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Chapter 1

Abstract Integration

1.1 o-algebras

The classical Riemann integral relies on continuity, which is a topological property.
One of our main objectives is to generalize Riemann integral. Hence, it is essential
to enlarge the class of integrable functions from merely continuous functions. In
analogy to a topology, we want to construct an underlying space of subsets on
which more functions can be integrated similarly. We will study this space and
the corresponding functions from section 1.1 to 1.4.

Throughout this chapter, let X be a nonempty set and P(X) = {S: S C X}
denote its power set.

DEFINITION 1.1.1 (Topology). Let I # &. A topology 7 C P(X) of X satifies:
i. The empty set @ and X € 7.
ii. If B €7, forallicl, then |J,., B €7.
ii. If B, €7, for 1 <i<n,then (_, E; € 7.
DEFINITION 1.1.2 (Basis for a topology). A collection B C P(X) is called a
basis for X satisfying:
i. For all x € X, there is E € B such that x € F.
ii. For all x € X with x € 4N E,, there is B3 € B, such that x € F3 C Ey N Es.

PROPOSITION 1.1.3. Let B be a basis for X. Then, 7 := {U: U = g E} is
a topology. We call such T the topology generated by B.

Proof. Verify the axioms. |

DEFINITION 1.1.4 (o-algebra). A collection M C P(X) is called a o-algebra
if it satisfies the following:



Abstract Integration

i. Theset X € M.
ii. If Ae M, then X \ A€ M.
iii. If A, € M, for each n € N, then | J2, A, € M.

The pair (X, M) is called a measurable space. Any set £ € M is called a
measurable set.

REMARK. Note that M is “closed” under any finite and countable union, intersec-
tions, and set difference.

EXAMPLE 1.1.5. Let X # @.
e P(X), {2, X} are o-algebras.

e If X is uncountable, then M := {E£ € P(X): either E or E° is countable} is
a o-algebra.

1.2 Measurable Maps and Borel Algebras

In this section, we want to study the relations between topological spaces and
measurable spaces. To be precise, we will write the set X with its topology 7 and
o-algebra M when necessary.

PROPOSITION 1.2.1 (c-algebra generated by a collection). Suppose FF C P(X).
There exists a unique o-algebra M (F) C P(X), such that

i. FC M(F)
it. If N D F is a o-algebra, then N O M(F).
We call M(F') the o-algebra generated by F'.

Proof. Define Q := {N C P(X): N D F, N is a c-algebra}. Define M(F) :=
(yeq V. Verify the definition. For the uniqueness, show M(F) € M'(F) and
M(F) 2> M'(F). n

DEFINITION 1.2.2 (Borel o-algebra). Let (X, 7) be a topological space. The o-
algebra generated by 7, M(7), is called the Borel o-algebra. Any set B € M(F)
is an Borel set.

DEFINITION 1.2.3 (Measurable maps). Let (X, M) be a measurable space,
(Y, 7) be a topological space. A map f: (X, M) — (Y,7) is measurable if for
each open set U, f~'(U) is measurable in X.

DEFINITION 1.2.4 (Borel measurable maps). Let (X, 7x), (Y, 7v) be topolog-
ical spaces. Then f: (X, M(7x)) — (Y, 7y) is Borel measurable if for each open
set U in Y, f~Y(U) is a Borel set in X. Hence, all continuous maps are Borel
measurable.
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THEOREM 1.2.5. The map f: (X, M) — (Y, 7) is measurable if and only if for
each Borel set B in'Y, f~'(B) is measurable in X.

Proof. (<) is trivial. (=) Define N := {U C Y : f~}(U) € M}. Show that N is
a o-algebra containing 7. By definition of Borel algebra, N D M(7). |

REMARK 1.2.6. From the definitions and Theorem 1.2.5., we immediately see
that if f: (X, M) — (Y, 7y) is measurable and g: (Y, 7v) — (Z,77) is Borel mea-
surable, then g o f: X — Z is measurable.

PROPOSITION 1.2.7. Let f: (X,M) — (Y,7v) be measurable, g: (Y,7yv) —
(Z,717) be continuous. Then go f: X — Z is measurable.

Proof. For U € M(rz), g (U) € M(1y),s0 [~ (g7 (U)) = (gof)"(U)e M. W
LEMMA 1.2.8. Let V C R? be open. There exists sequence of open rectangles
{Ri}2,, Ri = (ai, b;) X (c5,d;), such that V = J,cn Rs.

Proof. B :={(a,b) X (¢,d): a,b,c,d € Q} is a countable basis for R?. [ |
PROPOSITION 1.2.9. Letu,v: X — R be measurable. Then the map f: X — R?,

given by f(x) := (u(z),v(x)) is measurable.

Proof. Let R := (a,b) X (¢,d) be an open rectangle. Then,
fHR) = {z: u(x) € (a,b)} N {x: v(x) € (¢,;d)} € M.

Let V € R? be open. By Lemma (1.2.8), V = (J;2, R;, where R; is an open
rectangle. Hence,

oo

Urt@)enm. m

=

)= ( U(&»))
=1
COROLLARY 1.2.10.

1. If f =u+iv, where u,v are real measurable maps on X, then f is complex
measurable on X.

2. If f = u+iv is complex measurable on X, then u,v, and |f| are real mea-
surable on X.

8. If f,g are complex measurable on X, so are f + g and fg.

DEFINITION 1.2.11 (Extended real line). In Analysis, we frequently deal with
00, sequences and compactness. To generalize our results, we will work with the
extended real line. From Topology, it is a compactification of R. Roughly
speaking, we add the symbols “—oc0" and “c0” to R and enlarge the standard
topology on R by allowing sets in the form of [—o00, b), (a, 0] to be open. Hence,
a standard basis for this topology is

B = {[—00,b)} U{(a,0)} U {(a, 00]}. (1.2.1)

Under this topology, R is compact. We sometime write [—o0, co] for R.

3



Abstract Integration

THEOREM 1.2.12 (Test for measurability). Let f: (X, M) — [—o0,00]. Then, f
is measurable if and only for all a € R, f~'((a,o0]) € M.

Proof. (<) is trivial by the definition of meaurable function. (=) First show that

any basis set is measurable using [—oc0,b) = |, [—00,b — %] and intersection.

Then, for every open V € [—00,00], V is either in (—o0,00) or not. If former,
done previously. Otherwise, V' is the union of a set containining [—o0,b) and/or
(a, oo] with some Vj C (—o0, 00), hence measurable. [ |

1.3 Sequences

DEFINITION 1.3.1. Given {a,};>, in [—00,00]. Define

limsup a,, := inf{supa,}, and lim inf a,, := sup{inf a,}. (1.3.1)
keN k>n keN k>n

We call limsup a,, the upper limit and liminf a, the lower limit of {a,}, re-
spectively.

REMARK 1.3.2. Since {sup;s,, a,};2; is a decreasing sequence in a compact set,
lim sup a,, always exists. Similarly, liminf a,, always exists. Also,

liminf(a,) = — limsup(—a,,).
n—o0 n—00

If {a,} converges in [—o0, 00|, then
liminf a,, = lima,, = lim sup a,,.

DEFINITION 1.3.3. Let f,,: X — [—00,00], for all n € N. Define the following
functions pointwise:

- (sup fo)(z) == ileHN){fn(x)}
- (limsup f,)(z) := liinﬁsolip{fn(x)}.

We define inf f,, liminf f,, similarly. Also, if for all x € X, {f,(x)} converges, we
call f(z) := lim f,(x) the pointwise limit of the sequence {f,}.
n—oo

PROPOSITION 1.3.4. Let (X, M) be measurable space, f,: X — [—00,00] be
measurable for each n € N. Then,

g :=sup f, and h :=limsup f,
are measurable.

Proof. Show that g~'((a,]) = U2, f,*((a,00]) € M. Same for inf f,, then
apply on h. |
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COROLLARY 1.3.5. There following corollaries are useful in the later chapters.

1. If fr,: X = C and f is the pointwise convergent limit of f,, for all x € X,
then f is complex measurable.

2. If f,g: X — [—00,00] are measurable, then so are max{f, g} and min{f, g}.
In parictular, it is true for

[T = max{f,0} and /7 == —min{f,0}.

1.4 Simple Functions

DEFINITION 1.4.1. A function s: X — C is called a simple function if s(.X) is
a finite set.

DEFINITION 1.4.2. Let A € M, define the characteristic function y4: X — C

given by
1, ifxeA,
xalx) = (1.4.1)
0, else.

REMARK. Note that x4 is measurable because x;'(U) = X, A, A, or @.

PROPOSITION 1.4.3. A function s: X — C is simple if and only if there are
disjoint measurable sets Ay, ..., Ap, and ay, ..., o, € C, such that s = > " a;xa,-

Proof. (=) follows from definition. («<=). Let {aq,...,a,} = s(X). Define 4; :=
s (), for each i. Verify the claim. [

THEOREM 1.4.4. Let f: X — [0, 00] be measurable, then there exists a sequence
of simple functions {s,}5°, s,(x) > 0 such that

i. For each n € N, s, is measurable.
ii. The sequence {s,(x)} is non-decreasing, for all v € X.
iii. For allx € X, s,(z) = f(z).

Proof. Fix t € [0,00). For each n, there is k,(t) € Ny, such that k,(¢)27" <t <
(kn(t) + 1)27™.! Define a staircase function ¢, : [0,00) — [0, 00) given by

{’W) if0<t<n,

n

1.4.2
n, if t > n. ( )

‘Pn(t) =

Note that ¢, (t) /t, and 0 < ¢y < --- < t. Also,

a, if n <a,

-1
a,0|) =
Pn ((a, ]) {[n;l?oo}, if%§a< m;gl,for some m € N.

'The set {3%: m,n € N} is dense in R.
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Hence, ¢, is Borel measurable. Define s,, :== ¢, o f, then s,, < f. Note that s,’s
are simple, measurable, and s,, 7 f. |

1.5 Measures

DEFINITION 1.5.1. Let (X, M) be a measurable space. A set function p: M —
[0, 0] is called countably additive, or o-addivity, if whenever {A,,}>2, C M,
with A; N A; = @, for all ¢ # j, we have

M(GA> - gm.

Moreover, if u(A) < oo for some A € M, then pu is called a positive measure.
The triple (X, M, u1) is called a measure space.

EXAMPLE 1.5.2. Let X =N, M :=P(X). Define u(S) = |S|. Such p is known as
the counting measure.

THEOREM 1.5.3 (Elementary Properties of Positive Measures). Let (X, M, i) be
a positive measure space. Then

() u(@) =0

(b) For finite disjoint collection {A;}",, p(Ui—, Ai) = >, u(Ay).
(¢c) If AyB € M, and A C B, then pu(A) < u(B).

(d) If Ay C Ay C ... in M, then p(U2, Ai) = T}LH;OM(An)

(e) If Ay O Ay D ... in M, and there is k € N, so that u(Ax) < oo, then
P2y As) = lim pu(A,).

We call properties (b) finite addivitiy and (c) monotonicty.

Proof. Follow from definition. For (d), take B,, = A, \ A,—1. For (e), similar. W

1.6 Integration of Positive Functions

From now on, (X, M, ) denotes a positive measure space.

DEFINITION 1.6.1. Let s: X — [0,00] be a simple measurable function, of the
form

n
5= § QX Ay
i=1
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where s(X) = {a,...,a,} and A, N A; = @, for all i # j. If E € M, we define
the integral of s over E by

/ sdp = Z%‘M(Az‘ NE),
E i=1
with the convention 0 - co = 0.

REMARK. By definition, if 0 < t < s is a simple measurable function over a
measurable set £ € M, we see that

/tduﬁ/sd,u.
E E

DEFINITION 1.6.2 (Lebesgue integral). Let f: X — [0, 00] be a measurable
function and E € M, we define the Lebesgue integral of f over

/ fdu :=sup { / sdy @ s is simple, measurable with 0 < s < f}
E E

Note that if f is simple, the definitions of fE fdu agree.

THEOREM 1.6.3 (Properties of Lebesgue Integral). Let f,g: X — [0, 00] be
measurable.

(a) If0 < f<g, then [, fdu < [pgdu.

(b) If AC B and A,B € M, then [, fdu < [pgdpu.
(¢c) Givence[0,00),Ee€ M, [cfdu=c[,[fdu.
(d) If f(E) =0, or u(E) =0, then [, fdu=0.

(e) For all E€ M, [, fdu= [ fxedpu.

Proof. One should be able to prove these properties by the definitions. In gen-
eral, when we need to prove the result for measurable f, we first prove that for
simple functions. It is a lot easier because simple functions are just finite linear
combinations. Then generalize the case for measurable function f. |

We now come to some remarkable results on limits and sequences.

LEMMA 1.6.4. Let s: X — [0,00] be a simple measurable function. The function
©: M — [0, 00] given by

Q(E) == /ES du,

1S @ positive measure.

Proof. 1t is easy to verify the definition of positive measure since s only takes
finitely many values on X. |
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THEOREM 1.6.5 (Lebesgue’s Monotone Convergence Theorem). Let {f,}
be a sequence of measurable functions on X — [0, 00|, with

(a) 0 < fi< fo <o <00, and
(b) fulx) = f(x), for allz € X.

Then f is measurable, and
lim [ f,dup :/ fdu. (1.6.1)

Proof. Obviously, lim,,_,« [ xfadp < S + fdp. For another inequality, for every
c € (0,1), fix a simple measurable function s, with 0 < s < f. Let E, = {z :
fu(x) > es(x)}. Then, By C E, C ... and |J,—, E,, = X. By Lemma (1.6.4),

/ sdp = @(X) = lim ¢(E,) = lim sdp
X n—oo

n—oo En

< lim lfn dpu. (1.6.2)
c

Bying taking the supremum over all such s on the LHS of inequality (1.6.2),

lim [ f,dp> c/ fdp, Vee(0,1). (1.6.3)
Thus, (1.6.3) also holds true when ¢ = 1 and it completes the proof. [ |

COROLLARY 1.6.6. Let f,g: X — [0,00] be measurable, then for all E € M,

/E(f+g)du=/EfdM+[Egdu-

Proof. First show for simple functions using the lemma. Pick increasing sequences
of simple functions, s, A f, t, /' ¢ and apply Monotone Convergence. ]

COROLLARY 1.6.7 (Monotone Convergence for Series). If f,: X — [0, o]
s measurable for each n € N, then for oll E € M,

/ifndMZi/fndu- (1.6.4)
B “~Jr

Proof. Define g, := fi1 + -+ + f, and apply Monotone Convergence on {g,}. W

THEOREM 1.6.8 (Integral to measures). Let f: X — [0, 00] be measurable. Then
the function ¢: M — [0, 00] given by

p(E) == [Efdu,
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is a positive measure. Moreover, if g: X — [0, 00] is measurable, then

/ngsOI/ngdu-

Proof. This is a general version of Lemma (1.6.4). Show that ¢ defines a measure
using Monotone Convergence. For the second part, start with simple function,
then use Monotone Convergence on s, " g. |

THEOREM 1.6.9 (Fatou’s Lemma). Let f, : X — [0,00] be measurable for
every n € N, then

/ (liminf fn> dp < liminf/ S dp. (1.6.5)
X n—oo n—oo X

Proof. Let g,(z) := inf{fr(z) : n > k}. So, g, < fm for all m > n, and {g,} is a
non-decreasing sequence. By Monotone Convergence,

/ liminf f, du = / lim g,du = lim / gn dp
X n—oo X n—oo n—oo X

< lim (inf {/ fmd,u}> —liminf/ fndpu. |
n—oo \ m>n b n—o0 b

1.7 Integration of Complex Functions

DEFINITION 1.7.1 (L' Space). Define L'(u) to be the set of all complex mea-
surable functions f: X — C such that

/ |f] dp < oo. (1.7.1)
X

Recall that the measurability of f implies that of |f|. Any f € L'(p) is called
Lebesgue integrable, absolutely integrable, or L!-integrable.

DEFINITION 1.7.2 (Integral of Complex Functions). Let f € L'(u) and f =
u + . For all E € M, we define the integral of f to be

/Efdu:: (/Ezﬁdu—/Eu—du)+z‘</Ev+du—/Ev—du>. (1.7.2)

Note that ut,u™ < |u] < |f| and vt 0™ < |v| < |f| Thus, each of the integals
above is finite. Also, if f € L'(u) and f X = |, E € M, we write

/fdu /f*du /f dp. (1.7.3)

THEOREM 1.7.3. For all f,g € L*(p), for all a, 3 € C, af + Bg € L' (u), and

/X(Oferﬁg)dM:Oé/deu—Fﬁ/ngu.
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Proof. First, af 4+ Bg is measurable. Also,
[ 1as+ saldu< [ lallst+18llsldn = ol [ 1fld 18] [ loldu < o
X X X X
So af + Bg € L'(n). Now consider h := f + g. We see that
ht+f+g =h +fr+g",

which implies [, f + gdp = [, fdp+ [y gdp. Finally, if @ = —1, then use
(—u)" =wu~. If a« =1, we have

/Xifd,uz/X(—v)du—i—i/xu:2‘</Xudu+i/xvdu) zi/deu.

Therefore, L'(u) is a complex vector space. |

PROPOSITION 1.7.4. If f € L'(p), then | [ fdu| < [ |f]dpu.

Proof. First show that for real-valued f,

‘/deM‘Z‘/Xerd,u/de,u‘g /Xf+du|+
—/X(f++f)dﬂ_/x|f‘d#_

For complex-valued f, suppose z := [, fdu # 0. Then, there is & € C such that
az = |z|. Hence,

‘/deﬂ‘—a/de/t—/onfd,u_/XRc(af)dM
< [Jasian= [ Irlan

where the third equality comes from the fact that | [}, f dul is real-valued. |

foran

THEOREM 1.7.5 (Dominated Convergence Theorem). For all n € N, [et
fn: X — C be measurable. Suppose

exists for all v € X and there exists g € L'(u) such that | f,(z)| < g(x), for all
€ X andn € N. Then f € L' (p),

lim / |fn — fldp =0, and lim [ f,du :/ fdu. (1.7.4)
X X X

n—oo n—oo

10
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Proof. First, since |f,| < g, |f| < g and f € L'(u). Applying Fatouw’s Lemma on
29 - ‘fn - f|7 we see that

/2gdu§hminf/ 29 = |fu— fldu
X n—oo X

—/29du+liminf<—/ \fn—f]du>

:/ 29dulimsup/ |fn — fldp. (1.7.5)
X n—ooo JX
Because [, 2gdu < 0o, inequality (1.7.5) gives
limsup/ |fo — fldu <0. (1.7.6)
n—oo JX

However, fX |fn — fldp > 0 forces the upper limit to be 0. On other hand, the
lower limit is at least 0. Therefore,

0 < lim }/fndu—/fdu‘glimsup/ |fo — fldu =0. |
X X X

n—00 n—oo

1.8 Sets of Measure Zero

DEFINITION 1.8.1. Let (X, M, ) be a measure space, and £ € M. We say
a property P holds almost everywhere on E with respect to p if there exists
N C E, N € M such that P holds on E\ N and u(N) = 0. We denote that by

“a.e.”, “pra.e.; or “a.e. |p)”.

ExaMPLE 1.8.2. If f, g are measurable functions on X, and if

pfz - flx) #g9(x)}) =0,

we say f = ¢ pra.e. on X, and denote that by f ~ g because it is an equivalence
relation. Moreover, for all £ € M,

/Efdu—/Egdu-

This is an important concept in measure theory. We will investigate further in the
later chapters.

DEFINITION 1.8.3. If for every F € M with u(E) =0, F C E implies F' € M,
then p is called a complete measure on M.

THEOREM 1.8.4 (Completion of measure space). Let (X, M,u) be a measure

space. Define M* .= {F C X : 3A,B € M st. A C E C B,u(B\ A) = 0}.
Define p*(E) = u(A). Then p* is complete on M*.

11
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Proof. Step 1: We need to show that p* is well-defined, i.e. p* depends on the
choice of E, not A. Suppose AC EC B, A’ C E C B'. Then,

ACcEcCB = (A\A)c(E\A)c(B\A)
= A\ A) =0.
Similary, u(A"\ A) =0, and
p(A) = p(A\A) +u(AnA')
— WA\ A) 4+ (A0 A)
— W(A) = i (E).

Step 2: Verify that M™* is a o-algebra. We see that X € M. Let E € M, if
ACECBand u(B\ A) =0, then A° D E°D B¢, and

n(A“\ BY) = p(A°N B) = p(BNA) = u(B\ A) = 0.

So, E° € M*. Let E, € M* and A, C E, C B,. Define A := [J°, A, and
B:=U;_, By. Then, AcC ;2 E, C B and

u(B\A>—u<UBn\An) =3 u(B\ A = 0.

n=1

Thus, |-, E, € M*, and M* is a o-algebra.

Step 3: Finally, we need to show that y* is a measure on M*, i.e. show countable
additivity. Let {E,} C M* be pairwise disjoint. Then there exists pairwise disjoint
sequence {A,} such that

W(B) = pu(4) = u( § An) =S A = S (B,

Obviously, if E € M C M*, u*(E) < oco. Therefore, (X, M*, u*) is a completion
of (X, M, ). [ |

THEOREM 1.8.5. Let f: X — [0,00] be measurable and [ fdp = 0. Then,
f=0a.e.

