, and

g(x) =
1√
2π

�

R
f̂(t)eitx dt, (9.2.10)

then g ∈ C0(R) and f(x) = g(x) for m-almost every x ∈ R.

Proof. By Lemma (9.2.7),

lim
λ→0

����

����
1√
2π

(f ∗ hλ)− f

����

����
1

= 0.
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Pick a sequence λn → 0. Then, { 1√
2π
(f ∗ hλn)} is L

1-convergent to f . By Lemma
(3.2.8), there is a subsequence {λnk

} such that,2

1√
2π

lim
k→∞

(f ∗ hλnk
)(x) = f(x), (9.2.11)

for m-almost every x ∈ R. On the LHS of equation (9.2.11), by Lemma (9.2.5)
and Dominated Convergence,

f(x) =
1√
2π

lim
k→∞

(f ∗ hλnk
)(x)

=
1√
2π

lim
n→∞

�

R
H(λnt)e

ixt
f̂(t) dt

=
1√
2π

�

R
lim
n→∞

H(λnt)e
ixt
f̂(t) dt

=
1√
2π

�

R
e
ixt
f̂(t) dt

= g(x),

for m-almost all x ∈ R. Finally, note that f̂ ∈ L
1 and for m-almost all x ∈ R,

g(−x) =
1√
2π

�

R
f̂ e

−ixt dt = F(f̂)(x).

By Proposition (9.2.2), g ∈ C0(R). �

Corollary 9.2.9 (The Uniqueness Theorem). If f ∈ L
1 and f̂ = 0 a.e., then

f = 0 a.e.

Proof. Simply let f̂ = 0 in equation (9.2.10). Then f(x) = g(x) = 0, m-a.e. This
is saying the Fourier transform as a linear map is injective. �

9.3 The Plancherel Theorem

Since m(R) = ∞, L2 �⊂ L
1, and the definition of Fourier transform cannot be

applied on all f ∈ L
2. However, if f ∈ L

1 ∩ L
2, then it turns out that f̂ ∈ L

2

and �f�2 = �f̂�2. In other words, F : L1 ∩L
2 → L

2 is a linear isometry. In this
section, we want to extend the Fourier transform to an isometry from L

2 to L
2.

This extension is sometimes called the Plancherel transform.

Theorem 9.3.1 (Plancherel’s Theorem). If f ∈ L
1 ∩ L

2, then f̂ ∈ L
2 and

�f�2 = �f̂�2. Moreover, F extends uniquely to an Hilbert space isometric isomor-
phism from L

2 to L
2.

2
The main reason we are using subsequence here is to pass L1

-convergence to almost every-

where pointwise convergence, then apply Dominated Convergence on the integral. Hence, it is

enough to pick one sequence.
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The Plancherel Theorem

Proof. Step 1: Suppose f ∈ L
1∩L

2. Define f̃(x) := f(−x) and g := f ∗ f̃ . Then,

g(x) =

�

R
f(x− y)f̃(y) dy =

�

R
f(x− y)f(−y) dy

=

�

R
f(x+ s)f(s) ds = �f−x, f�L2 .

Step 2: Recall that the maps x �→ fx and �·, y� are continuous. Thus, g : R → C
is a continuous map. Also, the Cauchy-Schwarz inequality gives

|g(x)| = |�fx, f�| ≤ �fx�2�f�2 = �f�22.

Hence, g is bounded. Moreover, by the Fubini’s Theorem (8.2.5),
�

R
|g| dx =

�

R

����
�

R
f(x+ y)f(y) dy

���� dx

≤
�

R

�

R
|f(x+ y)||f(y)| dy dx

=

�

R
|f(x+ y)| dx

�

R
|f(y)| dy

= �f�21 < ∞.

We conclude that g ∈ L1.

Step 3: Since g ∈ L
1, by Lemma (9.2.5),

(g ∗ hλ)(0) =

�

R
H(λt)ĝ(t) dt. (9.3.1)

On the LHS of equation (9.3.1), since g is bounded and continuous, by Lemma
(9.2.6),

lim
λ→0

(g ∗ hλ)(0) =
√
2πg(0) =

√
2π�f�22. (9.3.2)

On the RHS, observe that by the Fubini’s Theorem,

ĝ(t) =
1√
2π

�

R

��

R
f(x+ y)f(y) dy

�
e
−itx dx

=
1√
2π

�

R
f(x+ y)e−it(x+y) dx

�

R
f(y)eity dy

= f̂(t) ·
�

R
f(y)e−ity dy

=
√
2π · |f̂(t)|2.