Proof. Let E, := {z € X : f(z) > +}. Then E, € M, for all n € N and
E:=U,enEn = {2 f(x) > 0} € M. Consider

1
/fdu:() > /fXEndu>/XEndM
X X nJx

1
— Zu(E)>0.
nu( ) >

Then, by o-additivity, u(E,) = 0 and u(E) = 0, which concludes f = 0 a.e. [ |
PROPOSITION 1.8.6. If f =0 a.e., then [, fdu=0.

12



Sets of Measure Zero

Proof. Let E :={x: f(x) # 0}. Then, pu(E) =0 and

/deu_/){f(XE"‘XEC)dM_/]Efdu+/ECfdu—0+0—0. [ |

THEOREM 1.8.7. For alln € N, let f,, be a complex measurable function defined
a.e. on X such that Y " | [ |fo| dp < co. Then there exists f € L'(u) such that

flx) = an(x), -0 €. and /deu = Z/an dp. (1.8.1)

Proof. Define S, := {x : f,(x) is not defined.}, so u(S,) = 0. We want to show
that there is S with p(S) = 0, and for all z ¢ S, > ° | f.(x) converges abso-
lutely. Define p(x) := > |f.(z)|. By Monotone Convergence,

pdu = /fndu<oo.
/ > [ 1

Thus, {z € X : ¢(x) = oo} has measure zero. Hence, if z ¢ S,,Vn € N and
o(x) # 00, D07 fn(z) must converge absolutely. Define S :=J,~, S, U{z € X :
¢(x) = oco}. Then p(S) = 0 and Vz € S, by absolute convergence we have

S () = f(a).

Finally, define g,, :== fi+---+ fn, ¥n € N. Then, |g,| < ¢ and g,(z) — f(x),Vz €
S¢. By Dominated Convergence on S¢,

fdu= hm/ g i = /fncw.
/c n—r00 Se ; Se

Since S has measure zero, we obtain the second equality. |

PROPOSITION 1.8.8 (An Average Argument). Let (X, M, u) be a finite positive
measure space. Let f € L'(u) and S be a closed set in C. If for every E € M,
the averages

1
Ap(f :—/fdueS,
then f(x) € S for almost all x € X.
Proof. Since S is open, S¢ = |J,-, E, for open balls E, of the form B(a,r) C S°.

Let E := f~'(B(a,r)). Thus, it suffcies to show u(E) = 0. By contradiction,
suppose p(E) > 0, then

|AE(f)—a\—H(1E)‘/E(f—Oé)dM’ Su(lE)/Elf—a\du
By

However, it contradicts the hypothesis Ag(f) € S. [

13



Abstract Integration

THEOREM 1.8.9. Let {E,} be a sequence of measurable sets in X, such that
Yovs  1(Ey) < oo. Then almost all © € X lie in at most finitely many E}’s.

Proof. Define A := {x : z € infinitely many Ej}. Define g(z) := > xg, ().

Then, = € A if and only if g(x) = oco. By Monotone Convergence for series,
Jxg9du=">"0"1 u(E,) < oo. Hence, g € L'(p) and g(z) < oo a.e. [ |

14



Chapter 2

Positive Borel Measures

2.1 Integration as a Linear Functional

DEFINITION 2.1.1. Let V be a complex vector space. A linear functional is a
linear transformation A: V — C.

EXAMPLE 2.1.2. Let (X, M, 1) be a positive measure space. Recall that L'(p) is
a complex vector space. The map f — [, fdu is a linear functional on L' ().
Likewise, for any bounded measurable function g, f — [ + fgdp is also a linear
functional.

DEFINITION 2.1.3. Let V' be a complex vector space of functions on X. We say
A:V — C is a positive linear functional if f > 0 implies A(f) > 0.

EXAMPLE 2.1.4. Let C([0,1]) be the set of complex continuous functions on [0, 1].
The map f +— fol fdz is a positive linear functional.

2.2 Topological Preliminaries

Let (X, 7) be a topological space.

DEFINITION 2.2.1.
(a) A set E C X is closed if E¢ is open.
(b) The closure of E is defined as E := (|5 F, where F is any closed set.

(¢) A set K C X is compact if for any open cover {U,}aca of K, there exists
finite set B C A such that K C |J, .z Ua-

(d) A neighborhood of a point p € X is an open set U € 7 containing p.

(e) We say (X, 1) is Hausdorff if for all p # ¢ € X, there are open sets U,V € 7
such that pe U,ge V,and UNV = @.

15



Positive Borel Measures

(f) Wesay (X, 7) is locally compact if for each p € X, there exists neighborhood
U of p such that U is compact.

THEOREM (Heine-Borel). Recall that a subset K of the Euclidean space R™ is
compact if and only if K is closed and bounded.

PROPOSITION 2.2.2 (Finite Intersection Property). Let (X, 7) be a Hausdorff
space, and {Ky}taeca be a family of compact sets. If for every finite B C A,

Nocs Ko # D, then [ ey Ko # 2.

Proof. By contrapositive, suppose (),c4 Ko = @. Then {J, 4 K = X. There
exists § € A such that K3 C X =J, ., K. By compactness, Kz C |J,o, K¢ for
some finite J C A. Hence, KgN(,c; Ko = 9. |
PROPOSITION 2.2.3. Let (X, 7) be a topological space. If F is closed subset of a
compact set K, then F is compact.

Proof. Let {Uy}aca be an open cover on F. Then, FeUlJ .,U, 2 K. So,

acA T
Feul,.p U, C K, for some finite B C A. Hence, F' is covered by {U,ep}. N

aeB

COROLLARY 2.2.4.
1. Compact subsets of Hausdorff spaces are closed.

2. If F is closed and Kis compact in a Hausdorff space, then F N K is compact.

PROPOSITION 2.2.5. Let (X,7) be a Hausdorff space, and K be compact. If
p & K, then there are U,V € T,UNV =&, such that K CV,pe U.

Proof. Fix p ¢ K. For each ¢ € K, there are U,,V, € 7,U, NV, = @ such that
p € Uy, q € V. Then by compactness,

KQOV%:V and pEﬁUi:U. |
i=1 i=1

THEOREM 2.2.6. Let (X, 7) be a locally compact Hausdorff space. If K is com-
pact, K C U € 7, then there exists V € 7 such that V' is compact, and

KcVcVcU.

Proof. For every x € K, there exists open neighborhood of x with compact clo-
susre. By compactness, K is covered by a finite subcover of these neighborhoods.
If U =X, let V := G be the union of such subcover.

Otherwise, for each p € U¢, there is open W), € 7 such that K C W, and p ¢ W,,.
Define A := {U¢NGNW, :pe U} Observe that A is a collection of compact
sets, and NpeaF' = @. Hence, by FIP, there exists pi,...,p,n € U® such that
Nie, F; = @. Hence, U NG N (N2, W,,) = @. Define V := G N (N2, W,,) and
verify the claim. |
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Topological Preliminaries

DEFINITION 2.2.7. Let f be a real or extended-real valued function on (X, 7).
If {z: f(z) > a} € 7,Va € R, f is said to be lower semicontinuous. Likewise,
if {x: f(z) <a} €7, Va €R, then f is upper semicontinuous.

REMARK. A real valued function is continous if and only if it is both upper and
lower semicontinuous.

PROPOSITION 2.2.8. If f,g are lower (upper) semicontinouos, so is [ + g. If
u < ug < ... are lower semicontinuous, then so is u := lim wu,,.

- n—00

Proof. Take {z : f(z) + g(x) > a} = U,o({z : f(z) >r}n{z: g(x) > a—r1}),
which is open. Take {z : u(z) > a} = o {z : u,(z) > a}, which is open. |
(

DEFINITION 2.2.9. Let
support of f is defined as

supp(f) :={x € X : f(x) # 0}. (2.2.1)

X,7) be a topological space, and f: X — C. The

We also define
Co(X) :={f: X = C: f continuous with compact support}.

REMARK. Note that supp(f + g) C supp(f) Usupp(g), which is compact. Thus,
C.(X) is a complex vector subspace of C'(X).

PROPOSITION 2.2.10. Let X, Y be topological spaces and f: X — Y be continu-
ous. If K C X is compact, then f(K) is compact in'Y .

Proof. Let {V,}aea be an open cover of f(K). So, {f~'(Va)}aeca is an open cover
of K, and there is a finite B C A such that K C |J,.5 f~'(V.), which concludes

F(K) € Uaep Vo u

THEOREM 2.2.11 (Urysohn’s Lemma). Let (X, 7) be a locally compact Haus-
dorff space. Suppose K is a compact subset and K C V € 7. Then there exists
f € Cu(X) such that xx < f < xv.

Proof. First, define P := [0,1]g = {0,1, 3
are Vg, V; € 7 such that

,...}. By Theorem (2.2.6), there

KcvicvicVacVyCV.
For all r,q € P, with 0 < r < ¢ < 1, choose open sets V,, V, such that
Kcvicvc..V,cV,c---cV,cV,Cc---CcVyCclcCV.
Define f: X — [0,1] by

sup{r € P:zx e V,}, ifzeV,
flay = {5 b
0, ifxgV.
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Clearly, f = 1 on K and 0 < f < 1 with supp(f) C Vp, which is compact. For
continuity of f, suppose x € X with f(x) =0, or f(x) = 1. Then f is continuous
at = by sequential continuity.

Now suppose f(z) € (0,1). For all (a,b) C (0,1) with f(z) € (a,b), choose
r,q € P such that a < r < f(z) < q<b. Let U =V, \'V,. We see that U € 7
with f(z) € f(U) C (a,b). Therefore, f € C.(X). [ |

REMARK. The Urysohn’s Lemma is an important tool in building more compli-
cated functions.

COROLLARY 2.2.12. Let (X, M,u) be a positive measure space and a locally

compact Hausdorff space. Then, every compact K has u(K) < oo if and only
if Co(X) € LYp) and A(f) := [y fdp defines a positive linear functional on
C.(X).

Proof. (=) Suppose every compact subset of X has finite measure. For each
f € CuX), |f|] # 0 on some compact K. Thus, |f| < co on K and u(K) < oo.

Hence,
/\fldu—/lfldu+/ Fldp < 00 +0.
X K Ke

The second assertion is trivial.

(<) For every compact K, by compactness we may choose open precompact V'
such that K C V. By Urysohn’s Lemma, there exists f € C.(X) such that yx < f.
By hypothesis,

M(K)Z/Xdeué/deu<OO~ .

2.3 Riesz Representation Theorem and Borel Mea-
sures

THEOREM 2.3.1 (Riesz Representation Theorem). Let X be a locally com-
pact Hausdorff space, and A be a positive linear functional on Cco(X). Then
exists a o-algebra M which contains all Borel sets in X, and a unique positive
measure (i such that:

(a) Functional to Integral: A(f) = / fdu, forall f € Co(X).
X

(b) Finite Measure on Compact Set: u(K) < oo, for all compact K C X.

(¢) Outer Regularity: If E € M , u(E) =inf{u(V): ECV,V open }.

(d) Inner Regularity: If E is open, or E € M with u(E) < oo, then u(E) =
sup{u(K) : K C E, K compact }.

18



Riesz Representation Theorem and Borel Measures

(e) Complete Measure: If E € M, A C E, then pu(E) = 0 implies A € M.
Proof. Read Rudin page 41. [ |

DEFINITION 2.3.2. Let (X, 7) be a locally compact Hausdorff space. A measure
1t defined on the Borel o-algebra M is called a Borel measure.

A Borel set E is outer regular, or inner regular if it satisfies property (c), or
(d), respectively in the Riesz Representation Theorem. If every Borel set is both
outer and inner regular, then y called a regular measure.

REMARK. Note that in Theorem (2.3.1), we only have inner regularity for open
sets and Borel sets with finite measure. In general, it is the best we can have.
However, with extra assumptions, we can obtain regularity.

DEFINITION 2.3.3. Let X be a topological space. A set F is called o-compact if
E = Uflozl K, where K, is compact for all n. A set is called F} if it is a countable
union of open sets; likewise it is called Gj if it is a countable intersection of
closed sets.

DEFINITION 2.3.4. A meaurable set F in a measure space is said to have o-finite
measure if E = 7, E,, where E, is measurable and u(E,) < oo for all n. In
particular, if X has o-finite measure, then y is called o-finite.

THEOREM 2.3.5 (Riesz Representation Theorem). In addition to the hy-
potheses of Theorem (2.3.1), if X is o-compact, then the followings hold:

(a) For all E € M, and e > 0, there are closed F' and open V', so that F C E C'V
and (V\ F) < e.

(b) pis a reqular Borel measure on X.

(c) For all E € M, there are F,-set A, Gs-set B, such that A C E C B and
u(B\ A)=0.

From (c), every E € M is the union of an F, and a set of measure zero.

Proof. (a). By hypothesis, X = J>7, K, where K, is compact and pu(K,) < 0o
for every n. Given any E € M,e > 0, for every n we have u(K, N E) < co. By
outer regularity, there exists open V,, O (K,, N E), such that

g
on+1 :

pn(Va\ (Kn N E)) = p(Va) — p(K, N E) <
Define V :=J;2, V.. Then V\ E C U~ ,(V,, \ (K, N E)), and

w(V\ E) gi (Vi \ (K,NE)) =<

Next, consider E°. Similarly, outer regularity gives open W 2 E° with pu(W\ E¢) <
5. Let F':= W¢ Then we have ' C E with u(£\ F) = pu(W \ £°) < £/2, and
p(V\F)<e.
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(b). For all E € M, there exists F' with u(E \ F) <e. Let F,, .= Fn (Ui, Ki).
Then F), is compact in E, with u(F,) 7 p(F). Thus, p is inner regular.

(c). Lete, = % By (a), there exists open V,, and closed F,, such that F,, C E C V,,,
and p(V, \ F,) < % Then |J7, F, and ()~ V,, are the corresponding F, and Gs
sets. |

THEOREM 2.3.6. Let (X, 1) be a locally compact Housdorff space in which every
open set is o-compact. Let A be a positive Borel measure on X such that for all
compact set K, \(K) < co. Then X is regular.

Proof. Define A : Co(X) — C by A(f) == [ fdA. Since A(K) < oo for all
compact set K, A is a positive linear functional on C.(X). By the Riesz Repre-
sentation Theorem (2.3.1), there exists regular Borel measure ;o such that

/deA—/deu.

We will show that A = p. First observe that they agree on open sets. Let V be
open. By hypothesis, V' is o-compact. So, V = [J;2, K;, where K; is compact.
By the Urysohn’s Lemma (2.2.11), for each i, there is f; € C.(X) such that
Xk; < fi < xv.

Define g, := max{f; | 1 < i < n}. Then, the g,’s are continuous with compact
supports, and g,(x) /* xv(x). Hence, by Monotone Convergence,

A(V)=lim [ g,d\= lim [ g,du= u(V).
Now suppose E is a Borel set. Given any ¢ > 0, by Theorem (2.3.5), there
are closed F' and open V with FF C E C V such that u(V \ E) < . Hence,
w(V) < u(E)+e. Note that V'\ F is open. So, by the preceding step, A(V\ E) < &
and A(V) < A(E) +e. Thus,

and we have |A\(E) — u(E)| < e. Therefore, A\(E) = p(E). |

2.4 Lebesgue Measure

In this section, we work with the familiar Euclidean space R with its Borel algebra.
Recall that the Riemann integral is only defined for continuous functions over
compact sets. We want to extend this integration from continuous functions to
Borel measurable functions. Therefore, we must first find a suitable Borel measure
on R*, which presevers some useful properties of the Riemann integrals.
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Lebesgue Measure

DEFINITION 2.4.1. Let E C R¥ and # € R*. The translate of E by x is the set
E+z:={y+uz:yecE}
DEFINITION 2.4.2. A k-cell in R is a set of the form V = Hle I;, where [; is

a bounded interval with endpoints a; and ;. We also define the volume of V' by

k

vol(V) == [ [ (B — ).

i=1
DEFINITION 2.4.3. Let a = (o, ..., ;) € RF and § > 0. A §-box with corner
at o is a set Q(a, 0) = [, [ci, o +9).

THEOREM 2.4.4 (The Lebesgue Measure). There exists a o-algebra M 2 B(RF),
the Borel algebra of R*, and a positive complete measure m on M satisfying the
followings:

(a) m(V') =wvol(V) for every k-cell V.

(b) E € M if and only if there are F,-set A and Gs-set B such that AC E C B
and m(A\ B) = 0. Moreover, m is a reqular Borel measure on B(R¥).

(¢c) m is translation invariant, i.e. m(E + z) = m(E), for all E € M, x € RF.

(d) If p is a positive, translation-invariant, Borel measure on R such that u(K) <
oo for all compact K, then there is ¢ € R such that p(E) = cm(E), for all
E € B(RF).

(e) Let T: RF — R* be a linear map. Then there is /\(T) € [0,00) such that
m(T(E)) = A(T)m(E),  VE € B(R").
In particular, m(T(E)) = m(E) when T is a rotation.

DEFINITION 2.4.5. The sets E € M are called Lebesgue measurable in R¥;
m is called the Lebesgue measure on R*.

Proof. Step 1: Define A: C.(R¥) — C by

AGf) = /R Fav, (2.4.1)

where dV stands for the Riemann Integral. Note that this definition is well-defined
because supp(f) is a compact set in R¥, and f is bounded. Also, A is a positive
linear functional on C.(R). By the Riesz Representation Theorem (2.3.1),
there is a o-algebra M D B(R¥), and a complete positive measure m, such that

A(f)y= [ fdm, (2.4.2)
Rk
for all f € C.(R¥). Since R* is o-compact, property (b) follows from the other
Riesz Representation Theorem (2.3.5).
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Step 2: For property (a), first suppose V' is an open k-cell. There is a sequence
of compact sets K1 C Ky C --- C V, such that | J ., K, = V. By the Uryshon’s
Lemma (2.2.11), there is f,, € C.(R¥) with xx, < f. < xv, for each n. Hence,

mUQ)ZAWKJZ/mManS nmngjmmdmzwmv»
Rk Rk Rk

On the other hand, from elementary Calculus, m(K,) = vol(K,,), and vol(K,,) —
vol(V'). By Monotone Convergence,

vol (V) S/R lim f, dm <wvol(V). (2.4.3)

k M—00

Since f,(z) — xv (), for all x € R* we conclude

m(V) = /Rk xv dm = vol(V). (2.4.4)

Finally, suppose V is any k-cell. Pick a decreasing sequence of open sets V; D
Vo D -+ DV, with m(V]) < oco. Then by monotonicity, m(V,,) — m(V) = vol(V').

Step 3:! For property (c), fix € R* and define \,(E) := m(E + z), for all
E € M. It is easy to see )\, satisfies o-addivity, hence is a measure. Also, for all
k-cell V., A\.(V) = vol(V)) = m(V'). Since every open set is a countable union of
k-cells, and )\, is a measure, \,(E) = m(E) on all open E. Then, \,(K) < oo, for
all compact K. By Theorem (2.3.6), A, is regular. Therefore, by regularity of A,
and m, m(E + z) = \,(E) = m(E), for every E € B(RF). Finally, recall that F,
and Gy-sets are also Borel sets. Thus, the equality also holds by property (b).

Step 4: For property (d), let Qo be a 1-box and define ¢ := u(Qp). For each
n € N, suppose @, is a 27"-box. Note that Q) is a disjoint union of 2"* many
such @), boxes. By translation invariance,

2nkﬂ<Qn) = pu(Qo) = c-1=cm(Qo) = 2nkcm(Qn)'

We conclude that (Q,) = cm(Q,,), for all n € N. Finally, since every k-cell V' is
a countable disjoint union these @,, boxes, u(V) = em(V'). Hence, similar to Step
3, u(E) = em(FE), for all Borel set E.

Step 5: For property (e), first suppose rank(7") < k. Then, m(T(E)) = 0, for
all k-cells E, hence Borel sets; and we let A(T") := 0. Now suppose rank(7) = k.
From linear algebra, T is bijective and linear, hence a homeomorphism from R*
to R¥. More importantly, T(E) is a Borel set for all Borel set E.

Define a positive Borel measure p by u(E) := m(T(E)), for all E € B(R*). For
all x € R¥, by linearity of T and translation invariance of m,

W(E + 2) = m(T(E + 2)) = m(T(E) + T(x)) = m(T(E)) = u(E).

IThis is a standard approach in proving two Borel measures are equal. First show that on open
sets, then Borel sets by regularity. If necessary, all measurable sets with F,, and Gs. The usual
tools are Monotone/Dominated Convergence, o-addivity, monotonicity, and Uryshon’s Lemma.
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Lebesgue Measure

Hence, p is a positive, translation invariant, Borel measure on R¥, and p(K) < oo
for all compact K. By property (d), there is A(T) € R such that

w(E) =m(T(E)) = A(T)m(E), VE € B(R").

In other words, one can compute A(T") easily by m(T'(E))/m(E), for some m(E) €
(0,00). Finally, if T is a rotation, then in particular T'(B) = B, where B is the
unit open ball. Therefore, A(T') =1 and m(T(E)) = m(E). [

PROPOSITION 2.4.6. Let T: R¥ — R* be a linear map. Then,
A(T) = |det(T)], (2.4.5)
where A(T) is given in Theorem (2.4.4).

Proof. Step 1: From linear algebra, let {ey, ..., e} be the standard basis for R*.
For each j, 1 < j <k,

T(e;) =Y aijes,
=1

for some «;; € R. Hence, the matrix representation of 7" is [T] := (av;).

Step 2: Note that if T = T} o Ty, then A(T) = A(T1)A(Tz), and det(T) =
det(Ty)det(Ts). Recall that every linear operator 7" on a finite dimensional vector
space is a finite product of the following three types, each corresponds to one
elementary row operation on [T:

(I) Switching: T'(e1) = e2,T(e2) = €1, and T'(e;) = €;, for 3 <7 < k.
(IT) Scaling: T'(e1) = aey, and T'(e;) = ¢;, for 2 <i < k.
(IIT) Addition: T'(e;) = e + e, and T'(e;) = ¢;, for 2 <i < k.

Thus, it suffices to show that each of these types satisfies equation (2.4.5). To
determine A(T'), let E be a 1-box cornered at 0.

Step 3: If T is of type (I), then T(E) = E, and A(T') = 1. Also, [T] has exactly
one 1 on each coloumn and row. Hence, det(T') = £1, and A(T) = |det(T')|. If T’
is of type (II), then m(T'(F)) = |a|m(E), and A(T) = |a| = |det(T)|.

Step 4: If T is of type (III), then det(T) = 1. For A(T), write z € R* as
x = (x1,...,2). Then, (z1,29,...,2%) — (1 + 22, 22,...,2x), and

TE)={yeR" :ps<y1<p+1, 0<y <1, i#1}

Let S;:={y € T(E) : 11 <1}, and Sy :=T(E) \ S;. Then, S1 N (Sy — 1) = @,
and S U (Sy — e;) = E.? Hence,

AT) = m(T(E))/m(E) =m(S51 U S,)

2To see that, consider I? be the unit square in R2. Then T'(I?) is the parallelogram with
vertices (0,0), (1,0), (1,1), and (2,1). S is the lower triangle, and S5 is the upper.
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= m(Sl) + m(Sg) = m(Sl) + m(SQ — 61)
=m(F)=1.
Therefore, A(T') =1 = |det(T))|. |

REMARK 2.4.7. If m is the Lebesgue measure on R¥, we usually write L!(R¥)
instead of L'(m). From equation (2.4.1), we see that for every complex continuous
function f supported in a compact set K, the Riemann integral of f agrees with
the Lebesgue integral of f.

REMARK 2.4.8. Recall that we are working in M D> B(RF). It is important
to know which Lebesgue measurable set £ € M is a Borel set in B(R¥). By
a cardinality argument (Rudin, p.53), in fact most £ € M are not Borel sets.
Finally, we conclude the dicussion with the following observation: Every F € M
with m(E) > 0 has non-measurable subsets. The proof is given as follows.

PROPOSITION 2.4.9. Let M be a o-algebra on R and \: M — [0, 00] be a trans-
lation invariant measure with 0 < A([0,1)) < oo. Then there exists E C [0, 1) such
that E ¢ M.

Proof. Note that (R,+) is a group and (Q, +) is its subgroup. Define an equiva-
lence relation on [0,1) by x ~ y <= |z —y| € Q. This gives an partition of [0, 1)
by the equivalence classes. By the Axiom of Choice, we can pick one representative
from each equivlence class, and denote E the set of such representatives. Then F
has the following property:

(E+7r)N(E+s)=0, Vr,s € Q,r # s.
To see it, suppose © € (E +7r)N(E +s). Then, y +r = = z + s, for some

y,z € B,y # z. Then, y —z = s —r € Q, which is a contradiction because [y| and
[z] are different equivalence classes. Note that

Ecioonc | E+rcl-12).

reQn[—1,1]

Now, by way of contradiction suppose E£ € M, then we have

)\([O, 1)) < Z >‘(E + T) < )‘([_172))

reQn[—1,1]

- ME) < 3M([0, 1)) < 0o

reQn[—1,1]

Since there are infinitely many such 7’s, A(E) = 0. However, then A([0,1])) = 0,
which is a contradiction. |
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2.5 Continuity Properties of Measurable Functions

The following two theorems establish important relations between continuous and
measurable functions, i.e. approximation using continuous functions. In this sec-
tion, let p be a positive measure on a locally compact Hausdroff space X, which has
the five properties stated in Riesz Representation Theorem. In particular,
u could be the Lebesgue measure on R¥.

THEOREM 2.5.1 (Lusin’s Theorem). Let f : X — C be measurable. Suppose
= {z : f(z) # 0} and pu(A) < oco. Then, given any € > 0, there exists
g € Co(X) such that

p({z: f(zx) # g(2)} <e, (2.5.1)
and
sup lg(x)] < sup |f(z)]. (2.5.2)

Proof. Step 1: First suppose A is compact. By local compactness, there exists
open V such that A C V and V is compact. Let us begin with simple functions.
Suppose f is simple,

n

f= ZanAJ" A; disjoint, UAj =A, o; >0.

Jj=1

By regularity, with p(A;) < p(A) < oo, there are compact sets K; C A;, such
that p(A; \ K;) < 57. Note that there are finitely many disjoint K;’s. Hence, we
can find disjoint open V; such that K; C V; C V, with V; compact. Moreover, by
outer regularity of y, we may assume p(V; \ K;) < 5;.

By Urysohn’s Lemma, there are g; € C.(X) such that xx, < g; < xv;. Define

Then, g € C.(X) with supp(g) C V, and |g(z)| < max{|a;|} = max,cx |f(2)].
Also, if z € (U}, K;) U (A°N (N2, V), then f(x) = g(x). Hence,

m)

{reX:g(x)# flx)}

N

DL
3
~
D)
A/
N
C

<
I
—

S 1C-
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N
HC:
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—
>
v
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Thus, p({f # g}) < 2e and it concludes the case for simple functions.

Step 2: Next, suppose 0 < f < 1. By Theorem (1.4.4), using the staircase
functions ¢,,, there exists a sequence of simple functions {s,} such that 0 <'s,, <
Spt1 and s, (x) 2 f(x), for all x € X,

Define t,, := s, — s,_1, with so = 0. Then t,’s are simple, ¢, = 0 on A¢, and
_1

t, > 0. Moreover, from the definition of ¢, |t,| < z=r. By Step 1, there are
gn € Co(X) such that (1): p({gn # ta}) < 53 (2): |gn| < maxt, < 57; and (3):
supp(gn) € V.

Define g := >">" | g,. Then supp(g) = .~ supp(g,) €V and Y 7, g, converges
uniformly by the M-test. Hence, g € C.(X). If for some z € X, g,(z) = t,(z), for
all n € N, then g(z) = f(x). Thus,

n({f #g}) < u< Ut # gn}> <Y u({tn # gu}) =<

Consequently, if f is bounded, the results follow by scaling f.

Step 3: If f: X — [0,00) is measurable, then ()~ {f > n} = @. Since pu({f >
1}) < u(A) < oo by hypothesis, the monotonicity of x implies that

p{f = n}) = u(@) = 0.

Hence, given € > 0, there is n such that u({f > n}) < 5, and f' := fx(s<ny is
bounded. By Step 2, we obtain g € C.(X), such that g = f’, except on a set of
measure < 5. Therefore, g = f, except on set of measure < ¢, and satisfies both
inequalities.

Step 4: Now if f: X — C is measurable, write

f=uy —u)+i(vy —v-)

and perform the approximation separately on each term. Then we obtain g that
satisifies inequality (2.5.1). To obtain inequality (2.5.2), if |f| is bounded, define
M = sup{|f(z)|: x € X}, and p: C — C by

(2) = z, if |z] < M,
PN ME, i 2] > M.

EX
Note that ¢ € C.(C). Therefore, ¢ o g satisfies both inequalities. If |f| is un-
bounded, then fx(jfj<n} is bounded, and p({|f| > n}) < 5. We can then proceed
as in Step 3.

Step 5: Finally, suppose A is not compact. Since p(A) < oo, by inner regularity,
there is a compact K C A such that u(A\ K) < £/2. Now apply the preceding
steps on K, with £/2 to obtain g € C.(X). |
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COROLLARY 2.5.2. Assume that the hypotheses of Lusin’s Theorem are satisfied
and |f| < 1. Then there is a sequence {g, € Cc(X)} such that |g,| < 1, and

fz) = Tim g,(z) a.e.
Proof. By Lusin’s Theorem, ¥n € N, there is a g, € C.(X) such that |g,| < 1 and
w(E,) < 27", where E,, = {z : f(z) # g(x)}. Since Y~ pu(E,) =1 < oo, by
Theorem 1.8.9., almost every z € X lies in finitely many of the E,’s. Hence, for
every such fixed z, there is a large enough n such that f(z) = g,(z). |

THEOREM 2.5.3 (Vitali-Caratheodory Theorem). Let f : X — R, f €
LY(u). Then, given € > 0, there are u,v, such that u < f < v, u is upper
semicontinuous and bounded above, v is lower semicontinuous and bounded below,
and

/X(’U—u)d,u<5.

Proof. First suppose f > 0. Using the staircase functions, we obtain a sequence
of increasing functions s, * f pointwise. Take sy = 0 and define t,, := s,, — $,,_1.
Then ¢, is simple and f =Y ¢

We can define constants ¢; > 0 and measurable sets E;, not necessarily disjoint,
such that f = E;’il cjXk;- By Monotone Convergence,

ch/xEjdu—/fdu<oo.
= Ux X

Hence, u(E;) < oo for all j. By regularlty, there are compact K and open V; such
that K; C E; CV; and u(V; \ K;) < . Also, since the series converges, there

exists N, such that 3 72 v\ ¢;u(Ey) < 5: Define

o0
CiXK; and v = g CiXV;-

|
M-

Then, u is upper semicontinuous and v is lower semicontinuous with v < f < v.

Finally,
fims (G [ S
—i_vi p(Vi\ K;) + iNO:leM(Vj)
_ZN: (Vi \ Kj) + iNo:lcj(M(Vj\Ej)Jru(Ej))
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<D eu(Vi\ Ky + Y eul(E)) < 2
=1 j=1

Thus, the results hold true for f > 0. In general case, write f = f* — f~. Find
uy,vy for fTand u_,v_ for f~. Let u :=uy —v_ and v := v, —u_. Then,

u=up—v. < f=fr—f" < vy —u =w

Consequently, u is upper semicontinous, v is lower semicontinouous, and

/X(v—u)du<45. ]
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Chapter 3

LP-Spaces

3.1 Convex Functions and Inequalities

DEFINITION 3.1.1. A function ¢: (a,b) — R is convex if for all z,y € (a,b),
and given \ € [0, 1],

p((1 =Nz +Ay) < (1= Ne(x) + Ap(y). (3.1.1)

t—s
u—s"

leta<r=s<t<y=u<b A= It is equivalent to

u—t t—s

p(t) < wls) — +olu) —

(u = s)p(t) < (u—=1)p(s) + (1 = s)p(u).

IN

Subtract (¢ — s)¢(t) from both sides and simplify:

(= 1)(p(t) — 9(5)) < (¢ = 5)(p(w) = p(1))
)= 0(e) )= olt) 512)

By the Mean Value Theorem for Differentiation, a differentiable function ¢ is
convex in (a, b) iff ¢'(s) < ¢'(t),Vs < t if and only if ¢’ is monotonically increasing.

PROPOSITION 3.1.2. If ¢ is convex on (a,b), then ¢ is continuous on (a,b).

Proof. Suppose a < s <z <y <t <b LetS:=(s,¢(s)) and similar for z,y,t.
Then Y is below the line XT" and above SX. Check the picture, asy — z, Y — X
and vice-versa.
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THEOREM 3.1.3 (Jensen’s Inequality). Let p be a positive measure on (X, M)
with p(X) = 1. Let f : X — [—o00,00], f € L*(n), a < f(z) < b, for all x € X,

and ¢ be convexr on (a,b). Then,

w(/xfdu) S/X(wf)du-

Proof. For all t € (a,b) with a < s <t <wu < b, inequality (3.1.2) gives

pt) —ols) _ plu) — o)
t—s - u—1

Define § := sup{%ﬁf(s) : s € (a,t)}. Then,
olt) —ols) _ g () = ot)
t—s — 7 u—-t

Hence,
p(s) = ¢(t) + B(s — t).

Let s = f(x), then inequality (3.1.4) gives

e(f(x)) =) + B(f(z) —t) > 0.

(3.1.3)

(3.1.4)

(3.1.5)

Let t = [ fdu. Then a <t < bbecause ;(X) = 1. Now, integrating (3.1.5) gives

OS/XsOOfdM—sO(t)/Xdu+ﬁ</xfdﬂ—t/xdu>

< /X oo fdu = p()u(X) + B(t — tu(X)).

Since p(X) = 1, it follows that

SOO/deMS/XWOfdM
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EXAMPLE 3.1.4. Let p be the probability measure on S := {1,...,n}, u({j}) =
a; >0, and Z?Zl a; = 1. Let 8; = f(j), ¢(s) = e°, which is convex. Then,

90</ fdu) = @Z?:1 ;B — Heo‘jﬁj < / po fdu = Zajeﬁj
S . S .
Jj=1 j=1

Now, let v, = €%, then 3; = In(vy;) and we have

[17 <> e (3.1.6)
whenever Z?Zl a; = 1. The left and right sides are often called the geometric

mean and arithmetic mean, respectively.

DEeFINITION 3.1.5. If p, ¢ > 0 such that p+ g = pq or ;1) + % =1, then we call p
and ¢ a pair of conjugate exponents.

THEOREM 3.1.6 (Holder’s and Minkowski’s Inequalities). Let p,q be con-
Jjugate exponents, 1 < p < oco. Let X be a measure space, with measure p. Let
f,9: X — [0, 00] be measurable. Then,

[rowns ([ ra)"([oa)" =inpa 617
</X(f+g)p d#) " < </Xfp d,u)l/p—l— (/Xgp du) Up. (3.1.8)

The inequality (3.1.7) is H6lder’s; (3.1.8) is Minkowski’s. !

and

Proof. For the Holder’s inequality, let A := ||f|l,, B = ||gllq- If A = 0 or oo,
it is trivial. Suppose 0 < A,B < co. Let F(z) = %|f(2)], G(z) = $|g(x)|.
Let ¢(2) := €. Since e* ranges over (0,00), for every z € X, F(z) = e*/? and
G(z) = e/ for some s,t € R. By convexity of ¢, we have

eS/Ptt/e < les + }et
q

(F(2))" +

hSENC

Fa)G(z) < (G(x))".

Q| =

Integrating both sides gives

/FGdM<1/deu+1/quM
ap o< (G [uran) v 2 (5 [ laran)

"Here we use the shorthand notation || f||,, for ([, f? du)'/?, although we have not yet defined
[If]l, for the suitable f.
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Ay ()om

/X gl di < AB = |1l 1gll

For Minkowski’s inequality, fix p and consider

f+aP=f+9(f+9P =ff+9P " +g(f+9)P "
By Holder’s inequality,

1F + gllp < NI+ 9l + gl (f + 9)7 g
< (£l + gl ICF + 9P~ g (3.1.9)

It is sufficent to prove the case in which ||f + g||, > 0 and || f||, + [lgll, < oo.
Consider the following with % =p—1

Mf+mpw$=/«f+mpwmﬂ
X
= / (f +9)" " du
X
=/kf+mﬂm=nf+mm
X
Hence,

I(F+ 9 g = I1f + 9l =11 + gl

By convexity of p(t) := t*,
1 1
—fr-)<
<p<2f+ 2) <

()

(f+g)P <

1
poftgpoy

1
11+ 59"

p—lfp + 2p—lgp

IN
N~ N —

\)

Integrating both sides gives

mqu+mmsr10um+mm)<m.

Thus, we can divide inequality (3.1.9) by [|f + g[|5~",
1f 4 gl < [1f1lo + llgllp- u
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3.2 The LP-Spaces

In this section, (X, M, u1) is a positive measure space.

DEFINITION 3.2.1. Let 0 < p < o0, f: X — C be measurable. Define the

LP-norm of f by
1l = ( / Iflpdu> . (3:2.1)

Define the LP-space of X by LP(u) := {f: X — C, measurable with || f||, < oo}.

REMARK 3.2.2. If y is the counting measure on a countable set A, we denote
the corresponding LP-space by [P(A), or [P. An element in [P(A) may be regarded
as a complex sequence = = {x,} and

0 l/p
lall, = (Z r:cm) |
n=1

DEFINITION 3.2.3. Let f: X — [0,00] be measurable. The essential supre-
mum is

ess sup(f) :=inf{a: u({z: f(z) > a}) = 0}. (3.2.2)
REMARK. Note that

p({x: f(x) > ess sup(f)} :u<U{x f > esssup(f )—l—i})

I
Mg

p({ < ] > ess sup(f) + ) = 0

3
Il
=

DEFINITION 3.2.4. If f: X — C is measurable, we define

[[flloc := ess sup(|f]). (3.2.3)

Define L>®(u) := {f: X — C, measurable with || f|l« < 0o}. Sometimes we call
the members of L™ essentially bounded measurable functions on X.

REMARK. Hence, for almost all x € X, |f(z)| < M <= M > |/ fl|c-

THEOREM 3.2.5 (Holder’s Inequality for LP-Spaces). Let p,q be conjugate
exponents, 1 < p < oo, and f € LP(u),g € L (). Then, fg € L*(n) and

1 glle < 17 1pllglly-

Proof. For 1 < p < 00, it is done in Theorem (3.1.6). Suppose p = 1,q = oo. Let
E:={reX:|g(z) > ||gl]lsc}, so u(E) = 0. Then,

||fg\1—/leg\du—/X\E!fgldqu[E\fg!du
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S”QHoo‘/\ fldu+0
X\FE

< [lgllos - / fldu
X
— 1711 llglle < oo.

Therefore, fg € L*(u). [ |

THEOREM 3.2.6 (A-Inequality for LP-Spaces). Let 1 < p < oo, and f,g €
LP(u). Then,

LF+gllo < W f1lp + [lgllp-

Proof. For 1 < p < oo, it is done in Theorem (3.1.6). The case where p = 1 is
trivial from |f + g| < |f| + |g|- So, suppose p = oo, f,g € L>®(u). Define the
following sets:

A=A{r e X [f(@)[ +[9(@)] > [[flloc + [lglloc}
Bi={re X :[f(x) +9(x)] > [l + gl

Then |f + g| < |f| + |g| gives B C A.

By basic set operations,

vg A = g {fW] > [flle} N {lg(W)] > [lglloc}
= AW > [[flloo} U{lg()] > [lglloo}-

Hence,

p(A) < p({If1> [1fllee}) + u({lgl > llgllec}) =0+0

gives p(A) = 0 and u(B) = 0. Recall that || f + gl = inf{a: p({|f + 9| > a}) =
0}. In particular, for & = || f||oc + [|g]|0o, We have ||f + glloo < || flloo + [|9]]co- W

REMARK 3.2.7. For 1 < p < oo, f € LP(u),« € C, it is clear that af € LP(u).
Therefore, the A-inequality implies that LP(u) is a vector space. Even better,
we may define a distance function d(f,g) := ||f — g||,- The only problem here is
that when f = g p-a.e., but f # g, we have d(f,g) = 0.

To make such d into a metric on LP(u), we simply partition LP(u) into equivalence
classes given by f ~ g <= d(f,g) = 0. In this case, we have a quotient space
of LP(u) whose memebers are in the form [f]. However, for simplicity, we still
view LP(u) as a space of functions, and identify each [f] by its representative f.
Therefore, (LP(u),d) is a metric space, hence a normed vector space.

The following results show that LP(u) is complete with the norm || - ||,.

LEMMA 3.2.8. Let {f,} be an Cauchy sequence with respect to || - |,. Then
there exists a subsequence {f,,} of {fn} which converges pointwise p-a.e.; that is,
foi (@) = f(x), for p-almost every x.
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Proof. Case 1: 1 < p < oo. By hypothesis, for each k£ € N, select f,, such that

1
||fnk+1 - fnkHP < 27143

Define gy, = >0 [ fupry — froil, and g := limy, o0 G- Then, ¢gf < gb | < ...
and g2 — ¢g?. By Monotone Convergence,

/g%du%/gz’dw
X X

m m m 1
Z|fnk+1_fnk| §Z||fnk+1_f7lk||p§227§1'
k=1 k=1 k=1

Therefore, ||gl|, <1 and g is finite p-a.e. Hence, Y77 (fa,., — fn,) is absolutely
convergent p-a.e. Thus, for p-almost all z, define

By A-inequality,

gmllo =

p

fl@) = lim Y (fuy (@) = fu(2) = lim fo, (@) = fun ().

Assume f,, () =0, p-a.e., we have
lim f,, = f € L"(n).
k—o00
Case 2: p = 0o. Define the following sets:
Epn =z € X [fulz) = fel@)] > [ fn = frlloo}-

Then, u(E, ) = 0. Let E := U, yen B, with p(E) = 0.

On E°, |fu(x)— fe(x)] < || fn— fkllco- By hypothesis, { f,} is L>°-Cauchy. Therefore,
the sequence converges uniformly p-a.e. |

THEOREM 3.2.9. LP(u) is a complete metric space with the p-norm. Hence,
every LP-Cauchy sequence {f,} converges to f € L¥(p).

Proof. If p = 00, it is done by the previous Lemma by uniform convergence. We
may define f(z) =0, for every x € E.