Given any sequence λn � 0, we have H(λnt) � 1. By Monotone Convergence,

lim
λn→0

�

R
H(λnt)ĝ(t) dt =

�

R
lim
λn→0

H(λnt)ĝ(t) dt
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=
√
2π

�

R
|f̂(t)|2 dt

=
√
2π�f̂�22. (9.3.3)

Hence, equations (9.3.2) and (9.3.3) show that �f�2 = �f̂�2, and f̂ ∈ L
2.

Step 4: For the extension part, recall that L1∩L
2 is dense in L

2 because of simple
functions. We will first show that Y := F(L1∩L

2) is dense in L
2. By continuity, it

is equivalent to show Y
⊥ = {0}. For all α ∈ R, λ > 0, define gα,λ(x) := H(λx)eiαx.

Then, by definition (9.2.3),

F(gα,λ)(t) =
1√
2π

�

R
H(λx)eix(α−t) dx = hλ(α− t).

Since gα,λ ∈ L
1 ∩ L

2, hλ(α− t) ∈ Y . Now, suppose w ∈ Y
⊥. By orthogonality,

(hλ ∗ w)(x) =
�

R
hλ(x− y)w(y) dy

= �hλ(x− y), w(y)�L2 = 0,

for all x ∈ R. Recall that hλ is real-valued, by translation invariance,

�w(y), hλ(x− y)�L2 =

�

R
w(y)hλ(x− y) dy

=

�

R
w(x− s)hλ(s) ds

= (w ∗ hλ)(x) = 0,

for all x ∈ R and λ > 0. Finally, by Lemma (9.2.7),

lim
λ→0

����

����
1√
2π

(w ∗ hλ)− w

����

����
2

= lim
λ→0

�0− w�2 = 0.

Consequently, w = 0 and Y is dense in L
2.

Step 5: To summarize, F : L1 ∩ L
2 → Y maps a dense subspace in L

2 to a dense
subspace in L

2 isometrically. Now, we extend F : L2 → L
2 naturally by

F(f) := lim
n→∞

F(fn),

where fn ∈ L
1 ∩ L

2 and fn
L
2

−→ f . Note that such F is well-defined, unique, and
continuous by sequential limit and isometry. Moreover, given any g ∈ L

2, there is
f̂n ∈ Y such that f̂n

L
2

−→ g. By isometry, F(fn)
L
2

−→ g, where F(fn) = f̂n. Since
{fn} is L

2-Cauchy, fn
L
2

−→ f ∈ L
2. Then,

F(f) = lim
n→∞

F(fn) = g.

By Proposition (4.5.2), F is a Hilbert space isometric isomorphism. �
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The Plancherel Theorem

Corollary 9.3.2. Let F : L2 → L
2 be the Fourier transform. Then, the follow-

ing symmetric relations hold: For all f ∈ L
2, with f̂ := F(f),

�F(fχ[−A,A])− f̂�2 → 0, (9.3.4)

and
�F−1(f̂χ[−A,A])− f�2 → 0, (9.3.5)

as A → ∞.

Proof. By isometry and Dominated Convergence,

�f̂ − F(fχ[−A,A])�2 = �F(f − fχ[−A,A])�2
= �f − fχ[−A,A]�2 → 0,

and

�f − F−1(f̂χ[−A,A])�2 = �F−1(f̂ − f̂χ[−A,A])�2
= �f̂ − f̂χ[−A,A]�2 → 0,

as A → ∞. �
Corollary 9.3.3. Suppose f ∈ L

2 and f̂ ∈ L
1, then

f(x) =

�

R
f̂(t)eitx dt, m-a.e.