For 1 < p < oo, supppose { f,,} is LP-Cauchy. By the previous Lemma, there exists
subsequence f,,, — f pointwise u-a.e. We will show that f € LP(u), and f, RN I

For every fixed n € N, define g;, := | f, — fn,|[P. By Fatou’s Lemma (1.6.9),
liminf/ | fr = [P dpe > / liminf | f,, — fn, [P du
k—o0 X X k—o0

= [ 15 1P (3.2.4)
X
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On the other hand, since { f,,} is LP-Cauchy, given ¢ > 0, there is N € N such that
for all n,m > N,

/X = fonl? At = [ for = fnll? < 2.

For ny > N, with m = ny, by inequality (3.2.4),

/ (o= S dp < liminf || = fu 1
¥ —00
< eP.

for all n > N. Hence this shows that

1/p
</X fo - fl”du> o= Il < 2,

for all n > N. Finally, to see f € LP(u), note that for some n > N,

1fllp = If = fo + fullp
<A = Fallp + [1fnllp

<A | fnllp < oo

Therefore, f € LP(u) and f, KN I [ |

3.3 More on LP-Spaces

In general, for all p # ¢, LP(u) ¢ L%p). For example, consider the Lebesgue
measure m on (0,00). Given ¢ > 0, define f: (0,00) — R, by f,(z) := 279. Then,
IX©1 € L if and only if p < ¢!, and fxa) € LP if and only if p > ¢
However, under certain conditions, we do have inclusion. In this section, we write

LP for LP(p).

PRrOPOSITION 3.3.1. [f0<p<q<r<oo, then LY= LP+ L". That is, for all
f e L4, there is g€ LY and h € L" such that f = g+ h.

Proof. Let f € L% and define F := {z : |f(x)] > 1}. Define g := fxg, and
h:= fxge. Note that |g|" = |f[Pxe < |f|Xg, thus ||g[l, < |[fll; < oo, and g € L”.
Similarly, h € L". ]

PRrROPOSITION 3.3.2. If0 <p < g <r < oo, then PN L" C LY. Moreover, for
all f € LPNL", we have

1 1le < WAIRIAIR (3:3.1)

where 0 < X\ < 1 is given by ¢~ = p~t + (1 — \)r—L.
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1

Proof. First suppose r = co. Then ¢~! = Ap~!, and for almost every z € X,

[f @) = [f @)L @) < NAEPLf )]

Integrating both sides and take the ¢'"-root,

1/q
1l < ufugi-p/q>( / !f\pdu> UL
— 1A

Now suppose 7 < co. Note that

A (A=MNg_

P r

Hence, p’ :=p/(Aq) and ¢ :=1/(q(1 — X)) are conjugate expontents. By Hélder’s
inequality (3.1.6),

/lel“’dMI/X!fIAqlfl(l”qdué HF Pl A1

- </x(‘f ) du ) W( /X<|f|<1—x>q)q’ du)w

= [IFIRALANE

Take the ¢*"-root on both sides, we obtain inequality (3.3.1), and f € L9, |

PROPOSITION 3.3.3. Let A be a nonempty set, 0 < p < q¢ < oo. Then, IP(A) C
1(A) and for all f € I"(A), || fllg < [1f]lp-

Proof. If ¢ = 0o, then

118 = Gup F(@))” < 3 L@l = 171}

acA

Thus, ||flle < ||fl,- If ¢ <7 := o0, by Proposition (3.3.2), we have A = p/q, and

£l < WFIRIANSS™ < HAIRNAI = 1LF 1l u

PROPOSITION 3.3.4. Let u(X) < o0, and 0 < p < ¢ < oo. Then LY C LP, and
forall f € LY,

1£llp < 11 £llgp(X)HP=0/, (3.3.2)

Proof. 1f ¢ = oo, then 1/¢g = 0 and
1/p
T ( / !f\”du> < N loop (X,
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If ¢ < oo, observe that p' := ¢/p and ¢ := q/(¢ — p) are conjugate exponents.
Hence, by Hélder’s inequality,

11l = /X 17 dp < LA P12

= ([asmvan) " e
= ()

Taking the p'f-root on both sides, we obtain inequality (3.3.2). |

3.4 Approximations in LP-Spaces

PROPOSITION 3.4.1. Let
S:={s: X = C| s simple, measurable , u({s # 0}) < oo}.
Then for 1 <p < oo, S C LP(u) is LP-dense in LP(1).
Proof. Obviously, for all s € S, ||s||, < oo, and S C LP(u). We will show that
whenever f € LP(u), there is s, L I

First, suppose f: X — [0,00). Using the staircase functions, there is a sequence
of simple functions s,  f, pointwise. Since 0 < s,, < f, we have s, € LP(u),
hence s, € S. Note that |f —s,|? < |f|? and by Dominated Convergence, we have

lim |f—sn|pdu—/ lim |f — s,|du = 0.
X Xn—>00

n—oo

Hence, || f — sull, — 0, or equivalently, s, KGN f. In general, if f: X — C, write
f = (uy —u_)+i(vy —wv_). From the preceding step we obtain corresponding
sequences {s} {s, }, {t}}, {t,}. Then apply the A-inequality. |

Approximation by Continuous Functions

Now let p be a measure on a locally compact Hausdroff space X, which has the
five properties stated in Riesz Representation Theorem. In particular, u
could be the Lebesgue measure on R¥.

THEOREM 3.4.2. For 1 <p < oo, C.(X) is LP-dense in LP(u).

Proof. From Propoisition (3.4.1), it suffices to show that C.(X) is dense in S. For
every s € S, define A := {s # 0}. By definition of S, u(A) < oo and s(x) = 0, for
all x € A°. Therefore, by Lusin’s Theorem (2.5.1), given £ > 0, there is g € C,.(X)
such that

9| <sup{s(z):z € X} =sllo  and  pu({g#s}) <e
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Then, using |g — s| < 2||$||c, We have

1/p 1/p
g = sll, = (/ g S!”du> . (/ g s\w>
X {9#s}

1/p .
< 2rs||oo( / X{s#s}d#) — 9|5l

Therefore, C,.(X) is dense in S, hence in LP(u). |

REMARK 3.4.3. Consider the Lebesgue measure m on R*. For 1 < p < oo, the
metric ||f — g||, on C.(R*) is a genuine metric, i.e. we do not have to pass to
equivalence classes. It is because if f Z ¢, then they must differ on some open set
U, and m(U) > 0. Hence, if || f — ¢||, = 0, then f = g,m-a.e., and f = g. Also,
note that in C,.(R¥), || f|le = sup{|f(z)| : x € R*}.

For 1 < p < oo, LP(R¥) is the LP-completion of C.(R¥) by Theorem (3.4.2).
In particular, when p = 1, f € C.(R¥), ||f|l1 is precisely the Reimann integral
Jer | f(2)] dz; and L*(RF) is the L'-completion of C,(R*).

However, when p = oo, the L®-completion of C,(R¥) is not L>®(R¥), but Cy(RF),
the space of continuous functions on R¥ which vanish at infinity. We shall see that
in Proposition (3.4.5).

DEFINITION 3.4.4. A complex function f on a locally compact Hausdorff space
X is said to vanish at infinity if given € > 0, there exists a compact set K C X
such that |f(z)| <e, for all x ¢ K.

We denote Cy := {f: X — C | continous f vanishes at infinity.}. Obviously
C.(X) C Cy(X), and they are equal if X is compact. In this case we simply
denote it as C'(X).

PROPOSITION 3.4.5. If X is a locally compact Hausdorff space, then Cy(X) is
the completion of C.(X), relative to the metric defined by

If[l = sup [f(z)]-
rzeX

Proof. Tt is obvious that (Co(X), || - ||) is a metric space with d(f,g) = ||f — ¢l
We will show that C.(X) is dense in Cy(X), and Cy(X) is complete.

For density, let f € Cy(X) and € > 0. By definition of Cy(X), there is a compact
K C X such that |f(z)| < € ouside K. By Urysohn’s Lemma (2.2.11), there
is g € C.(X) such that 0 < g < 1 and g(z) = 1 on K. Define h := fg, then
heC/(X)and | f—h| <e.

For completion, let {f,} be Cauchy in Cy(X). Hence, {f,} convereges uniformly
because | f,,(z)— fm(x)| < || fa—fml||- Therefore, the pointwise limit f is continuous.
To see f € Cy(X), given £ > 0, there is n such that ||f, — f|| < /2. Also there is
a compact K C X so that |f,(z)| < e/2,Vx ¢ K. Hence, Vz ¢ K,

@) = f(x) = fa(@) + fu(@)| < [f(2) = fu(X)| + [ful@)] <&
Thus f vanishes at infinity and Cy(X) is complete. |
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3.5 Additional : Egoroff’s Theorem

We conclude this chapter with the Egoroff’s Theorem concerning on uniform con-
vergence of a sequence of measurable functions. This type of convergence is some-
times called almost uniform convergence. Moreover, one can prove Lusin’s
Theorem (2.5.1) easily, using Egoroff’s Theorem and Tietze Extension Theorem.

THEOREM 3.5.1 (Egoroff’s Theorem). Let u(X) < oo, f,: X — C be mea-
surable and f,(x) — f(x), for p-almost every x. Then given ¢ > 0, there is a
measurable set E C X with p(E°) < e such that {f,} converges uniformly on E.

Proof. Without loss of generality, we assume f,(x) — f(x), for all x € X. Define

Suai= () {2 e X100 - sl < )

i,j>n
For all z € X, {f.(x)} is Cauchy. Thus, for all k € N, Sy, C Sy, C --- = X.
Hence, for each k € N, there is ny € N such that

€

ok

= M( U Sf%k) <e.
k=1

Choose such pair (k,k,) and define E := (;_; Sp, k- We will show that {f,}
converges uniformly on E. For every ¢ > 0, choose k € N with % < g, and let
N :=ny. Thenif x € E, x € Sy, gives

8 C
1(Sn k) >M(X)—27 = u(Sh k) <

1
|filx) — fi(2)] < 7 <6 for all 7,7 > N.
Therefore, {f,} is uniformly Cauchy, hence uniformly convergent to f on E. N

REMARK 3.5.2. Egoroff’s Theorem does not hold in o-finite space. For example,
let X := [0, 00) with the Lebesgue measure m. Define f, = X{n,o0), then f,(z) — 0.

Let ¢ = § and take E such that u(E°) < 1. Then for each n > k, [k,n) N E # @
because u([k,n)) > 1. However, then there is x € E, such that fy(xz) = 1, and
fn(x) =0, for all n > k. Hence,

[fi(@) = falz)] =1
and {f,} does not converge at x. |

THEOREM 3.5.3 (Tietze Extension). Let (X, 7) be a locally compact Hausdorff
space, K C X be compact. Suppose f: K — C is continuous, then there is
g € C.(X) such that g|x = f. Moreover, supp(g) is a subset of some open U.
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Proof. Tt suffices to prove for real-valued f. Since f is continuous on K, f is
bounded on K. Without loss of generality, we assume f(K) C [—2,2]. We shall
proceed by induction.

Step 1: Define A; := f~'([-2,—2]) and By := f7'([2,2]). Note that A, B, are
closed in K, hence closed and compact in X, with B; € X \ A;. By Urysohn’s
Lemma (2.2.11), there is hy € C.(X), such that hq|p, =1, hi|s, =0, and hy(X) =
[07 1} Define 91 = %(%)(hl - %) Then g1 € OC(X)7 and gl|B1 = %7 gl|A1 = _ga
and g1 (X) = [~2,2]. Let fi := f, and fo := fi — g1 on K. Then, f, € C.(K) and

373
F2(K) = [-3,3].

Step 2: Let Ay := f;'([—3,—(2)%]) and B, := f;'([(3)% 1]). There exists hy €
C.(X), such that he|p, = 1, ha|a, = 0, and hy(X) = [0,1]. Let go := 3(3)*(ha—3).
Then, go|p, = (%)2, gala, = *(%)27 and g»(X) = [*(%)27 (%)2] Define f3 := fo — go

in C.(K) and f3(K) = [-3(2)".3(2)%).

Step 3: Proceed inductively. For each n, we obtain g, € C.(X) so that g,(X) =
[=(3)", (3)"], and f, € Co(K) with f,(K) = [=3(3)",3(3)"]. Also, on K, g, =
fn — fas1. Finally, define g(z) := Y77 g,(x), for all z € X. Since |g,| < (3)",

> > | gn converges uniformly to g. Hence, g € C.(X). Moreover on K,

N
9= lim _l(fn = farr) = lim fr = g =,
because |fy| < 3(3)Y — 0. [

THEOREM (Lusin’s Theorem). Let (X, M, pu) be a locally compact Hausdorff
space, and | be a reqular Borel measure. Suppose f : X — C is measurable,
A= {x : f(z) # 0} and w(A) < oco. Then, given any ¢ > 0, there exists
g € Co(X) such that

p{z: fz) # g(x)} <e, (3.5.1)
and
Sup lg(2)] < Sup f(@)]. (3.5.2)

Proof. Pick a sequence of simple functions s, (z) A f(z), for all z € X. By the
Egoroff’s Theorem (3.5.1) on A, there is E' € M such that u(A\ E) < £, and
Snlg = f|E, uniformly.

By regularity of u, there is compact K and open U, such that K C E C A C U,
with u(E£\ K) < 5, and u(U \ A) < £. By the Tietze Extension (3.5.3), for each
n, there is g, € C.(X) such that g,|x = s,|x — f|k, uniformly.

Hence, f|x € C.(K). Apply the Tietze Extension again on f|x, we find g € C.(X),
such that g|x = f|x and supp(g) C U. Moreover, {z € A: g(z) # f(z)} CU\ K,
which has measure < €.

Finally, we obtain inequality (3.5.2) exactly as in the proof of Theorem (2.5.1). W
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Chapter 4

Elementary Hilbert Space Theory

4.1 Inner Products and Linear Functionals

DEFINITION 4.1.1. Let H be a complex vector space. A sesquilinear form is
amap (-,-): Hx H — C satisfying the followings: For all z,y,z € H, a € C,

(a) (z,y) = (y, ).

(b) (z+az,y) = (z,y) + afz,y).

(¢) (z,z) > 0. (Positive Semidefinite)

In addition, if (z,z) = 0 if and only = 0, then H is called an inner product
space.

REMARK. (a) implies (z,z) is positive real. (b) implies the map = — (z,y) is a
linear functional on H. (a) and (b) imply that (x,y + az) = (x,y) + a(z, 2).

PROPOSITION 4.1.2. [f(-,-) is positive semidefinite, and (x,x) = 0, then (z,y) =
0, for each y € H.

Proof. For all a € C\ {0},
(x +ay,r+ ay) = (x,x + ay) + aly, z + ay)
= (z,2) + &z, y) + afy, z) + af*(y,y)
= 0+ 2Re(aly, z)) +[al*(y,y)
= 2Re(a(y, z)) + |al*(y,y) = 0

By way of contradiction, suppose (z,y) # 0. Then either (1): (y,y) = 0 and
2Re(a(y, x)) = 0, or (2): (y,y) # 0.

For (1), let o := ﬁ, then 2Re(a(y,z)) = =2 > 0. —<«
For (2), let o := — (@nl®_ then la| = Lzl and
’ ’ (ysx)(y:y) (vsy)
2
2Refaly.a)) +laP ) = UL 20 e .
Y,y
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DEFINITION 4.1.3. If (-, -) is a sesquilinear positive semidefinite form on H, then
the seminorm of x € H is defined to be

]l = v/ {x, ).

PROPOSITION 4.1.4 (Cauchy-Schwarz Inequality). If (-,-) is a sesquilinear
positive semidefinite form on H, then for all x,y € H,

[{z o) | <l Hlyll

Proof. Suppose ||y|| # 0. Let A := gz; Then,

(@ =My, z = Ay) = ||z]]* = 2Re(Ay, 2)) + [AP[ly||”

o (@B | L)
= llel = 2R ( (v, y) )+ Wy

T, 2
Hence, ||| > K525 and |(z. )] < o] [lyll "

PROPOSITION 4.1.5 (A-inequality). For the seminorm, for all x,y € H,
2+ yll < [zl + [lyl- (4.1.1)
Proof. By the Cauchy-Schwarz Inequality,

Iz +yl* = (z +y, 2 +y) = [l=]* + 2Re({z, ) + Iy
< llzll* + 2ll= [yl + lyll* = (=l + llyl)*.

Hence, ||z +y[| < [lz[| + [[y]- .

REMARK 4.1.6. If H is an inner product space, then ||z|| is a norm. The metric
d(z,y) := ||z — y|| gives a metric topology on H.

PROPOSITION 4.1.7 (Parallelogram Law). For the seminorm, for allx,y € H,
2+l + [lz = ylI* = 2||=[* + 2[ly||* (4.1.2)

(The sum of the squares of the diagonals of a parallelogram is equal to the sum of
the squares of its sides.)

Proof. Sum the identities ||z £ y||* = ||z||*> £ 2Re({(z,v)) + ||y]|- [
PROPOSITION 4.1.8 (Polarization Identity). For all x,y € H,

Ya,y) = e +yl* = llz — yl* +illlz + iyl* — llz — iy]]*). (4.1.3)
Proof. First suppose H is a real vector space. Then (z,y) = (y, z). Consider

lz+yl* =z —yl> = (z+y,z+y) — (t—y,z—y)
= [|z]]> + (=, 9) + (v, z) + lyl* — (l=]I* = (z,y) — (. z) + [[y[]*)
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If H is a complex vector space, then from the previous calculations,
lz+ylI* = llz — ylI* = 2(2, y) + 2y, ),
and
e+ iy[|* — [l — iyl|* = 2z, iy) + 2(iy, ).
Subsituting into formula (4.1.3), the RHS gives

RHS = 2<I,y> + 2<y,l’> - 2(22)<$,y> + 2(12)<y,l’>
(z,y) +2(y,z) +2(z,y) — 2(y, z)
(,y). ]

DEFINITION 4.1.9 (Hilbert Space). Let H be an inner product space. If H is
complete with respect to || - ||, then H is an Hilbert Space.

EXAMPLE 4.1.10. If g is any positive measure, L?(u1) is an inner product space
with

) I/ngdu. (4.1.4)

Note that

1/2
1= = ([ 1an) - =15l
Also, recall that LP(u) is complete for 1 < p < co. Hence, L*(u) is a Hilbert space.
Throughout this chapter, let H be a Hilbert space.

PROPOSITION 4.1.11. Let g € H, then \y;: H — C given by A\,(f) == (f,9) is a
linear functional, and uniformly continuous. Consequently, the maps f — (g, f)
and f— || fIl are also uniformly continuous.

Proof. Linearity is done previously For uniform continuity, Ve > 0, if g =0, then
Ag(f) =0.1f g #0, pick 6 = ;= Then, Vf,h € H, with |[f — h|| < we have

ol
[Ag(f) =AM = (£, 9) = (h, )| = [(f = b )| < |If = hllllgll < e u

DEFINITION 4.1.12. A closed subspace of H is a subspace that is a closed set
under the metric topology of H.

REMARK. If M is a closed space of H, so is its closure M. To see it, pick convergent
sequences {,, }, {yn} in H, and a € C. It is easy to see that az,,+y, — az+y € M.
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DEFINITION 4.1.13 (Convex Sets). A set E in a complex vector space V' is said
to be convex if Vz,y € E,Vt € (0,1),
z=(1—-tx+ty €E.

One may visualize z; as a stright line segement from z to y, lying inside E. Ob-
viously, every subspace of V' is convex. Also, if E is convex, so is the translate
E+z:={y+xz:yeckFE}

4.2 Orthogonality

DEFINITION 4.2.1 (Orthogonality). We say x,y € H are orthogonal if (x,y) =
0; we denote it as z L y. If S C H, we write S* :={x € H : (x,y) =0,Vy € S}.

PROPOSITION 4.2.2. Let S C H, then S* is a closed subspace of H.

Proof. Let z € H, and \.(z) := (z,7). Then {z}*+ = A\;1{0}. Observe that {z}+
is closed by continuity, and is a subspace by linearity. Now, note that

st ==
z€S

which is a closed subspace. |

REMARK. There is a subspace that is not closed. For example, C([0,1]) C
L*(]0,1]). There exists a sequence of continuous functions converges to a non-
continuous function with respect to the L?-norm.

LEMMA 4.2.3. Let M be a closed subspace in H. Then for all h € H, there is
m € M that is nearest to h.

Proof. For every h € H, define 0 := inf{||m — h|| : m € M}. Let {m;}3°, be a
sequence such that ||m; — h|| — 0. We will show that {m,}?°, is Cauchy.

Recall the Parallelogram law, ||z —y||? = 2||z|]?+2|y||*> — ||z +y||*>. Let x = m; —h,
y = m; — h. Then,

2 2

> 0.

—h and

eryH

Substitute z,y, we have

lms = 512 = 2(1me = A + lm; = bIP) = llm + m; — 24
< 2my = B + 2lm; - A - 45°

Since ||m; — h?, ||m; — h||* N\, 6%, given £ > 0, IN € N, such that for all 4,5 > N,
we have

lm; —m;|| <e.
Therefore, {m;}$°, is Cauchy and converges to m € M because M is closed. Hence,

we have ||m — h|| = ¢, which is the minimum by definition. [ |
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THEOREM 4.2.4 (Orthogonal Projections). If M is a closed subspace of H,
then Yh € H, there is a unique pair m € M, n € M+ such that h = m +n and
|R||> = ||m||* + ||n||>. Moreover, the maps P: h +~ m, and Q: h — n are linear.
We write m = Ph and n = Qh.

Proof. Fix h € H, by the previous Lemma, pick m € M that is nearest to h, and
let n := h — m. We will show that n € M*. For every x € M, given a € C,

In = az||* = [In]* — 2Re(alw, n)) + |af*||z]|*.
Suppose (n,z) # 0. Let a = a(t) = -.~,t € R. Then,

(z,n)?

£2)z]*

[{z,m)[*

and equation (4.2.1) gives

In — az||* = fIn]* — 2t +

(4.2.1)

[
[(z,n)]2

However, for sufficiently small ¢, 2t >
In —az|* < [nl* = [lh=(m+az)|* <[ —m|?

which contradicts to m being the nearest point in M. Hence, (n,z) = 0 and
n € M+. Moreover, ||h]|? = ||m + n||? = ||m]|® + ||n|*.

For uniqueness, let h = m’ +n'. Then, m —m' = n’ —n. Thus, m — m’' = 0 and
—_—— N —

eM eMt
m=m'; n =n' likewise.
For linearity, let A = hy + ahy. Then,
h=(my+n1) + a(mz + n2) = (M1 + ama) + (n1 + any) . |
eM eMt

DEFINITION 4.2.5. P and () are called the orthogonal projections of H onto
M and M*.

COROLLARY 4.2.6. If M C H is a closed subspace, then M+ # {0}.

Proof. Let h € H\ M, then Qh ¢ {0} because ||h — Ph||* = ||Qh|* # 0. |

THEOREM 4.2.7 (Riesz Representation Theorem on Hilbert Space). Let
A: H — C be a continuous (hence bounded) linear functional. Then there is a
unique y € H, such that A(x) = (x,y), for every x € H.

Proof. Suppose A # 0. Let M := ker(A) = {x € H : A(z) = 0}. Then M is a
proper closed subspace in H. Hence, M=+ # {0}.
If v,w € M+ and v,w # 0, then A(v), A(w) # 0. Then,

A(w‘w)‘““” Ko Aw) M
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1

— W € M. Hence,

However, linearity of M+ gives ﬁv

v w 0 = A(w)
— = w=——=u
Afw)  Aw) Av)
and M+ = Cv. Using orthogonal projections on M and M*, given any z € H,
x = Px + Qx, where Qx = %, for some o € C. Consequently,

A(z) = A(Px) +A(AOEZ)> ~0+a

=5 W) =5 )

(i ) (e e S

T Y

For uniqueness, suppose (z,y) = (x,y’) for each x € H. Let z := y — ¢/, then
(x,z) = 0. In particular, (z,z) =0 gives z =0 and y = ¢/. |

4.3 Orthonormal Sets

DEFINITION 4.3.1. A family {u, }aca C H is called orthonormal if (u,, ug) = 0,
Va # f(, and |lua|| = 1, Va € A. If © € H, the complex numbers (x,u,) are called
the Fourier coefficients of x relative to the set {u,}, or coordinate orthogonal
projections onto Span(u, : o € A).

We begin with finite othonormal sets.

PROPOSITION 4.3.2. Let {ug}aca be an orthonormal set, and F C A be finite.
Let Mp = Span(u, : a € F).

(a) If o: A — C with p|a\p = 0, then there exists y € Mp, namely

Y= Z p(a)ug,

acl
such that (y,us) = p(a), Ya € A. Also,

lyll* = [{y, ua)

acF

(b) If v € H, then

T — Z(aj,ua>ua

acl
for all s € Mp, except s ="

< ||z — s, (4.3.1)

wep T Ua)Uo. Moreover,

D ua) [ <l (4.3.2)

acF
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Proof. (a) is a direct calculation using orthonormality.

For (b), let s(z) := > cp(7, ua)ua. Note that (s(z),uq) = (2,us),Va € F.
Hence, (z — s(z),us) = 0,YVa € F. Because My is spanned by u,’s, we have
(x —s(z)) L (s(z) —s),V¥s € Mp. Therefore,

lz = sl = lI(z — s(x)) + (s(z) = $)[I* = llz = s(2)|* + |s(z) — 5%~ (4.3.3)
Hence, it gives (4.3.1). For (4.3.2), let s = 0 and the result from (a). [

REMARK. Note that (4.3.1) states that the “Fourier series” (2, uq)uq of x is
the unique best approximation to x in Mg.

REMARK 4.3.3. Note that s(z) = (3 ,cp(® ua)ua) L 2, and we have the
Pathagorean Theorem:

]I = [l = s(@)II* + I s(2)]* (4.34)

REMARK 4.3.4. Now we want to extend the results to uncountable sets. Because
of that, we need to clarify the meaning of ) ., ¢(c). Suppose 0 < p(a) < oo,
then we define

Z o(a) :=sup { Z pla): FCAF ﬁnite.}.
acA acF
In fact, if ;1 denotes the counting measure on A, then
> pla) = / pdp.
acA A
In this case, we write [P(A) instead of LP(u). Moreover, if ¢: A — C, then
pel) = [IoPdu=3lela)f <oc.
A acA

Example (4.1.10) shows that (?(A) is a Hilbert space with inner product:

(o) = [ eodu= Y pla)ifa). (4.3.5)

acA

REMARK 4.3.5. If ¢ € [>(A), then S := {a € A : p(a) # 0} is at most
countable. To see this, let A, := {a : |p(a)| > 1/n}. Hence,

A < Y Inp(@)f <n® Y fp(a)f < oo
acA, acA,

Since every A, is finite, S = |, A, is countable.

THEOREM 4.3.6 (Bessel’s Inequality). Let {u,} be an orthonormal set in H.
Then Yh € H,

IRIP =) 1y wa) . (4.3.6)

acA
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Proof. For every finite F' C A, by Proposition 4.3.2, we have

112 =) 1A, ua) .

acF

Let ¢(a) := (h,u,). By Remark (4.3.5), S = {a € A : p(a) # 0} is at most
countable. Therefore, taking the supremum of all finite F', hence all countable S,
we obtain

Ih7 > sup {a;uh,uaw}

FCA, finite

= sup h, ug 2}
sup d S0

= (b ua)|? u
acA

4.4 Orthonormal Basis

DEFINITION 4.4.1. An orthonormal set {u,}aca is called complete or an or-
thonormal basis if for all h € H,

IR1P = 1R, ua) . (4.4.1)

REMARK. Note that it is not a basis in the sense of vector space.

DEFINITION 4.4.2. The set U = {u,} is called a maximal orthonormal set if
V' is an orthonormal set containing U, then V = U.

THEOREM 4.4.3. Let {uy}aca be an orthonormal set in H. The following are
equivanlent:

(1) {ua} is an orthonormal basis.
(2) The set of all finite linear combinations of {u}, denoted P, is dense in H.

(3) {ua} is a mazimal orthonormal set.
Proof. (1) = (2). Given h € H, by (1) we have
IANP = 1Ay ua) .
acA

Let B C A be finite, and define gp := >___5(h, ua)us. By Remark (4.3.3),

aEB

1 — gal1* = 1R11* = llgsl® = 1> =D [(h,ua) *

aEB
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Now, taking the supremum over all such B, we have > 5 [(h,us)[* — ||R]>.
Therefore, Ve > 0, we can find such B so that ||h — gp|| < e. Therefore,

h = sup { Z(h,uama},
BCA, finite weB

and P is dense in H.

(2) = (3). By contrapositive, suppose Ju € H, |ju|| = 1, and (u, u,) = 0,Va € A.
Then, for all finite B C A, V¢, € C,

U — E Calla

aEeB

2

— P + 3 feal? > 1.

a€eB

Hence, u ¢ P, and P is not dense in H.

(3) = (1). Step 1: By contrapositive, suppose there exists a h € H, such that
A2 > 3 pca (b ua)|?. Let A, = {a: [(h,ua)| > 1/n}, and Ay == {a: (h,uq) #
0}. Recall that Ag = J,~; An, A1 € A> C ..., and every A, is finite.

Define g, := > 4 (I, Ua)ta. Then, given e > 0, there exists N € N, such that
D Khua)? < D7 (b ua) + .
a€cA a€AN

Step 2: Now, for all m > n > N, by orthogonality,

2

1gm — gnll® = Z (h, ua)ual| = Z [(h, ta)
a€Am\An a€Am\An

= Khua)l? = D [(hua)?
a€EAm acA,

< huadP = > [hyua)?
acAg aEAN

=Y hua)? =Y [(hua)* <&
acA ac€An

Therefore, {g,} is Cauchy and g, — g € H.

Step 3: By monotonicity of {A,}, for all v € Ay, there is N such that v € A,
whenever n > N. Hence, (h,u,) = (gn, u,), for all n > N. On the other hand,

<h - g7u7> = <h7u7> - <gv uw) = <ha u"/> - klggo<gk;u'y>

gives (h — g, u,) = 0. Thus, h — g L u., for every v € A,.
Step 4: Moreover, if v ¢ Ay, then (u,,u,) =0, for all @ € Ay, and

(h_gvu’7> - <hau’y> - <g7u’Y> =0-0=
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Hence, h — g L u,, for every a € A. Now, by assumption and Remark (4.3.3),

Ih = gl|* = lim [[A — g = [|[* — lim ||ga]|* > 0.
n—oo n—oo

Finally, let u := HZ:ZH' Then {u} U {u,} is a bigger orthonormal set, thus {u,} is

not maximal. [

COROLLARY 4.4.4 (Parseval’s Identity). Let {u,}aca be an orthonormal basis
of H. Then, for every h € H,

IRIP =D [{hua)® = b= (hua)ue. (4.4.2)

acA acA

Moreover, for all x,y € H,

>z ua) (Y, ta) = (2, y). (4.4.3)

acA

Proof. (=) is done in the proof of Theorem (4.4.3): (1) = (2). Conversely, Let
{ca} C C be square summable, and {u,} be an orthonormal basis. Define A,, as
in Theorem (4.4.3), then {g, := ) Calla} 18 Cauchy. Let ¢, := (h, u,), and
gn — h completes the proof.

acAy

Finally, recall that from Remark (4.3.4), I>(A) is a Hilbert space. For each x € H,
we associate a function z(«) on A by z(«) := (x,u,). Then, from equation (4.4.2),
[[#[|% 4y = [lz[|%- By Polarization Identity, inner products in *(4) can be expressed
in terms of norm in [?(A), which is equivalent to the norm in H. Therefore,

D (zua)(y ua) = Y a(a)y(a) = (2, y)e = (@.9)m- u

acA a€cA

COROLLARY 4.4.5. Let {ug}aca be an orthonormal basis of H. For every h € H,
let Ag := {a : (h,u,) # 0}. Then, there exists nested finite sequence A,’s, such
that Ao = U, An, and

lim > (B, Ua)tia = h (4.4.4)
ngnwaGAk
Proof. Done in Theorem (4.4.3). A useful result. [

REMARK 4.4.6. If {u, }4ca is an orthonormal basis of H. Then the map A: H —
I2(A), given by

(A(2))(@) = (7, uq),

is a bijection. Moreover, it preserves the distances, hence an isomorphic isometry.

EXAMPLE 4.4.7. Let H = [>(A). The set {x{a} : @ € A} is an orthonormal basis.
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EXAMPLE 4.4.8. Let H = L*([—m, x]) with

1 _
o=y [ fadm (145

Let e,(0) := e™. Then {e, : n € Z} is an orthonormal basis, by showing the set
of finite linear combinations is dense.

Idea: For any f € L?([—m, 7)), take g € C([—m,n]) such that ||f — g|]2 < &. Note
that g might not be 27-periodic. Then pick h € C([—m, 7]) with h(—m) = h(7) so
that ||h — g||2 < €. Use Stone-Weierstrass to pick trigonometric polynomial p(6) =
S ckex(0) with [|h—p||e < &. Then Holder’s inequality gives ||h—pl|s < /27,
and ||f — plla < 2e + V27e.

COROLLARY 4.4.9 (Riesz-Fischer). If f € L*([-m, 7)), then

F=>Afeen,  and  |fIP =D [(f,en)

nez ne”Z

Moreover, if {¢y,} € I*(Z), i.e. > °_, |em|* < 00, then

g:= Z Cmem € L*([—m, 7)),

meZ

and the partial sum converges to g in L?.

Proof. Since {e,} is an orthonormal basis, all follow from the results above. W

REMARK 4.4.10. The complex numbers ﬁ( f,en) are precisely the Fourier
coefficients of f.

THEOREM 4.4.11. Every nontrivial Hilbert space H has an orthonormal basis.

Proof. We will use the Zorn’s Lemma. Let S := {U C H : U is orthonormal}.
Then (S, Q) is partially ordered. Suppose C'is a totally ordered subset of S.

Define V := UUec U. If 1,25 € V, then there are Uy, U; € C such that z; € Uy
and xo € Us. Without loss of generality, suppose U; C U,. Hence, x1, 25 € Us,

and
< > 1, if T = o,
Ty, To) =
b 0, else.

Thus, V is orthonormal and V' is an upper bounded of C'. By Zorn’s Lemma, S
has a maximal element W, which is an maximal orthonormal set. Therefore, W
is an orthonormal basis for H. ]
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4.5 Isometries

DEFINITION 4.5.1. Let (H,(-,-)y), (K, (-,-) k) be Hilbert spaces. A linear map
A: H — K is called an isometry if for all h,g € H,

(A(h), A(9))rc = (b, g) -

In addition, if A is surjective, we say A is an unitary. If such A exists, then H
and K are isomorphic. Then, A is a Hilbert space isometric isomorphism.

REMARK. Injectivity is automatic since A(h) =0 <= ||A(h)||*=0 < h=0.

THEOREM. The Parseval’s Identity together with Remark (4.4.6) give the follow-
mg:

If {ua}aca is an orthonormal basis of a Hilbert space H, then the map A: H —
1(A), by

(A(7))aea == ({2, ua))aca,
is a Hilbert space isometric isomorphism.

PROPOSITION 4.5.2. A linear map A: H — K is an isometry if and only if
IA(R)]| = ||k]|, for all h € H.

Proof. (=) is obvious with g = h. Conversely, first suppose H and K are over R.
By the Parallelogram law,

(AR), Alo))x = F(IAG) + Ak — IA®B) — Ao
= LUAG+9), Alh + )i — (A(h — 9), Alh — g))x)
= %(<h+g,h+g>H— (h—g9.h—g)u
= 1+ gl — 1 gl
= (h,9)u

For complex case, split it into real and imaginary parts. |

EXAMPLE 4.5.3. Let S: [#(N) — [?(N) given by (21,22, 23,...) = (0,21, 29, ...).
Such S an isometry but not unitary; it is known as the shift operation or
unitary shift.

THEOREM 4.5.4. Let {un}taca be an orthonormal basis of H. Then there is a
unitary map U: H — 1?(A) such that U(ua) = X{a}-

Proof. Step 1: Define Q := {3 I, citta, : a; € A,c; € C,n € N}. Hence, Q is
the set of all finite linear combinations, and Q = H. Consider p € @ as linear
combination of all u,’s with ¢, = 0 when necesary. We define W: Q — I?(A), by

W(p) == (ca)aea- (4.5.1)
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Then, by Theorem (4.4.3),

W)l = lIplla- (4.5.2)

Step 2: Now, for every h, there is a sequence p,, — h. Hence, {p,} is Cauchy in
H and [|W (pn — pm)|li2cay = |Pn — P || i implies that {W (p,)} is Cauchy in I(A).
Recall that [(A) is complete. Thus, there is g € [*(A) so that W (p,) — g. Define
U(h) := g. However, we need to check that U is well defined, i.e. U(h) does not
depends on the choice of {p,}.

Step 3: Suppose p/, — h and W(p),) — g. We want show that ¢ = g. Given
€ > 0, there is N € N, such that for each n > N,

lpn = hllm <& and  ||p}, = hlln <e.
Hence, by A-inequality,
[P0 = Pullr < llpn = Al + llp, — Bl < 2e.

By isometry of W in equation (4.5.2),

W (pn — D) li2cay = W (D) = W (03)[li2a) < 2¢.

Therefore,

lg = 9'lliecay = llg — W(pn) +W(pn) = W(p,) + Wi(p,) — g'lliza)
< |lg = W(pn)lliecay + W (n) = W) 2y + W (D) — 9'llizca)
= 4e.

By convergence, g = ¢’, and U is well defined.

Step 4: Now we will show U is surjective and isometric. For isometry, note that
IO = lim [[W(p,)] = lim [lp. ]| = [A]]

For surjectivity, the set of finite linear combinations of characteristic functions of
{a}, P:={> | ¢iX{a,}} 18 dense in [?(A). Also, U(H) is closed by the isometry
above. Hence,

U(H)=U(H)=U(Q) =P =1*(A).
Therefore, U an unitary from H to [*(A).



Chapter 5

Examples of Banach Space
Techniques

5.1 Banach Spaces

DEFINITION 5.1.1. A complex vector space (X, | -||) , with a norm || - ||: X —
[0,00) is a normed vector space if it satisfies the followings: For all z,y € X,

i flz -yl < flzll -+ yll-
ii. |Jazx| = |a||z]], for all « € C.

iii. If ||z]| = 0, then z = 0.

DEFINITION 5.1.2. If {z,} is a sequence in (X, || - ||), the series Y > x, is said
to converge to x if for some x € X, 25:1 Tn — x, as N — oo. The series is called

absolutely convergent if Y °  ||z,| < cc.

PROPOSITION 5.1.3. A normed vector space X is complete if and only if every
absolutely convergent series in X converges.

Proof. (=). Suppose X is complete and 32> ||z, < oo. Define sj, := >

1 Tp.
Given € > 0, 3N € N such that Vk >m > N, > ||z,|| <e. Therefore,
k
sk = smll = Y llall <e.
n=m-+1

Thus, {s,} is Cauchy and s, » 2z =" z, € X.

(«<). Let {z,} be Cauchy. For each k € N, N}, such that Vm,n > Ny > Ny_1,
|Zm — znl] < 27%. Define s, := xy, and s := xy, — 7n,_,,Vk > 1. Note that

[sell <27 and sy + - - + s, = xy,. Hence,

o0 o0
Do llsell < llsall + )27 < oo
k=1 k=2
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By absolute convergence,
lim s, = lim 2y, =2 € X.
k—o0 k—o0

Finally, every Cauchy sequence with a convergent subsequence converges to the
same limit. Therefore, z,, - z € X. |

DEFINITION 5.1.4. A Banach space is a normed vector space that is complete
in the metric topology induced by the norm.

EXAMPLE 5.1.5. Every Hilbert space is a Banach space, so is LP(u), where 1 <
p < oo.

DEFINITION 5.1.6. Let (X, || - ||x) and (Y,] - ||y) be normed vector spaces. Let
A: X = Y be a linear map. We define the operator norm of A by
[A]] = sup{[[A(2)[ly : llz[x <1} (5.1.1)

If ||A]| < oo, then we say A is bounded.
REMARK 5.1.7. Note that in (5.1.1), we may modify the definition to
IAll = sup{[[A(=)[ly - [lz]lx =1}, (5.1.2)
since if x € X, ||[A(ax)|ly = ||aA(@)]ly = |af||A(z)]]y.
REMARK 5.1.8. Note that ||A]| is the smallest number such that Vx € X,
[AG@) [y < [[All]lx- (5.1.3)

REMARK. From formula (5.1.1), A maps the closed unit ball in X into a closed
ball in Y with center 0 and radius ||A]|.

THEOREM 5.1.9. Let (X, | - ||x) and (Y,|| - ||y) be normed vector spaces, and
A: X =Y be linear. The following are equivalent:

(1) A is bounded.
(2) A is uniformly continuous.

(3) A is continuous at some xo € X.

Proof. (1) = (2). For all z,y € X,
[A(z) = AW)lly = [[A(z = y)lly < [[Alllle = yllx-

Hence, given any € > 0, simply pick § < m
(2) = (3). Obvious.

(3) = (1). Given € > 0, there is § > 0 such that Vo € X, with ||z — x¢||x < 6,
|A(z — zo)|ly <e. Then, if y € X with ||y||x < J, we have

|A(z0 +y) — Alzo)|lx = [A(W)]ly <e.

By linearity, Vz € X with ||z]|x < 1, ||[A(z)|ly < &/d. By continuities of A and the
norm function, ||Al| = sup{||A(2)]], : [|2]lx <1} <e/d < 0. [
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5.2 Consequences of Baire’s Theorem

The completeness of Banach spaces is useful in application. In fact, two of the
three fundamental theorems in Functional Analysis use completeness and Baire’s
Theorem.

THEOREM 5.2.1 (Baire’s Category Theorem). Let (X,d) be a complete
metric space, and U, be an open dense subset of X, Vn € N. Then, (., U, is
dense in X.

Proof. We want to show that for all open W, W N (", U, # &. Denote B(x,)
the open ball with radius r centered at x, and B(z,r) be its closure. (Note:
B(z,r) # {y : d(x,y) <1} in general.)