Proof. From Corollary (9.3.2), we see that �F−1(f̂) − f�2 = 0, and F−1(f̂) = f ,
m-a.e. Since f̂ ∈ L

1, the Inversion Theorem (9.2.8) gives

f(x) =

�

R
f̂(t)eitx dt, m-a.e. �

Remark 9.3.4 (Important Difference between L
1 and L

2). If f ∈ L
1, then

the f̂(t) is defined for all t ∈ R in definition (9.1.1). However, if f ∈ L
2, the

Plancherel Theorem defines f̂ uniquely as an element in the Hilbert space L
2. In

other words, f̂(t) is only defined almost everywhere, not as a pointwise function
on R.
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Appendix A

Hamlos’ Approach in the

Construction of Measures

A.1 Preliminaries

Definition A.1.1 (Ring). Let X be a set. A set R ⊂ P(X) is a ring if for all
E,F ∈ R, we have E ∪ F ∈ R and E \ F ∈ R .

Example A.1.2. Let Q = {[a, b) ⊂ R : −∞ < a ≤ b < ∞} and R denote the
collection of finite unions of elements in Q. Then R is a ring.

Proposition A.1.3. If E ⊂ P(X), then there exists a unique ring R(E) such
that E ⊂ R(E) and if R is another ring such that E ⊂ R, then R(E) ⊂ R.

Proof. Define Ω := {R ⊂ P(X) : R is a ring and E ⊂ R} and define

R(E) :=
�

R∈Ω

R.

We will show that R(E) is a ring. Let E,F ∈ R(E). Then E,F ∈ R for all rings
R in Ω. Since each R is a ring we have that E ∪ F ∈ R and E \ F ∈ R, which
implies that E ∪ F ∈ R(E) and E \ F ∈ R(E). Hence, R(E) is a ring.

Since E ⊂ R for each R ∈ Ω, it follows that E ⊂ R(E). Now suppose that R is a
ring such that E ⊂ R. Then, R ∈ Ω and R(E) ⊂ R.

For the uniqueness, suppose that R1(E) and R2(E) are two such rings that satisfy
the required properties. It follows that R1(E) ⊂ R2(E) and R2(E) ⊂ R1(E).
Hence, R1(E) = R2(E). �
Example A.1.4. If Q = {[a, b) ⊂ R : −∞ < a ≤ b < ∞}, then R(Q) is given by
all finite unions of elements in Q.

Definition A.1.5 (σ-ring). Let X be a set. A set S ⊂ P(X) is a σ-ring if

i. S is a ring.
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ii. if E1, E2, . . . ∈ S, then
�∞

j=1 Ej ∈ S.

Theorem A.1.6. If X ∈ S for a σ-ring S, then S is a σ-algebra on X.

Proof. First, by assumption we have that X ∈ S. Next, let E ∈ S. Then since
X ∈ S and S is a ring, EC = X \ E ∈ S. Thus, S is closed under complements.
Finally, let E1, E2, . . . ∈ S. Then by definition of a σ-ring we have that

�∞
j=1 Ej ∈

S, and therefore S is closed under countable unions. Hence, S is a σ-algebra. �

Definition A.1.7. Let E ⊂ P(X). We denote S(E) the smallest σ-ring con-
taining E and we call S(E) the σ-ring generated by E .

Definition A.1.8 (Monotone class). A non-empty subset M ⊂ P(X) is
called a monotone class if

i. M is closed under unions of increasing sequences.

ii. M is closed under intersections of decreasing sequences.

Definition A.1.9. Let E ⊂ P(X). Then M(E) is the smallest monotone class
containing E and we call M(E) the monotone class generated by E .

Theorem A.1.10. If R is a ring, then M(R) is a σ-ring.

Proof. First, if M is a monotone class and a ring, then M is a σ-ring. To see this,
let E1, E2, . . . ∈ M, and for each n ∈ N, define

Fn =
n�

j=1

Ej.

Thus {Fn}∞n=1 is an increasing sequence and if M is a monotone class, then�∞
n=1 Fn ∈ M. Since

�∞
n=1 Fn =

�∞
j=1 Ej, we have that

�∞
j=1 Ej ∈ M. Hence,

M is closed under countable unions and it is a σ-ring.

Next, we show that M(R) is a ring. For each F ∈ M(R), define K(F ) to be

K(F ) = {E : E \ F, F \ E,E ∪ F ∈ M(R)}.

Note that if F ∈ R, then for all E ∈ R, E ∈ K(F ). We claim that K(F ) is a
monotone class. To see this, suppose that E1, E2, . . . ∈ K(F ) with E1 ⊂ E2 ⊂
E3 ⊂ · · · and let E :=

�∞
j=1 Ej. We then have that

E \ F =
∞�

j=1

(Ej \ F ).

Since Ej \ F ∈ M(R), by definition of K(F ), it follows that E \ F ∈ M(R).
A similar argument shows that F \ E ∈ M(R) and F ∪ E ∈ M(R). Thus,
K(F ) is closed under unions of increasing sequences. Similarly, one can show that
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K(F ) is closed under intersections of decreasing sequences, and therefore K(F ) is
a monotone class.

We have seen that if F ∈ R, then R ⊂ K(F ) and since K(F ) is a monotone class,
it follows that M(R) ⊂ K(F ).

If E ∈ K(F ), then by symmetry, F ∈ K(E). Also, we note that if E ∈ M(R)
and F ∈ R, then F ∈ K(E). If E ∈ M(R), then R ⊂ K(E). We conclude that

F ∈ M(R) ⇒ M(R) ⊂ K(F ).

Thus, if E ∈ M(R), then E ∈ K(F ) and thus F \E ∈ M(R) and E∪F ∈ M(R),
by the definition of K(F ). This means that M(R) is a ring, and by the first part
of the proof, it follows that M(R) is a σ-ring. �

Theorem A.1.11. If R is a ring, then S(R) = M(R).

Proof. From the previous theorem, we have that M(R) is a σ-ring such that
R ⊂ M(R). Since S(R) is the smallest σ-ring containing R, it follows that
S(R) ⊂ M(R). But a σ-ring is also a monotone class and since M(R) is the
smallest monotone class containing R, it follows that M(R) ⊂ S(R). �

A.2 Measures

Definition A.2.1 (measure). Let R be a ring. A measure on R is a function
µ : R → [0,∞] satisfying

i. µ(∅) = 0.

ii. if E1, E2, . . . are pairwise disjoint elements in R and if
�∞

j=1 Ej ∈ R, then
µ(
�∞

j=1 Ej) =
�∞

j=1 µ(Ej).

Example A.2.2. Take Q = {[a, b) ⊂ R : −∞ < a ≤ b < ∞} and let R(Q) be the
ring generated by Q. Then there is a measure µ such that µ([a, b)) = b − a. We
will give a construction of µ. For now, define ϕ : Q → [0,∞), by

ϕ([a, b)) = b− a.

Lemma A.2.3. If [a, b] ⊂
�

n

j=1(aj, bj), then b− a ≤
�

n

j=1(bj − aj).

Lemma A.2.4. If I1, I2, . . . ∈ Q are pairwise disjoint and P :=
�∞

j=1 Ij ∈ Q, then
ϕ(P ) =

�∞
j=1 ϕ(Ij).

Proof. First suppose we have P = [a, b) and Ij = [aj, bj). Given ε > 0, we have

[a, b− ε] ⊂ P =
∞�

j=1

Ij ⊂
∞�

j=1

(aj −
ε

2j
, bj).
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By compactness of [a, b− ε] and the Heine-Borel property, there is an N ∈ N such
that

[a, b− ε] ⊂
N�

j=1

(aj −
ε

2j
, bj),

and by the preceding lemma it follows that

b− a− ε ≤
N�

j=1

(bj − aj +
ε

2j
) ≤

∞�

j=1

(bj − aj +
ε

2j
)

=
∞�

j=1

(bj − aj) + ε.

Thus we have that ϕ(P ) = b− a ≤
�∞

j=1(bj − aj) + 2ε =
�∞

j=1 ϕ(Ij) + 2ε. Since
it holds for all ε > 0, we obtain

ϕ(P ) ≤
∞�

j=1

ϕ(Ij).

To establish the reverse inequality, fix N ∈ N. Then we see that

N�

j=1

Ij ⊂ P = [a, b).

Assume that a1 ≤ a2 ≤ · · · ≤ aN . By disjointness we have bj ≤ aj+1, a ≤ a1, and
bN ≤ b. Thus,

N�

j=1

ϕ(Ij) = (b1 − a1) + (b2 − a2) + · · ·+ (bN − aN)

≤ (a2 − a1) + (a3 − a2) + · · ·+ (aN − aN−1) + (bN − aN)

= bN − a1 ≤ b− a

= ϕ(P ).