Now, since U is dense, Uy N W is open and nonempty. Then there is z; €
Uy NW and r; € (0,1) such that B(zy,m) C V3 N W. Next, since V5 is dense,

Vo N B(z1,7m1) C W. So, there exists B(xa,re) C Vo N B(xy, 1) with ro € (0,1/2).
Proceed inductively, we obtain

oo C B(p,mn) CU N B(Xp_1,7-1) C B(wy_1,7p1) C - CW,

with 0 <7, < 1/n.

Also, for all i,j > n, with z;,x; € B(x,,r,), we have d(z;,z;) < 2. Hence, {z,}
is Cauchy and by completeness, x,, — x € X. Moreover, z € B(z,,7,) C U, "W,
for every n € N. Therefore, W N (", U, # &, and (), U, is dense. [ |

n=1

COROLLARY 5.2.2. If {U,}>2, is a sequence of Gs sets, and U, is dense for all
n e N, then (', U, is dense and Gs.

Proof. For eachn € N, U,, = ﬂ;iﬂ Vak,., where V,, ;. is open, and dense. There-

fore,
oo oo [ee]
=11 Vo,
n=1 n=1k,=1
is dense and a countable intersection of open sets, hence Gjs. |

DEFINITION 5.2.3. A set E C X is called nowhere dense if E does not contain
any open set in X. A countable union of such E is called a set of the first
category. Otherwise, it is of the second category.

COROLLARY 5.2.4. Let (X, d) be a complete metric space. Then X is of the
second category.

Proof. Let {E,} be a sequenece of nowhere dense sets in X. Then (B} is
a sequence of open dense sets. By Baire’s Theorem, Mo, E, #+ @. Hence,
Unti Bn C Ul Bn # X [ |
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COROLLARY 5.2.5. Contraposition of Baire’s Theorem: Let (X, d) be a complete
metric space, and {U,} be a sequence of open sets. If ()., U, is not dense in
X, then there exists n € N such that U, is not dense in X. Hence, there is a
nonempty open set V.C X \ U.

COROLLARY 5.2.6. In a complete metric space (X,d) which has no isolated
points, no dense Gs-subset is countable.

Proof. By way of contradiction, suppose E = {z1,zs,...} C X is a countable
dense Gs. Then, E = (), Vi, where V} is dense and open. Then,

Ue == Vi \ [ {za}

is a dense open set. However, (,—, Uy = @, contradiction. |
THEOREM 5.2.7 (Banach-Steinhaus Theorem). Let (X, | - ||x) be a Banach
space and (Y, || - |ly) be a normed vector space. Let {A, : a € A} be a collection of

bounded linear maps from X to Y. Then, either
(a) Bounded uniformly: There is M > 0, such that for all « € A, ||A|| < M, or

(b) All blows up:  There is a dense Gs-set S C X, such that for all x € S,
sug |Aa(2)]ly = oc.
ac

REMARK. Geometrically, either there is a ball B(0, M) in Y such that every A,
maps the unit ball in X into B; or there is a dense Gs-set S such that for all z € .S
no ball in Y contains A, (x), for all a.

Proof. For each a € A, let ¢, (x) := ||An(2)|ly. Since A, and norm function are
continuous, ¢, is continuous, hence lower semicontinuous. Define

o(x) := sup pa(z), and Vi = ¢ Y(n,00)), Vné€N.

acA
Note that ¢ is lower semicontinous, so V,, are open sets.

Suppose each V,, is dense in X. Then by Baire’s Theorem (5.2.1), the set S :=
Moo, Vi is Gs and dense in X with ¢(S) = {oo}. Hence, it proves (b).

Otherwise, In € N with V}, is not dense. Thus, 3B(y,d) C V¢, for some y € X,

d > 0. Therefore, for all x € B(y,0), ||[Aa(z)||y < n, for all @ € A. By linearity, if
z € X with ||z||x <4,

[Aa(2)lly = [[Aa(z +y) = Aaly)lly < 2n.
Hence, for every o € Aand z € X with ||z]|x < 1, [|[Aa(2)|ly < 2n/d. Consequently,
2
sup [ Aa| < 22 = M < o0,
acA J

and it proves (a). |
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COROLLARY 5.2.8. Let X, Y, and {Aa}aca be as in Theorem (5.2.7). If for every
x € X, sup ||[Ay(2)|ly < oo, then ||Ay]| < M, for some M.
acA

THEOREM 5.2.9 (Open Mapping Theorem). Let (X, | -||x) and (Y, -||y) be
Banach spaces. If A : X — Y is a surjective bounded linear map. then A is an
open map.

Proof. Let BX(x,r) denote the open ball in X with radius r about x € X. We
shall divide the proof into two parts. Let (%) be the following statement:

There exists § > 0, such that A(BX(0,1)) D BY(0,4).

If (%) is true, then we will be done by the argument below.

Let U C X be open. We want to find an open neighborhood for each y € A(U)
lying inside A(U). For each y € A(U), Ju € U so that A(u) =y, and Je > 0 with
B*(u,e) C U. Consider BY (y,&6). For each w € BY (y,£d),

o= Ay <5 = (0 - A(w) € B(0,6)

Thus, by (x), 3z € B*(0,1), so that A(z) = 2(w — A(u)), and w = A(u + ex).
Define v := u + ex. Then, A(v) = w and

|lu—v|x =€z <e = wve&BX(ue) CU.

Therefore, BY (y,25) C A(U), is an open neighborhood of y. Hence, A(U) is open
and this completes the proof.

Proof of ()

Step 1: By Corollary 5.2.4., Y is not nowhere dense. Since A is surjective, Y =
U2, A(BX(0,n)). By linearity, for each n, the map y — ny is a homeomorphism
from A(BX(0,1)) to A(BX(0,n)). Thus, A(BX(0,1)) cannot be nowhere dense.
Step 2: Hence, there exists BY (yo,4r) C A(BX(0,1)), for some yo € Y, 7 > 0.
Pick y' € BY (yo,2r) NA(BX(0,1)), with ¢/ = A(z), for some 2’ € BX(0,1). Then,
BY(y',2r) € BY (yo,4r) C A(BX(0,1)). For all y € Y, with ||y|ly < 2r,

y=—y +y+y)e—y +ABX0,1))
C A2 + BX(0,1))  A(BX(0,2)).

Dividing both sides by 2, we have
BY(0,7) C A(BX(0,1)). (5.2.1)

If we can pick sufficently small § < r, such that BY(0,d) C A(B¥(0,1)), then (*)
is proved.

Step 3: Claim: let 0 = . By linearity, for each n € N, condition (5.2.1) gives
BY(0,727™) € A(BX(0,277)).
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By definition of closure, given y € BY(0,4), there is x; € BX(0,271), such that
ly— Ay < 122, Let o = y—A(n), then g, € BY (0,12%) C A(BX (0, 2-7)).

Then, we can pick zo € BX(0,272), such that
Yo =y — M) =y — Az +12) € BY(0,7277%).

Proceed inductively, for each n € N, we choose x,, € BX(0,27"), such that v, :=
y— AL x;) € BY(0,727"71), ie.

2 (5)

Step 4: Note that > 2, |lzallx < D>.,o, 27" = 1. Hence, > 7, z,, = x for some

n=1

r € X, by absolute convergence. On the other hand, vy, — 0 since ||y,|| — 0.
Therefore, A(x) =y, and we conclude BY (0,6) C A(B*(0,1)). |

r
2n+1

[ynlly =

<
Y

COROLLARY 5.2.10 (Bounded Inverse Theorem). Let X, Y be Banach spaces
and A: X =Y be bijective. Then A=' is bounded.

Proof. Because A is open, A~! is continuous, hence bounded. ]

THEOREM 5.2.11 (Closed Graph Theorem). Let (X, | - |x) and (Y| - |lv)
be Banach spaces. Let N : X — Y be linear. Then A is bounded if and only if
G(A) ={(z,A(z)) : x € X} is closed in X x Y.

Proof. Define ||(z,y)| := ||z||x+]||ylly on X xY. Tt is easy to check that (X, XY, ||-
||) is a Banach space. (=). Since A is continuous, the map = — (z, A(x)) is also
continuous. Hence, by sequential continuity, G(A) is closed in X x Y.

(<). Let G(A) be closed and 7: G(A) — X be 7(z,A(z)) := x. Note that 7 is
linear, bijective, and bounded by ||z|x < |[(x,y)|. Also, G(A) is a Banach space
with the induced norm because of closedness. The Bounded Inverse Theorem gives
7= (2)| = |z]|x + [|A(z)]ly < C||lz||x,Vx € X for some C' > 0. Therefore, A is
bounded. n

5.3 Fourier Series of Continuous Functions

QUESTION (Pointwise Convergence of Fourier Series). Let T := [—7, x|, C(T) :=
{f: T — C | fis 2r-periodic and continuous}. Since C(T) C L*(T), by Riesz-
Fischer Theorem (4.4.9), if f € C(T), f has the Fourier series F(f) with coeffi-
cients

1 [ -
o= (e =5 [ SOt nez,
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and

Sp(z) == Z ce™® lim s, = F(f) = f, p-ae.

n—oo

Now here is a natural question to ask: Is it true that for all f € C(T), F(f)(z) =
f(z), for every x € X7

The Banach-Stienhaus Theorem answers it negatively as follows.

Solution. Step 1: Define the Dirichlet kernel,

n

Dy(t) = > & = W (5.3.1)

k=—n

Observe that

% FODy(x — 1) dt_gn; <217T / F(t)e ™ dt>€m

n

= Z e’ = s, ().

k=—n

For each n € N, let A,,: C(T) — C by A,(f) := s,(0). Then, {A,}2, is a
sequence of linear functionals.

Equip C(T") with the sup-norm ||- ||, then Vf € C(T), with || f||cc < 1, by Holder’s
inequality,

[An(f)] =

1 ™
5 | 1on.0
< o Il Dal

1
< —||D,|l1 < 0.
5 Dull < o0

Hence, for each n, A,, is a bounded linear functional.

Step 2: We will show that {A,} is not bounded uniformly. First, consider
limy, o0 [ Dnll1. With |sin(z)| < |z|, we have

1 [ 1 /”|sin((n+;)t) Q/W\Sin((n-i-é)tﬂdt.

— D,(t)|dt > — dt = —
27 —7r| @ 2 ), %] ™ t

Integrating the right-hand side of the expression with u = (n + 1/2)¢, we have

™

2 /” |sin((n + 1)t)| 2 /<"+1/2)” | sin(u)|
27 Tl du
0

dt > —
t T Jo U
> Qi/k’r | sin(u)| du
™ =1 Y (k=17 U
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=2y [0
:sz_;kﬂ/o | sin(u)| du,

which — oo, as n — oo. Hence, ||D,|[; — oc.

Next, we claim that ||A,|| = ||Dy||1, for each n € N. Define

1L,  Dy(t) >0,
0, else.

Note that g ¢ C(T). Pick {fx} C C(T) such that —1 < fi < 1, and fi(t) —
g(t),Vt € T. Then by Dominated Convergence,

k—00 1 T

Mh) =50 [ 50D =5 = [ g)D,0dt = Dl

Thus, ||A,]] = HDnHl — 00, and {A,} is not uniformly bounded.

Step 3: By the Banach-Steinhaus Theorem (5.2.7), there is a dense Gs-subset G
in (C(T), ] - ||), such that

F()0) = lim [Ay(f)] =00, Vfeq.

Therefore, the Fourier series of f € G does not converge at x = 0. |

REMARK. In fact, if z € T', we can find such a corresponding dense Gs-subset G,
in C(T) so that for all f € G, F(f)(x) = co. Let us take countably many such
z, € T. Then by Baire’s Theorem, G := ()~ G, is again a dense G5 in C(T) so
that

F(f)(z;) =00, VfeqGViel.

Also, if we choose the {x,} such that it is dense (e.g. the rationals) in 7', then we
can conclude that for all fixed f € G,

= {z: F(f)(z) = oo}

is a dense G5 in R by periodicity. Moreover, by Corollary 5.2.6, each Ey and G
are uncountable.

5.4 Fourier Coefficients of L'-functions

LEMMA 5.4.1 (Riemann-Lebesgue). Let T := [—7, 7|, and f € LY(T), and
define
A 1 '
= —int qt. 4.1
Fyi= o [ setat (541

Then, lim f(n)=

n—=4oo
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Proof. Recall that the set of all trigonometric polynomials is dense in L!(T). For
e > 0, there exists trigonometric polynomial p = Y " pge™ such that || f—p|; <
2me. Hence, for every n, by Holder’s inequality,

|f(n) = p(n)

/7r (f =pe ™ dt‘

—T

T on

1 X
< _ —nt
< 5 If = plille™ o

1
=—|f-pl<e.
Ll <<
Since p(n) — 0, given any € > 0,
Al <e = g )l =0 "

QUESTION. Is the converse of the Riemann-Lebesgue Lemma true?

Solution. Let Cy :={f:Z — C | liril f(n) = 0}. Then, (Co, | - ||«) is a Banach
n—=r oo

space. Define A: L'(T) — Cy by (Af)(n) := f(n).

Step 1: We first show that A is bounded. Note that

11 =sup { 1Al 1111 < 1]
—sup { sup A7)0 11 < 1

1 T —int
T, (i‘;lz {zw | s dt})
1 s
= e, (?;;I; {zw [ s dt})

_1
o

In fact, if f = 5=, then we obtain ||A]| = 5=. Thus, A is bounded.

Step 2: To see that A is injective, let f € L*(T) with f = 0. If pis a trigonometric

polynomial, p = >"7_  cxe™ then by assumption

fpdt =0.

—T

Given g € C(T), there is a sequence of bounded trigonometric polynomials {p,},
such that f(z)p,.(z) — f(z)g(x), for each & € T. Thus, by Dominated Conver-
gence (1.7.5),

fgdt = lim / fpndt =0.
- n—oo I

63



Examples of Banach Space Techniques

By Corollary (2.5.2), there is {g,} C C(T) such that |g,| < |f| and g,(z) — f(x)
a.e. Therefore, by Dominated Convergence, we have

/ fdt = lim gndt = 0.
Therefore, by Theorem (1.8.5), f = 0 a.e., and A is injective.

Step 3: Finally, if A is surjective, then the Bounded Inverse Theorem implies
that |A~!|| < co. Hence, there is M > 0, such that for all f € Cj, with || f]je <
1, [A"Y(f)|li < M. Consider the sequence of Dirichlet’s kernels D,. By 2n-
periodicity,

n

A(D,)(k) = % / W ( > eiﬂ> e~k dt

T j——n

1 (7 g
_ it(j—k)
_%2/; dt

j=—n

= % Z /Tr cos((j — k)t) +sin((j — k)t)dt

We see that || Dy, [|ee = 1, but || Dy ||y = oo, which is a contradiction. So, the inverse
of the Riemann-Lebesgue Lemma does not hold. |

5.5 The Hahn-Banach Theorem

PROPOSITION 5.5.1. Let V' be a complex vector space.

(a) Let f:V — C be linear and u := Re(f). Then
f(x) = u(z) —iu(iz), forallzeV. (5.5.1)

(b) If u: V — R is linear and f: V — C defined by (5.5.1), then f is linear.

(c) If V is a a normed vector space and f and w are related as in (5.5.1), then

[l = IA1I-

Proof. (a). Let z = a+if, a, f € R. Then Re(iz) = —f, and z = Re(z) —i Re(iz).
Also, Re(if(z)) = Re(f(iz)) = u(ix).

(b). Obviously f is real linear. Moreover,
fliz) = u(iz) —iu(—x) = ul(iz) + wu(x) = i(u(z) — iu(iz)) = if(x).

Hence f is also complex linear.
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(c). It is obvious that |u(z)| < |f(x)| hence ||u| < [|f]|. On the other hand,
)l

Vo #£ 0 €V, let a = HEL Then, [f(z)] = af(x) = f(az) € R, which equals
| |

u(az) < lullflaz]] = [jul

THEOREM 5.5.2 (Hahn-Banach Theorem). Let (X, || - ||) be a normed vector
space. Let M be a subspace of X, and A : M — C be bounded linear. Then, A can
be extended to a bounded linear A : X — C, such that Alpy = X and ||A|| = ||A|].

Proof. Without loss of generality, we assume that |[A(z)| < ||z||, for all z € X, and
M C X. Step 1: First suppose A: X — R. We will extend A from M to some
subspace N. Pick zy € X \ M, then for all z,y € M, we have

Az) = AMy) = Az —y)
<z —yl
< |l = 2ol + [lzo — |
Ax) = |lz = ol < My) + llzo — - (5.5.2)
Since inequality (5.5.2) holds for any z,y € M,
sup{A(z) — [l — zol[} < inf {A(x) + ||z — 2ol },
xeM zeM
and there is a € R such that for all x € M,
A@) = [l =z < o < Az) + ||z — o]
Hence, |A(z) — a| < ||z — z¢||. Now, if ¢ # 0 € R, then z/c € M and thus

Az/c) —al < |z/c =zl = |el[Mz/c) —al < clllz/c — o]
= |AMx —ca)| < ||z — cxol- (5.5.3)
Define N := {m+cxo: c € R,m € M}. Then, N is a linear subspace and M C N.

Define f: N — R by
f(m+ cxg) == A(m) + ca.

We see that f|y = A. By (5.5.3), |f(m + cxo)| < [[m + cxo||, hence || f]| = ||All-
Step 2: Use Zorn’s Lemma. Define

S:={(N.f): M CNCX, fly=A flinear , |[f]| = [[Al}-

From Step 1, we know § is not empty. Define a partial order on S by (N, ¢') <
(N,g) <= N’ C N and g extends ¢g’. Suppose {(N;, fi) }icr is a totally ordered
chain in S. Then, (J,c; N; is a linear subspace. Define h(x) = fi(x),i € I. Note
that h is well-defined because of extension. Moreover, h is linear, h|y; = A and
|h(z)| = | fi(z)] < [|z[]. Therefore, (;c; Ni,h) € S and it is a maximal element of
such chain.

Zorn’s Lemma gives (Z,A) € S such that A on Z extends A. Obviously, Z = X;
otherwise, we can pick 2’ € X \ Z as in Step 1.
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Step 3: Now, if \: M — C, let u := Re(\). Then u: M — R. From the
previous steps, we can extend u to U: X — R. Define F': X — C as in (5.5.1),
A(z) := U(x) —iU(ix). By Proposition (5.1.1), A is a complex linear functional
with [|A]| = ||U]| = ||u||, and for each x € M,

A(z) = U(x) —iU(ix) = u(z) — tuliz) = A(z). [ |
COROLLARY 5.5.3. Let X, M be the same as above. A point xg € M <= 3
bounded linear functional A on X s.t. Alpy =0 and A(xo) # 0.
Equivalently, a point xo ¢ M <= there is a nonzero bounded linear functional

A on X such that Al = 0.

Proof. (=). Let mp € M, and Al = 0. Then, by sequential continuity of A,
A(zy) = 0. («). By contraposition, if xy ¢ M, then there is a B(xg,d) C e
Let N := Span(M, {z¢}), and \: N — C, by A(z + cxg) := c¢. Note that X is a
linear functional on N, and

|z + caol| = lefl/c + || < |efd.

By the Hahn-Banach Theorem, we can extend A to A on X, then we see that

DEFINITION 5.5.4 (Dual spaces). Let X be a nomred vector space. We define
the dual space of X as

X*:={A: X - C| A is bounded linear}.

It is trivial to see that X* is a normed vector space. In fact, if X is a Banach
space, then so is X*.

COROLLARY 5.5.5. Let (X, || - ||) be a normed vector space and xy # 0 € X.
Then 3A € X* such that |A|| = 1 and A(zo) = ||zo]|-

Proof. Let M := Czo and A\: M — C by A(cxg) = ¢|zol|. Then, X is a bounded
linear functional with [|[A|| = 1. By Hahn-Banach Theorem, we obtain A: X — C
as desired. [

COROLLARY 5.5.6. Let X be a normed vector space.
(i) If x1 # xo € X, then there is A € X* such that A(z1) # A(xq).
(ii) Foreachx € X, define Ap: X* — C by \.(f) := f(x). Then the map x — A,

is an isometry from X to (X*)*.

Proof. To see (i), simply apply the previous corollary on z; — x9 # 0. For (ii), it is
not hard to check that A, is a linear functional on X*. We call such map point-
evaluation functional. Also, [A.(f)| = |f(x)] < ||fIlll=]l, thus |[Az]] < |z]. On
the other hand, the previous corollary gives f € X* with ||[A,|| > |f(z)| = ||z||. W
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REMARK. Note that in (ii), the map z — A, is just an isometry, not necessarily
bijective. In general, if X is infinite dimensional, then (X*)* is a “superset” of X.

QUESTION. Is the extension given by the Hahn-Banach Theorem unique?

Solution. No. Consider X := L*°(T") with only real-valued functions and let M :=
C(T) € X . Define A: M — R by A(f) := f(0). Then A is linear and bounded
since |[A(f)] = |f(0)] < ||f|lc. By the Hahn-Banach Theorem, there is an extension
A on X. We will find another extension.