As N → ∞ we obtain
∞�

j=1

ϕ(Ij) ≤ ϕ(P ),

and therefore ϕ(P ) =
�∞

j=1 ϕ(Ij).

Next we show that ϕ extends uniquely to finite unions of sets in Q, i.e., to R(Q).
Take

P1, P2, . . . , Pn ∈ Q and S1, S2, . . . , Sm ∈ Q

as pairwise disjoint sequences and assume E = ∪n

j=1Pj = ∪m

l=1Sl. Then let

Pj,l = Pj ∩ Sl.
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We note that Pj,l ∈ Q and by the preceding argument we have that

ϕ(Pj) =
m�

l=1

ϕ(Pj,l)

and so
n�

j=1

ϕ(Pj) =
n�

j=1

m�

l=1

ϕ(Pj,l).

But the same number holds for the sequence Sl = ∪n

j=1Pj,l because from the result
that ϕ(Sl) =

�
n

j=1 ϕ(Pj,l) we obtain

m�

l=1

ϕ(Sl) =
m�

l=1

n�

j=1

ϕ(Pj,l).

Now we can define µ(E) =
�

n

j=1 ϕ(Pj) for any disjoint sequence Pj such that
E = ∪n

j=1Pj. Now what remains is to show that µ is countably additive. Let
E1, E2, . . . ∈ R(Q) be a sequence of pairwise disjoint elements and E = ∪∞

j=1Ej ∈
R(Q). Write

Ej =

nj�

l=1

Il,j.

Let’s assume first that E ∈ Q. Then by our lemma

µ(E) = ϕ(E) =
∞�

j=1

nj�

l=1

ϕ(Il,j)

=
∞�

j=1

ϕ(Ej)

=
∞�

j=1

µ(Ej).

For the general case E ∈ R(Q), write

E =
m�

s=1

Is where Is ∈ Q.

We have that

Is = Is ∩ E = Is ∩ (∪∞
j=1Ej) =

∞�

j=1

(Is ∩ Ej).

From the above work, we see that

µ(Is) =
∞�

j=1

µ(Is ∩ Ej)

128



Measures

and summing over all the s we get

µ(E) =
m�

s=1

µ(Is) =
m�

s=1

∞�

j=1

µ(Is ∩ Ej)

=
∞�

j=1

m�

s=1

µ(Is ∩ Ej)

=
∞�

j=1

µ(∪m

s=1(Is ∩ Ej))

=
∞�

j=1

µ(Ej ∩ (∪m

s=1Is))

=
∞�

j=1

µ(Ej ∩ E)

=
∞�

j=1

µ(Ej).

We recall that E =
�

m

s=1 Is and

Ej =
m�

s=1

(Is ∩ Ej) =
m�

s=1

(Is ∩ (∪nj

l=1Il,j)) =
m�

s=1

nj�

l=1

(Is ∩ Il,j)

which represents Ej as a disjoint union, so

µ(Ej) =
m�

s=1

nj�

l=1

ϕ(Is ∩ Il,j).

On the other hand we have that ϕ(E) =
�

m

s=1 ϕ(Is) and

Is ∩ E = Is = Is ∩ (∪∞
j=1 ∪

nj

l=1 Il,j).

From ϕ being countably additive on Q, we get that

ϕ(Is) =
∞�

j=1

nj�

l=1

ϕ(Is ∩ Il,j)

and summing over s we obtaine

µ(E) =
m�

s=1

∞�

j=1

nj�

l=1

ϕ(Is ∩ Il,j)

=
∞�

j=1

m�

s=1

nj�

l=1

ϕ(Is ∩ Il,j)

=
∞�

j=1

µ(Ej).

Thus, we conclude that µ is countably additive on R(Q). Next, we want to extend
µ to the σ-ring M(R) where R = R(Q). �
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Definition A.2.5 (Hereditary σ-ring). Let R be a ring. Let H(R) denote the
set of all E ⊂ X such that E1, E2, . . . ∈ R and E ⊂

�∞
j=1 Ej. We call H(R) the

hereditary σ-ring generated by R.