Consider C" := {f € X | f is continuous at x # 0, and f(07), f(0T) exist}. We
see that C(T) C C" C X. Now, for all a € [0, 1], define A/,: C" — R by
AG(f) = af(07) + (1 — ) f(07).
Note that if f € C(T), then A/ (f) = A(f) = f(0). Hence, A/, extends A. Also,
AG(HI = lef (07) + (1 = ) £(07)]
< alf(07)] + (1 = a)|f(07)]
<(a+1=a)|fllec= e

So Al is a bounded linear functional on C’. Now, applying the Hahn-Banach
Theorem on {A/, : « € [0, 1]}, we obtain distinct extensions of A on X. |

5.6 Uniqueness of Point Evaluation Funcionals and
the Poisson Integral

In the previous section, we see that in general not all point-evaluation functionals
can be extended uniquely. We shall see that there is a unique extension of such
functional on certain spaces. We begin with the following theorem.

THEOREM 5.6.1. Let D := {z € C: [z < 1} be the open unit disk. Let p(z) =
> h_oPk2" be a polynomial on D. Then, max{|p(z)| : = € D} = max{|p(z)| : z €
0D}. Equivalently, HPHOO,B = |||lcc.0m-

Proof. First, since D is compact, we know |p| attains its maxium at some z € D.

Suppose there is zy € D such that p(zo) > p(z), for all z € D. We will show that
p must be a constant function. Write

p(z) = ar(z — 20),

for some ¢, € C. Since zy € D, there is an open disk B(zp,r) C D, and if
2 € B(z,7),2 = 2 = 29 + re'?, for some 6. Since f027r(€w)m df = 0, given m # 0,

n
Z qr (Tezﬁ)k
k=0

1 27

2 1 271'
— d0 = —
= [ P = o /
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On the other hand,

1 2 ) 1 2m ) )
— do < — do = .
3 | Gl as < 5o [ iR a0 = o

Thus, for every k > 0, ¢, = 0, and p(z) = qq, is constant on D.

In conclusion, every polynomial attains its maxium modulus on 9D. |

REMARK. This is a special case of the maxmium modulus theorem.

Solution. Let D be the open unit disk in C, A(D) be a subspace of C(D) such
that if f € A(D), |fll5 = I flls,0p- In this example, we choose A(D) to be the

closure of all the polynomials on D, with the || - ||oc norm, for the following reason:
Claim: For all f € A(D), |fllop = Iflxop. In fact, if f € C(D), there
exists polynomials p, — f uniformly by the Stone-Weierstrass Theorem. Hence,
lpn = fllo 5 — 0. By the previous theorem, for all polynomial p on D, ||p[|,, 5 =
1Plloc,0p- Therefore, || fllo 5 = [/ llcc.0n-

Step 1: Let A(OD) C A(D) be the subspace whose functions are restriced on 9D.
From the norm-preserving property, we see that the linear functional f — flop

is an isomorphic isometry from A(D) to A(9D), with respect to || - ||. In other

words, A(0D) = A(D) as Banach spaces.
Step 2: For each z € D, define \,: A(D) — C by \.(f) := f(z). Thus,
A=(D = 1] < [ llen-

is bounded. In fact, ||)\.| = 1 since A\.(1) = 1. From Step 1, A(D) = A(dD) C
C(9D). By the Hahn-Banach Theorem, we extend A, to A, on C(9D). Thus,
A(f) = A(f) = f(2), for all f € A(D), and [[Af| = [|A;]| = 1.

Step 3: Claim: A, is a positive linear functional. To see this, without loss of
generality, suppose f € C(9D), with 0 < f < 1. Defineg:=2f—1,s0 -1 < g <1
and |A,(g)] < 1. Then, given r € R,

lg+ir* < llgllzop +Ir* < 1+77
Thus, viewing ir as a constant function, we see that

(Im(A.(9)) +7)* < [Re(A.(9)) +i(Im(A.(g)) + 7)[?
= [Au(g) +irf = |A(g +r)?
<AL - g +ir < 1+ 02

It follows that

0 < (1+7)?—(Im(A.(g)) +7)°
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= —(Im(A.(9)))* = 2rIm(A.(g)) + 1, VreR,
which is only possible if Im(A,(g)) = 0. Hence, A,(g) € R. Moreover,

1 g 1 1
A(f)=A(z+32)=zA(1) + zAL(9).
(F) = A +9) = SA.0) + 1AL (0)
Recall that A,(g) € [-1,1]. Then, A,(f) > 0, for all f > 0, and A, is a positive
linear functional.

Step 4: By the Riesz Representation Theorem (2.3.1), for each z € D, there
is a unique regular positive Borel measure 1, on 9D such that

A(f)= | fdu., forall f e C.(OD)=C(OD). (5.6.1)
oD

In particular, we have

£(2) = A.(f) —/ fdu., forall f e AD) = A(OD). (5.6.2)

oD

Step 5: Finally, for each f € C(9D), the Stone-Weierstrass Theorem gives us
a sequence of trigonometric polynomials {p,}>%, in A(D), such that p, — f
uniformly. So, we may assume |p,| < |f|. By Dominated Convergence,

/|pn—f!d/LZO—>0 - pnduzﬁ/ fdu,.
oD oD

oD
Consequently,
lilgopn(zo) = nlglgo Azo (pn) = Azo(f),

n—

which must be unique. |

REMARK 5.6.2. Note that from Step 1 to Step 4, it can be done abstractly by
replacing D by a compact Hausdorff space K, and D by a compact subset H of
K. All the results hold true up to this point. In equation (5.6.1), we see that p, is
uniquely determined by A, but the extension itself might not be unique. In Step
5, the Stone-Weierstrass Theorem passes the functional to sequential limit, which
is then unique.

REMARK 5.6.3. When we identify A(D) with A(OD), it seems like we are losing
information on D. However, we can determine the value of f on D by the repre-
sentation in equation (5.6.2). This result is remarkable as it proves that in fact, we
do not lose anything. However, in practice the problem in equation (5.6.2) arises
when it comes to finding the measure p,. We want to find a more concrete formula
to compute f(z). Here we introduce the Poisson integral.

Poisson Integral. B
Step 1: A consequence of equation (5.6.2): Fix zy = re™ € D, for some 0 < r <
1, 0 € R. For each f € C(9D),

M= [ T, = /d s, =00,

69



Examples of Banach Space Techniques

For n € N, define w,(z) := 2". Then u, € C(0D), and u_,(z) = 27" = 7" =
Uy, (x). We conclude that

Azo(ufn) = Azo (Tn) = AZo(un) — pneind — 7ane—ine.

Therefore, for each n € Z,
A, (uy) = / Uy Atz = Ml (5.6.3)
oD

Step 2: Consider the function P,y € C(0D), for t € [0, 27],

P o(t) = Z rlnlen@=0 — Z U (29)e M. (5.6.4)

nezZ nezZ

Since |r| < 1, P,g(t) is absolutely convergent. For each k € Z, we can integrate
the following term by term:

1 2w

. 1 (27 . .
Pr t ikt dt = / . —int | ikt dt
o(t)e o i ngezu (z0)e e

21 Jo
= 1 E :/% un(zo)ei(—n+k)t dt
2m 0

nez

= wuy(z0) = rHe*?. (5.6.5)

Step 3: Therefore, if f = u,, by equations (5.6.3) and (5.6.5), we see that

2T

Fdp, = 2i / Poo(t) F(e") dt. (5.6.6)
aD T Jo
Since every trigonometric polynomial p is a finite linear combination of the u,’s,
(5.6.6) also holds for p. By the Stone-Weierstrass and Dominated Convergence,
it also holds for all f € C(dD). In particular, if f € A(D) = A(dD), equation
(5.6.2) gives
1
2m

Fz0) = /O " Pt fe") dt. (5.6.7)

Step 4: From equation (5.6.4), P, g = P, g shows that P, 4 is a real-valued function.
So,

P.o(t) = Re <Z rlnein(ﬁt)> —14+2Re (Zrnem(et)>

nez n=1

=1+2Re i(z e”™" ) =1+Re 2z
B 0 B 1 — zge™i

n=1

N 1+ zpe™™ Re((1 4 2067 %)(1 — zge~t))
1 — zpe™® |1 — zpe |2
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Re(1 + 2irsin(f — t) — r?) 1—r?
B |1 — zpe=|? "1 —2rcos(f —t) +r?
We call
Pr(t) = ks (5.6.8)
’ 1 —2rcos(f —t) +1r?
the Poisson kernel. [ |

Finally, we conclude this section by summarizing the result.

THEOREM b5.6.4. Let A(D) be the space of continuous complex functions on D.
Suppose A contains all polynomials and for each f € A,

sup{|f()| : = € D} = sup{|f(2)] : = € ID}.

Then for all f € A(D), the Poisson integral representation

1 2 1— 2 )
1) = 27T/0 1—2r cos(@r— t) + rzf(elt) d (5:6.9)

holds for every z € D, where z = re'.
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Chapter 6

Complex Measure

Let (X, M) be a measure space throughout the chapter.

6.1 Total Variation Measure

DEFINITION 6.1.1. A measurable partition of £ € M is a sequence {E,,}°°, C
M, such that E; N E; = @, for all i # j and |J,_, = E.

DEFINITION 6.1.2 (Complex measure). Let M be a o-algebra. A complex
measure p on M is a set function p: M — C such that

plB) = 3" plE,), (6.1.1)

for each measurable partition {E,,}°°, of E.

REMARK 6.1.3. Unlike positive measure, the convergence of the series in C in
equality (6.1.1) is now required. Thus, a positive measure is not necessarily a
complex measure!

REMARK 6.1.4. Permutation of the u(E,)’s does not change u(FE). Hence,
>0 1(Ey) is absolutely convergent by the Riemann Series Theorem.

DEFINITION 6.1.5 (Total variation). The total variation of p is a set function
|| : M — R, defined as

|u|(E) := sup { > I(Ey)|  {En}32, is a partition of E} (6.1.2)
n=1

REMARK. For all E € M, |u(E)| < |p/(E).

PROPOSITION 6.1.6. The total variation |u| is a positive measure on X.
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Proof. We will prove (6.1.1). Let £ € M and {E,}2, be a partition of E. For
each n € N, Vt,, € R, such that ¢, < |u|(E,), there exists partition {A, ,}0o_; of

E,, such that
tn < Z (A,
m=1

by definition of |u|(E,). Note that {4, ,, : n,m € N} is a partition of E. Hence,

oo

>t 23 (3 o)) < 0B

Take the supremum over all ¢, < |u|(E,), we have

oo

D ul(En) < [ul(E).

n=1

On the other hand, for each partition {A,,}>°_; of E, we have

IEWEDS <33 (AN E)

m=1 m=1n=1

DO n(An N Ey) !<Z\u!

n=1

8

w(An, NE,)

=1

3

Mg

1

3
Il

Since it holds for any partition {A4,,}5°_,, so does the supremum over all partitions,

ul(E) < Z ul(E

Hence, || satisfies countable addivity. Also, |u|(2) = 0. We will see |u[(X) < oo
in the next proposition. |

LEMMA 6.1.7. If{z,...,2x} C C, then there is S C {1,..., N} such that

N
IR EES W
i=k

kes
Proof. Write 2 = |z;]e"*. Fix 0 € [0, 27, and define S(6) := {k : cos(0—ay,) > 0}.
Then,

keS(0) keS(0) keS(0)
zRe< S e ) S Re(|zlei)
keS(0) keS(o
= Z | 21| cos(ay, — 0 :Z|zk|cos+(ak—9), (6.1.3)
keS(0) o=
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where cos™ () := max{cos(z),0}. Integrating inequality (6.1.3) over 6 gives

> -

keS(6)

1 2

27 J,

1 or N
d9227r/0 ;|zk|cos+(ak—0)d0

1 N 27
- + —
=5 Z ]zk]/o cos™ (ay — 6)dé

k=1
|

=22l
7r

k=

1

The Mean Value Theorem for Integration asserts there is a 6 such that

> -

keS(6)

PROPOSITION 6.1.8. Let i be a complex measure on X. Then |u|(X) < co.

Proof. Suppose there is E € M with |u|(E) = co. Define t := w(1 + |u(E)|) < oo.
The definition of |u| asserts a finite partition {E;}4_, of E such that

WE

[u(Ey)| > t.
K=1

Lemma (6.1.7) gives S C {1,..., N}, with A := J,.g E) such that

ZN(Ek)

keS

1 t
> E )| >—>1.
2 2 B> 2

(A =

Let B:= FE\ A, then AN B =@ and

0B = 1(E) = u(A)] > |u(A)| = [u(B)] >~ ~ |u(B)] > 1.

Since |p|(E) = oo, without loss of generality, we assume |u|(B) = co. Now, let
E = X, then X = A; U By, with |p|(B;) = oco. Then let By = Ay U By with
|;(Bs) = oo and proceed inductively. Observe that A; N A; = @, Vi # j. Hence,

M<QA1'> = gM(Az‘),

with |p(A;)| > 1. However, then >~ u(A;) diverges, which is a contradiction to
1 being a complex measure. ]

REMARK. Hence the range of u is a subset of a finite disk in C. We sometime say
u is of bounded variation.
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DEFINITION 6.1.9. Define M(M) to be the set of all complex measures on
(X, M). For all p,v € M(M), a € C, define p+av: M — C by (u+ av)(E) :=
w(E) + av(E). Hence, M(M) is a complex vector space. Moreover, define
lleell == |pe|(X). Then, M(M) is a normed vector space.

DEFINITION 6.1.10 (Positive and Negative Variations). Let px be a real measure
on X, define

1 1
pr =gl +p)and = o(lu] = ). (6.1.4)

Both p, and p_ are positive real measures. They are called positive and nega-
tive variations of yu, respectively. The representation is also called the Jordan
decomposition.

6.2 Absolute Continuity

DEFINITION 6.2.1. Let p be a positive measure, and A be any measure (positive
or complex) on (X, M). Let A, B € M.

- A is absolutely continuous with respect to p if A(E) = 0 = u(F) =
0,VE € M. We write it as p < .

- A is concentrated on A if \(E) = A(ENA),VE € M.

- Suppose AN B = @& and A\, Ay are measures on M. If A; is concentrated
on A and )\, is concentrated on B, then we say A\; and A\, are mutually
disjoint, and denote it A; L .

PROPOSITION 6.2.2. Let p, A\, A1, Ay be measures on (X, M) and p be positive.
(a) If X is concentrated on A, so is |A|.

(b) M Ly = |Ai] L |

(c) My Lpand g Lp = (A + X)L p.

(d) M < pand g << = (A4 A2) < .

(e) A< = | N<p.

(f) M<<pand gy Ly = A\ L.

(9) A< pand X Ly = A=0.

Proof. All are obvious from the definitions. |

We now come the core of this chapter, the Lebesgue-Radon-Nikodym Theorem. It
is one of the most important theorems in measure thoery. It uniquely decomposes
any complex measure into its absolute continuous and mutually singular parts
relative to a positive o-finite measure. More importantly, it provides a conditional
converse to Theorem (1.6.8), which passes integrals to measures. This result is

75



Complex Measure

remarkable as we have seen the deep connections among integrals, measures and
linear functionals throughout the course.

THEOREM 6.2.3 (Lebesgue-Radon-Nikodym Theorem). Let j be a positive
o-finite, X be a complex measure on (X, M), \. Then,

(a) There is a unique pair of complex measures A\, and \s such that

A=A, + A, Ao < 1, As L.
(b) There is a unique h € L*(u) such that
No(E) = / hdu, VE € M. (6.2.1)
E

REMARK 6.2.4. The pair (A4, As) is called the Lebesgue decomposition of A

relative to pu. Note that if A < pu, then A\, = A, and we can pass measure to
integral: A(E) = [, hdu. The function h € L'(u) is called the Radon-Nikodym

derivative of )\, with respect to . We write d\, = hdu or h = d(%.
s

Proof of Uniqueness. Due to the length of the proof, we shall show the uniqueness
part here. If (A,, As) and (A, \.) both satisfies (a), then X, — X\, = A; — .. Since

N — Ay < pand Ay — N, L p, the equality must be 0, and the uniqueness follows.
For h,if ¥ —h#0on E € M, then u(E) =0, and so h = k', p-a.e. [ |

Proof. Step 1: First suppose A, u are positive finite measures. Define ¢ := p+ A.
Let f > 0 be measurable, then by characteristic, simple functions and the definition

of integral,
/ fdcp:/ fd,u—i—/ fdA.
X X D'

For all f € L?(yp), the Cauchy-Schwarz inequality asserts that

‘/deA\g/XVdAé/dew
(e ()"

= [Ifllz2p) - (9(X))? < o0.

Hence, A: L*(¢) — C, by A(f) := [, fdXis a bouned linear functional.

Step 2: By the Riesz Representation Theorem on Hilbert space (4.2.7),
there is a unique g € L?(¢) such that

A = [ Fir=tha) = [ sade. vre L) (6.2.2)
X X
Note that ¢ is unique as a point function on X up to ¢-a.e.
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Step 3: Let f := xg for E € M, with o(F) > 0. Then,

ME) = /Egdgp >0,

Dividing both sides by ¢(E), we have

LA
OSM/EW‘@(EFL

Therefore, by the average argument Propoistion (1.8.8), 0 <
assume g(x) € [0,1], for all z € X. Thus, g = g ranges in |

that
/deA:/ngdw=/deA+/deu

/X (= g)dr= /X fodu (6.23)

<1, p-a.e. We may

g
0,1], and we conclude

Step 4: Define A := {x: g(xz) < 1}, B:= {z: g(z) = 1}. Define the measures
MN(E)=AXENA) and X;:=\NENDB).

Consider f := xp, then equation (6.2.3) gives

M(B)—/Bdu—/Xngdu—/XxB(l—g)dA—Q

Hence, u(F) = p(ENA),YE € M, and As L u since A and B are disjoint.
Step 5: To see \, < p, define f,, := >}, ¢*. By equation (6.2.3),

/X(1 —g"dx = /X igk(l —g)d\ = /Xigk g dy. (6.2.4)

For each £ € M, by definition of A and Dominated Convergence, the LHS of
equation (6.2.4) yields

lim [ (1—g¢""")d\ = lim (1—g™™hdA

= ME N A) = \(E).

On the RHS of equation (6.2.4), by Monotone Convergence, we have
v S [ S
E k=0 E k=0
1
Ry
EL—g
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Step 6: Hence,

MN(E)= [ ——du, VEeM
-9
Now, define
h(z) = (), z€A
0, x ¢ A

Because A\ (A) = [, hdp = [ |h|dpu < oo, (b) is proved. Also, ju(E) = 0 gives
S hdi = A(E) = 0 which shows A, < p and completes the proof of (a).

Step 7: Now we will generalize the proof. Let p be o-finite and A be finite
positive. By o-finiteness, let {X;}, be a paritition of X and p(X;) < oo, Vi.
Define \;(E) :=XNENX;),YVE € M, and M; ={ENX,: E € M}.

Apply the previous result on each (X;, M;) with g and \;. Then we obtain (\;,, \;.)
on X; with A;, B, and h; € L*(p) such that VE € M;,

E;

Define \o(E) := >, M, (ENX;),VE € M, and likewise for Ay with A := |J;2; A;
and B := |J;o, B;. Define h(z) := h;(z), where z € X, Which is well-defined
because X;’s are disjoint. By Monotone Convergence, \,( = [ g hdp, and
AX) < oo gives h € L*(p).

Finally suppose p is o-finite and A = A; + i\, is complex. For k = 1,2, use Jordan
decomposition on A\, = A\{’ — A, and apply the previous results. ]

REMARK 6.2.5. If both g and A are o-finite positive measure, using the tech-
niques above, we can still obtain a function h which satisfies equation (6.2.1).
However, in general h ¢ L'(u), although [y |h|du < oo for each n. If we go be-
yond o-finiteness, then both (a) and (b) fail. To see this, take p to be the Lebesgue
measure, and A the counting measure on (0, 1) and consider a singleton {x}.

PROPOSITION 6.2.6 (Absolute Continuity). Let p be positive and \ be complex
measures on (X, M). Then, the followings are equivalent:

1. A< p.
2. Given € > 0, there is 6 > 0, such that for every E € M with u(E) < 0,
INE)| < e.
Proof. (2) = (1). Given E € M with u(E) =0 < §,V0. Hence, |[\(E)| < &,Ve >0
and |A(E)| =0, thus A < p.

(1) (2). Proof by contrapositive. Suppose there is ¢ > 0 such that for each
0, = 27" > 0, there is E,, € M so that u(E,) < 0, but |A(E,)| > . Let
A, =2, E;, then

=S5 h- gk
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Also, u(A;) < oo and A; O Ay D ..., thus by monotonicity of ,

u( N An> = lim p(Ay) = 0.
n=1

On the other hand, for each n, |A[(A,) > |AN|(EL) > |AN(E,)| > € gives

Al ( QAn) = lim |A|(4,) > &> 0. (6.2.5)
Then, A < |A| € p concludes that A & p. [

REMARK 6.2.7. Note that if A is a positive unbounded measure, then (1) % (2),
as we use the boundedness in inequality (6.2.5).

6.3 Consequences of the Radon-Nikodym Theorem

THEOREM 6.3.1 (Polar Decomposition/Representation Theorem). Let i
be a complex measure on (X, M). Then is a measurable function h such that

|h(z)] = 1,Vz € X, and dp = hd|u|.
Proof. Observe that |u| is finite and p < |u|. Hence, by Radon-Nikodym Theorem

(6.2.3), there is h € L'(u) such that du = hd|u|. Consider the set A, = {z :
|h(z)] <1— 21}, for each n. For every partition {Ej}7, of A,

i::u(Ek)l = i:: /Ekhdlﬂl‘ < i::/Ek(l - %)dlu\

SCEE) Y AR Sy
k=1 " Er k=1

= (1 )lul(An).