Definition A.2.6 (Outer measure). An outer measure ν on H(R) is a set
function ν : H(R) → [0,∞] satisfies the followings:

i. If E,F ∈ H(R) and E ⊂ F , then ν(E) ≤ ν(F ).

ii. If E1, E2, . . . ∈ H(R), then ν(
�∞

j=1 Ej) ≤
�∞

j=1 ν(Ej).

iii. ν(∅) = 0.

Theorem A.2.7. Let R be a ring and µ a measure on R. Then µ
∗ : H(R) →

[0,∞] defined by

µ
∗(E) = inf

� ∞�

j=1

µ(Ej) : Ej ∈ R, E ⊂
∞�

j=1

Ej

�

is an outer measure. Moreover, if E ∈ R, then µ
∗(E) = µ(E).

Proof. Property iii. is included in the last sentence because ∅ ∈ R. For property
i., suppose E,F ∈ H(R), and E ⊂ F . By the hereditary property there are
F1, F2, . . . ∈ R such that

E ⊂ F ⊂
∞�

j=1

Fj.

By taking infimum of sums with measures of such Fj’s we conclude

µ
∗(E) ≤ µ

∗(F ).

For property ii., consider E1, E2, . . . ∈ H(R) and let E :=
�∞

j=1 Ej. If for some
j ∈ N, µ∗(Ej) = ∞, then by monotinicity in property i., we have µ

∗(E) = ∞.

Thus suppose µ
∗(Ej) < ∞ for all j ∈ N. By definition of µ∗, given ε > 0, there

are sets Ej,1, Ej,2, . . . ∈ R such that

Ej ⊂
∞�

l=1

Ej,l

and

µ
∗(Ej) +

ε

2j
>

∞�

l=1

µ(Ej,l),

for all j ≥ 1. Note that E ⊂
�∞

j=1 Ej ⊂
�∞

j,l=1 Ej,l. Since µ
∗(Ej,l) = µ(Ej,l) for

Ej,l ∈ R, we see that

µ
∗(E) ≤

∞�

j,l=1

µ
∗(Ej,l) =

∞�

j,l=1

µ(Ej,l)
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≤
∞�

j=1

(µ∗(Ej) +
ε

2j
) =

∞�

j=1

µ
∗(Ej) + ε.

Now taking ε � 0, andwe see that

µ
∗(E) ≤

∞�

j=1

µ
∗(Ej).

We conclude that µ
∗ is an outer measure. �

A.3 σ-Finite Measures

Definition A.3.1. A measure µ on a ring R is called σ-finite if for each E ∈ R,
there are E1, E2, . . . ∈ R with E ⊂

�∞
j=1 Ej and µ(Ej) < ∞ for all j ≥ 1.

Definition A.3.2. Let µ be a measure on a ring R. A set E ∈ H(R) is µ∗-
measurable if for all A ∈ H(R),

µ
∗(A) = µ

∗(A ∩ E) + µ
∗(A ∩ E

C).

Theorem A.3.3. Let µ be a measure on a ring R. The collection M of all µ∗-
measurable sets is a σ-ring containing R. Moreover, restricting µ

∗ to M defines
a complete measure.

Proof. We first prove that M is a ring. Let E,F ∈ M. For all A ∈ H(R), then
since E is µ

∗-measurable,

µ
∗(A) = µ

∗(A ∩ E) + µ
∗(A ∩ E

C).

But since A ∩ E ∈ H(R) and A ∩ E
c ∈ H(R), we also have

µ
∗(A ∩ E) = µ

∗(A ∩ E ∩ F ) + µ
∗(A ∩ E ∩ F

C),

and
µ
∗(A ∩ E

C) = µ
∗(A ∩ E

C ∩ F ) + µ
∗(A ∩ E

C ∩ F
C).

Adding these last two expressions gives

µ
∗(A) = µ

∗(A ∩ E ∩ F ) + µ
∗(A ∩ E ∩ F

C)

+ µ
∗(A ∩ E

C ∩ F ) + µ
∗(A ∩ E

C ∩ F
C).

Since A ∩ (E ∪ F ) ∈ H(R), replacing A by A ∩ (E ∪ F ) gives

µ
∗(A ∩ (E ∪ F )) = µ

∗(A ∩ E ∩ F ) + µ
∗(A ∩ E ∩ F

C) + µ
∗(A ∩ E

C ∩ F ).

So comparing these two expressions we have

µ
∗(A) = µ

∗(A ∩ (E ∪ F )) + µ
∗(A ∩ E

c ∩ F
C)
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= µ
∗(A ∩ (E ∪ F )) + µ

∗(A ∩ (E ∪ F )C).

Thus we have shown that E ∪ F ∈ M. Replacing A by A ∩ (E ∩ F
C) gives that

E \ F = E ∩ F
C ∈ M. Therefore, M is a ring.

To show that M is a σ-ring, take E1, E2, . . . ∈ M pairwise disjoint and let E =�∞
j=1 Ej. We then have

µ
∗(A ∩ (E1 ∪ E2)) =µ

∗(A ∩ (E1 ∪ E2) ∩ E1) + µ
∗(A ∩ (E1 ∪ E2) ∩ E

C

1 )

=µ
∗(A ∩ E1) + µ

∗(A ∩ E2).

By induction, it follows that µ∗(A∩ (∪n

j=1Ej)) =
�

n

j=1 µ
∗(A∩Ej). Hence, for each

n ∈ N,

µ
∗(A) = µ

∗(A ∩ (
n�

j=1

Ej)) + µ
∗(A ∩ (

n�

j=1

Ej)
C)

≥ µ
∗(A ∩ (

n�

j=1

Ej)) + µ
∗(A ∩ (

∞�

j=1

Ej)
C)

=
n�

j=1

µ
∗(A ∩ Ej) + µ

∗(A ∩ E
C).

Now letting n → ∞ we obtain

µ
∗(A) ≥

∞�

j=1

µ
∗(A ∩ Ej) + µ

∗(A ∩ E
c). (†)

Since (A ∩ E) ⊂
�∞

j=1(A ∩ Ej), by subadditivity of µ∗ we have

µ
∗(A ∩ E) ≤

∞�

j=1

µ
∗(A ∩ Ej). (‡)

Combining (†) and (‡) shows that

µ
∗(A) ≥ µ

∗(A ∩ E) + µ
∗(A ∩ E

C).

On the other hand, since A ⊂ [(A ∩ E) ∪ (A ∩ E
c)], we have

µ
∗(A) ≤ µ

∗(A ∩ E) + µ
∗(A ∩ E

C)

by subadditivity of µ∗. Hence,

µ
∗(A) ≥ µ

∗(A ∩ E) + µ
∗(A ∩ E

c) ≥ µ
∗(A)

and µ
∗(A) = µ

∗(A ∩ E) + µ
∗(A ∩ E

c). We conclude that E ∈ M and M is a
σ-ring.
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Next, we will show that R ⊂ M. For all E ∈ R, take A ∈ H(R) with µ
∗(A) < ∞.

For all ε > 0, there are E1, E2, . . . ∈ R such that

A ⊂
∞�

j=1

Ej and µ
∗(A) + ε >

∞�

j=1

µ
∗(Ej).

Also,

µ
∗(A ∩ E) ≤

∞�

j=1

µ
∗(Ej ∩ E).

Replacing E by E
C we obtain

µ
∗(A ∩ E

C) ≤
∞�

j=1

µ
∗(Ej ∩ E

C).

Consequently,

µ
∗(A) ≤ µ

∗(A ∩ E) + µ
∗(A ∩ E

c)

≤
∞�

j=1

[µ∗(Ej ∩ E) + µ
∗(Ej ∩ E

c)]

=
∞�

j=1

µ
∗(Ej)

≤ µ
∗(A) + ε.

Since it holds for any ε > 0,

µ
∗(A) = µ

∗(A ∩ E) + µ
∗(A ∩ E

C).

Therefore, E ∈ M and M ⊃ S(R).

Now, to see that µ
∗ restricted to M defines a measure, denote

µ = µ
∗|M.

We choose E = A in the above calculation. Given a pairwise disjoint sequence
{Ej}∞j=1 such that E =

�∞
j=1 Ej, we have

µ
∗(E) ≥

∞�

j=1

µ
∗(E ∩ Ej) + µ

∗(EC ∩ Ej) =
∞�

j=1

µ
∗(Ej).

But since E =
�∞

j=1 Ej,

µ
∗(E) ≤

∞�

j=1

µ
∗(Ej)

also holds by subadditivity of µ∗. Thus we get the desired σ-additivity and µ is a
measure.
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