By taking the supremum over all such partitions, we see that |u|(A4,) < (1 —
)|1|(A), which is only possible when |u|(A,) = 0. Hence,

(e 1) < 19 = (U 40 = fim Jul(4,) =0 (63.1)

On the other hand, if |u|(E) > 0, then

WE) 1
L2 ) = i e 2o

By the average argument (1.8.8), |h| < 1|ul-a.e. Together with equation (6.3.1),
we conclude that |h| = 1, |u|-a.e. Finally, we redefine h(z) := 1 on the set of
|pt|-measure zero and complete the proof. [ |
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COROLLARY 6.3.2. Let p be a positive measure on (X, M), g € L'(u) and
ME) == [, gdu. Then,

A(E) = /E lg| dpe. (6.3.2)

Proof. Since g € L*(p1), A is a complex measure. By Polar decomposition (6.3.1),
there is measurable h so that |h| =1 and d\ = hd|\|. By hypothesis,

d\ = gdp = hd|\|.
By viewing hd|)\| as a measure, we obtain d|\| = hgdpu, hence || < p. Then
by Radon-Nikodym Theorem (6.2.3), there is ¢ € L'(u) such that d|\| = pdu.
Thus, gdp = he du. By positivity of || and i, ¢ > 0. By uniqueness,

g=hp = hg=¢>0, p-ae.
= hg=lgl, p-ae

Therefore, d|A| = ¢dp = |g|dp, and [N(E) = [, |g|dp. [ |

THEOREM 6.3.3 (Hahn Decomposition Theorem). Let 1 be a real measure
on (X,M). Then there are A, B € M, AUB = X,AN B = &, such that
ut(E) =u(ENA) and p (E) = —u(ENB),YE € M.

REMARK 6.3.4. Recall the Jordan decomposition: pt = (|| + p), p= =
%(W‘ — u). The pair (A, B) is called a Hahn decomposition of X, induced
by p. Basically, X is split into two, where A contains the “positive mass” of u, and
B contains the “negative mass” of p.

Proof. By Polar Decomposition (6.3.1), there is measurable h so that |h| = 1 and
dp = hd|ul|. Since p is real, so is h and h = 41 everywhere by redefining. Define
A:={x:h(x)=1} and B := {x: h(xz) = —1}. Note that

1 h, on A
(1+h)= ’ ’ 6.3.3
2( ) {07 on B. ( )

Hence, VE € M,
o 8) = B+ ) = 5 ([ alul+ [ nalul)

1
- 2/(1+h)dlu| —/ Byl
E ENA
=u(ENA).

Since u(E) = p(E N A) + u(E N A) = i (B) — u~(E), p~(E) = —u(EN B). W

COROLLARY 6.3.5. If p = A\ — Ay, where Ay and Ay are positive measures, then
pt <A and pm < o
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Proof. If p = A1 — Ao, then by positivity of A\; and Ay, for all £ € M,

pt(E)=pw(ENA)=XN(ENA) —X(ENA)
< M(ENA) < MN(E).

Similarly, we obtain p~ (F) < A\ (E), for all E € M. [

6.4 Bounded Linear Functionals on L”

LEMMA 6.4.1. If p is a o-finite positive measure on (X, M), then there exists
w € LY(u) such that 0 < w(x) <1, Vr € X.

Proof. Let {X,,}°°, be a partition of X with u(X,,) < oo, for each n. Define

oo

1 1

w(z) = T m)@(ﬂ(z).

n=1
Then 0 < w(x) < 1 as claimed. [
REMARK 6.4.2. If i is o-finite, then ji given by dfi := wdu is finite. Moreover,

because of the strictly positivity of w, i has precisely the same sets of measure 0
as p. Moreover, the map f + w'/Pf is a linear isometry of LP(j1) onto LP(u).

THEOREM 6.4.3 (LP-Isometry). Let 1 < p < 00, q be conjugate exponent, p
be o-finite positive measure on (X, M). Then, for all bounded linear functional
A € LP(p)* |, there is a unique g € L9, such that for each f € LP(u),

A(f) =/ fgdp. (6.4.1)
X
Moreover, ||A|| = ||glly- Hence, L9(w) is isometrically isomorphic to LP(ju)*.

Proof. Step 1: First suppose pu(X) < oo, A € LP(u)*. Define A\: M — C by
AME) = A(xg). Let {E,}>2, be a partition of E € M. By linearity, for each

N e N, N N
A(;&L) Z;A(En).

Also, ||xg — XUN_, g llp = 0, as N — oo. Hence, by continuity of A, we have

IAE) = MUY, E.)| — 0, and X is a complex measure. Moreover, if ju(E) = 0,
then xg =0 and A(E) = 0. So, A < p.

Step 2: By Radon-Nikodym Theorem (6.2.3), there is a unique g € L'(u) such
that d\ = gdp. Thererfore,

A(f) = /X fdx= /X fody (6.4.2)
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holds for characteristic functions f, hence simple functions. Also, if f € L*(u),
there exists simple functions s,, — f uniformly. Hence, ||s,, — f||, = 0 as n — o0,
and equation (6.4.2) holds for all f € L*(u). In order to complete the proof, we
divide it into two cases.

Step 3: Case 1. p = 1. We will show every f € L!(u) satisfies equation (6.4.2),
and ||gllec = ||A|l. By assumption, u(X) < oo, so L>(u) is dense in L'(u), by

density of simple functions. Let {f,} be a sequence in L and f, LN f. By
continuity of A, the LHS of equation (6.4.2) gives A(f,) — A(f).

Recall that A is bounded. For all E € M with p(E) > 0,
Alxe) < Al Ixellh = 1Al - w(E).

Dividing both sides by p(FE), we see that

Ldgnggdu'srAw

By the average argument (1.8.8), [g(z)| < ||A|| p-a.e., thus ||g]|ec < [|A]]. On the
RHS of equation (6.4.2), by Holder’s inequality,

‘/X\fn - f!gdu' < glloo - 1o = fllr < AL 11 = flI1,

which — 0, as n — oo. Hence, [, fugdp — [, fgdp, and equation (6.4.2) holds
for all f € L'(u). Finally, by Holder’s inequality, for all f € L'(u) with || f|l; <1,

AW=AMMSMMMMSMW

Thus, |Al| < ||g|ec, and we conclude Case 1.

Step 4: Case 2. 1 < p < co. Define E,, := {z : |g(z)|] < n}. For each n € N,
define

g _
fn = ?’9|q 1XEn' (6~4~3)

Note that | f,| = |g|?" and f,, € L>(u). Moreover,

/\fn\deZ/ g/~ dp
X ETL

= / lg|* dp < nfu(Ey) < oo.
En

So, fn € L>®(u) N LP(p). Restricting A on L*>°(u) N LP(u), as a Banach space
with || - ||,, we see that

1/p
/‘erdu':\Axﬁ»rsuAﬂ-uﬂlu::uAu(/ggwdu) .

n
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Therefore,

1/q

1-1/p
—’/ lgxe, " du| = llgxe.llq (6.4.4)
X

Note that |gxg, | < |g9xE,| < -... By Monotone Convergence on equation (6.4.4),

NE ] [ loxe.tan
X

lalla = Il im [gx, lly = lim g, |l; < IA]. (6.4.5)

Hence, g € L(p) and by letting f = 1, p-a.e., we obtain ||g||, = ||A]|.

Finally, by hypothesis A is continuous on L”(x). On the other hand, by Holder’s
inequality, if || f, — f|l, — O,

/x |fo = flgdp < |fu = fllpllglly = O

By sequential continuity, the map f — [ « Jgdp is continuous on LP(u) . By
equation (6.4.2), both continuous maps agree on the dense subset L>°(u) N LP(p)
of LP(u). Therefore, they conincide everywhere on LP(u), and equation (6.4.2)
holds for all f € LP(p).

Step 5: Now suppose p is o-finite. By Lemma (6.4.1), define dg := wdu, and
is a finite measure on X. Moreover, the map ¢: LP(j1) — LP(u) given by

uf) = w'?f, (6.4.6)

is linearly isometric, and bijective since w(x) # 0,Vz € X. Consequently, the map
A — Ao defines an isomorphic isometry from LP(p)* to LP(fi)*.

Step 6: Let A € LP(u)*. Define A := Ao € LP(jz)*. From the preceding steps,
we obtain g € LI(f1) so that ||g||,z = ||All = ||Al], and

Mi = [ Fadn e i) (6.4.7)

X

Define ¢ := 1(§) = w'/?§. Then,
Jlalra = [ wtegiodn = [ Jalwa
X X X
— [ lalrai= 1A= Afe

X

Therefore, [|gll, = [[A, and for each f € LP(s),

A(f) = Ao fl(f) = ]\(wfl/pf)
_/(w—l/pf)gdﬂ:/X(w—l/pf)(w—l/qg) dji

=ngw‘1d/l=/ngdu- u

83



Complex Measure

6.5 The Riesz Representation Theorem

In this section, X denotes a locally compact Hausdorff space, Cy(X) denotes the
space of all complex continuous functions on X which vanish to infinity, and
C.(X) C Cy(X) contains functions with compact support. By Riesz Representa-
tion Theorem (2.3.1), we have seen that every positive linear functional on C,(X)
can be represented uniquely by a Borel measure on X. Now we will characterize
all bounded linear functionals on Cy(X) similarly.

PROPOSITION 6.5.1. The space Co(X) with the supremum norm || - ||l s a
Banach space; and C.(X) is dense in (Co(X), || - ||oo)-

Proof. Step 1: Obviously, Cy(X) is a normed vector space. For completeness, let
{fn}5, be a Cauchy sequence in Cy(X). Then, given £ > 0, there is N € N, such
that for all m,n > N, forall z € X,

|fn(‘r) - fm(x)‘ < an - fm”oo < E.

Thus, {f,};>; is uniformly Cauchy and converges to a continuous function f
uniformly.!

Step 2: To see that f vanishes at infinity, let ¢ > 0, and choose N as above.
Then, there is a compact K so that |fy| < e on K¢ Then for all x € K¢,

[f(@)] = 1f(z) = fn(x) + (@) <[f(2) = In(@)] + [In(@)] < 2.
Therefore, f € Cy(X) and Cp(X) is Banach Space.

Step 3: Finally, suppose f € Cy(X). Then given € > 0, there is a compact set K
such that |f| < € on K¢ By the Urysohn’s Lemman (2.2.11), choose g € C.(X)
such that 0 < g <1 and g =1 on K. Then the function fg € C.(X), and

=0, r e K,
<|fllo <&, ze€ K-

[fg(x) = f(z)] {

Hence, ||fg — flloo < € and C.(X) is dense. |

1Since { fn(x)}5>, is Cauchy at each x € X, define f by f,(z) — f(x), pointwise. Fix xg € X,
for every £ > 0, let U := f5' (B(fn(20),¢)). Then ¢ € U, and for all z € U,

|f(2) = f(zo)| = [f(z) — fn(2) + fn(@) — fn(2o) + frv(0) — f(20)]
< |f(@) = fn(@)| + (@) = fn (o) + [fv(zo) — f(zo)l
< 3e.

So, U C f~Y(B(f(z0),3¢)). Now suppose V is open in C. For each zg € f~(V), pick & such
that B(f(xo),3¢) C V. Then pick U as above, we obtain

w0 € U C f7H(B(f(w0),3¢) € f7H(V).

Thus, 7 is an interior point of f~!(V). It follows that f~1(V) is open and f is continuous.

84



The Riesz Representation Theorem

REMARK. Let S be a topological space, M be a complete metric space, and
fn: S — M be continuous. If {f,} is uniformly Cauchy, then f,, — f uniformly
and f is continuous. The proof is the same.

DEFINITION 6.5.2. A complex Borel measure 1 on X is regular if |p] is regular
on X. Denote M(X) := {u : regular complex Borel measure on X}. Note that
M(X) is a Banach space with the norm ||u|| := |u|(X).

REMARK 6.5.3. Let i be a complex Borel measure on X. By Polar decomposition
(6.3.1), there is a complex Borel function h, with |h| = 1 so that du = hd|u|. Thus,
for all f € Cp(X),

dul = hd hllso dlul = oo X).
]/Xf u‘ ‘/Xf mr'su I [ alal = 15l ()

Therefore, A,(f) := [y fdu defines a bounded linear functional on Cy(X), and
AL < [ul(X).

REMARK 6.5.4. Now suppose p is complex regular Borel measure. Given a
compact K, by the Urysohn’s Lemma (2.2.11), there is gx € C.(X) such that
gx =1 on K and 0 < gg < 1. Then,

Mlligi) = [ gicdlul > [ el = lel(E).
X X
By regularity and taking the supremum over all K, we see that
1ALl = 1 sup Ay(hgx)| = sup [p|(K) = |ul(X).
KCX KCX

Hence, [[A,|| = |p/(X). In other words, if we restrict to regular complex Borel
measures, the map p — A, is an isometry.

QUESTION. Can every bounded linear functional on Cy(X) be obtained this way,
while preseving the norm? The answer is positive, and it is another version of
the Riesz Representation Theorem. To prove it, we first introduce the following
lemma which in fact is the technical part of the proof.

LEMMA 6.5.5. Let A : C.(X) — R be a bounded linear functional. Then there
is a positive linear functional p on C.(X) such that |A\(f)| < p(f) < || fl]o-

Proof Step 1: First consider for f > 0, define p(f) := sup{|A(h)| : h €

C.X), 1 < [}. Observe that p(f) = 0, [A(f)] < p(f) < [|fll, and p pre-
serves scalar multiplication. Also, if fi > fo, then p(f1) > p(f2). We shall prove
addivity.

Step 2: Suppose f,g € Co(X), f,g > 0. Given € > 0, by definition of p, there is
h17h2 € CC(X)v |h1‘ < fv |h2| < g, such that

p(f) < Ahy)|+e  and  p(g) < [A(ho)| +e.
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Hence,

p(f)+ p(g) < [A()| + [A(h2)] + 2e.
Moreover, for i = 1,2 there is o; € C with |a;| = 1 so that AMa;h;) = [A(h;)]. Tt
follows that

p(f) + p(g) < Marhi + azhs) + 2e. (6.5.1)

Since |anhy + agho| < f + g, inequality (6.5.1) gives
p(f) +p(g) < [Marhy + azhy)| + 2¢
< p(larhy + aghs|) 4 2¢
< p(f +9) + 2,
for all € > 0. Therefore, p(f) + p(g) < p(f + g).

Step 3: For the other inequality, pick h € C.(X) such that |h| < f + g. Define
the followings:

hy(a) i {mf;mh@), @)+ g(z) >0,
0, else.
and
ho(z) := h(x) — hy(x).
Note that |hi| < f and |he| < g, and both are continuous everywhere. Consider
[A(R)] = A(h1) + A(hs))|
< [A(ha)| + [M(hg)]
< p(f) +r(9)-
By taking the supremum over all such h, we obtain p(f + g) < p(f) + p(g).
Consequently, p(f) + p(g) = p(f + 9)-
Step 4: Now suppose f € C.(X), f is real-valued. Define f* := 1(|f| + f)
and f~ = 3(|f| = f). Then f = f*— f~ and f*, f~ > 0. We define p(f) :=
o) — o).
Given real-valued f, g € C.(X), let h:= f + g. Then,
ff+gt+h =f +g +h"
p(f)+p(g") +p(h7) = p(f7) + plg™) + p(hT)
p(f)+plg) = p(h) = p(f + 9).

Also, for ¢ € R, it is easy to see that p(cf) = cp(f). Finally, if f is complex-valued,
write f = u+ dv. Define p(f) := p(u) + ip(v) and proceed similarly. ]

THEOREM 6.5.6 (Riesz Representation Theorem of Bounded Linear Func-
tionals). Let X be a locally compact Hausdorff space. Then every bounded

linear functional ® on (Co(X),| - [|~) is represented uniquely by a regular
complex Borel measure u such that
O(f) :/ fdu, forall f e Cy(X). (6.5.2)
X

Moreover, ||®|| = |u|(X). In other words, M(X) = (Co(X))*.
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Proof of Uniqueness. Because both M(X) and (Cy(X))* are vector spaces and
we proved surjectivity, it suffices to show that ® = 0 implies ¢ = 0. Suppose
O(f) =0, for all f € Cy(X), and p is the corresponding measure.

By Polar decomposition (6.3.1), there is a complex Borel function h with |h| = 1,

such that dy = hd|p|. Note that h € L'(|u|). Since C.(X) is dense in L'(|ul),

1 —
there is a sequence f,, in C.(X) such that f, L, Therefore,

0 = [ 1adlul+0= [ B fhdl < [ [~ foldll
X X X
As n — oo, |u|(X) = 0. It follows that || = 0 implies p = 0. [

Proof. Step 1: Let ® be a bounded linear functional on Cy(X). Without loss of
generality, we assume ||®|| = 1. By Lemma (6.6.5), there is a positive linear
functional A on C.(X) such that

[2(A)] < AS]) < [ flloe- (6.5.3)

By Riesz Representation Theorem (2.3.1), there is a positive Borel measure
A such that

A(f) = /de)\, for all f € C.(X). (6.5.4)

Step 2: Note that A is outer regular. To show inner regularity, it suffices to show
A(X) < co. (Then every E € M has finite measure and automatically is inner
regular by Riesz.) Since X is open,

AX) =sup{\(K) : K C X, K is compact}.

By the Urysohn’s Lemma (2.2.11), for every such K, there is f € C.(X), with
0 < f<1sothat yx < f < xx. Conversely, every f € Co.(X) with 0 < f <1 is
bounded above by x, where K = supp(f). Thus,

AMX) =sup{A(f): 0< f<1,feCX)}

Recall that A is bounded. Hence, for |flls < 1, |[A(f)] < [[A] - [[flle < 1.

Consequently, A(X) <1 and ) is a positive regular Borel measure.

Step 3: From equation (6.5.4), note that

@mhﬂWDjémM=Wh for all f € C,(X). (6.5.5)

Now, consider (C.(X),| - [l1) as a L'(\)-space. Then, ® is a bounded linear
functional on L'(\). By LP-Isometry Theorem (6.4.3), there is a complex Borel
measurable function g € L>(\), with ||g||cc = ||®]| = 1 such that

O(f) = /ngd)\, for all f € C.(X). (6.5.6)
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Step 4: Next, we will extend equation (6.5.6) to Co(X). Recall that ® is con-
tinuous on (Co(X), || - [|s). On the other hand, given f € C.(X), and a sequence

fn LN f, by Holder’s inequality, we see that
[ 1= slgar< it flgll [
X X

< [fn = fllscllglloacAX)

as n — oo. Thus, by sequential continuity, the map f — [ « fgdA is also con-
tinuous. Since both continuous maps conincide on the dense subset C.(X) in
(Co(X), || - lloo), they agree everywhere. Define dp := gdA. So, p is a regular
complex Borel measure, and we conclude that

d)(f):/xfgd)\:/xfdu, for all f € Cy(X). (6.5.7)

Step 5: Finally, we will show the isometry: ||®| = |u|(X) = 1. Since ||®|| = 1,
for all f € Co(X) with || f]|e < 1, we see that

B(f)] = \/ngcu‘ - [ 1rsla

§|||f|Hoo'/X|g|d)\S/X|g|d)\.

Hence, [y |gld\ > sup{|®(f) : || fll« < 1} = [|®|| = 1. However, recall that
lg| < 1 and A(X) < 1. It is only possible when A(X) = 1, and g = 1, Ma.e. It
follows that g € L'()), and by Corollary (6.3.2), d|u| = |g|d\ = dA. Therefore,

[l (X) = AMX) = 1= [|®]|. u
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Chapter 7

Differentiation

In this chapter, R* denotes the k-dimensional Eucliean space; m is the Lebesgue
measure on R¥; M denotes its complete Borel o-algebra; u is a complex Borel
measure on R¥. We write B(z,7) for the open ball in R¥ centered at » € R* with
radius r > 0.

7.1 Derivatives of Measures

DEFINITION 7.1.1. A function f: R — C is differentiable at xq € R if there
exists A(xp) € C, such that given £ > 0, there is 6 > 0, so that

f(b) = f(a)
‘b—a — A(zo)

whenever |b — a| < ¢, and for all x € (a,b). If such A(xg) exists, we denote it by

f'(xo).

REMARK 7.1.2. Note that m((a,b)) = b — a. Hence, if we define f: R — C by
F(w) i= p((—o0,2)), then

<g, (7.1.1)

pl(ab) o
‘m((%b)) fl(z)] <e, (7.1.2)

provided that f'(x) exists for x € R.

REMARK 7.1.3. Observe that in R¥, (a,b) can be replaced by B(z,r), which is
a Borel set. Thus, inequality (7.1.2) sugguests that we might want to define the
“derivative of ;1 with respect to m” as the limit of the quotient £ ((l;((“;’;)))), asr — 0.
To do so, we now introduce some definitions. 7

DEFINITION 7.1.4. The symmetric derivative of y at z is defined to be

(Dp) () = lim BET)

lin B ) (7.1.3)

if it exists (in sense of C). If it exists for every x, we simply denote it as Dpu.
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REMARK. Just as we have a dominating positive measure || on u, we also want
to introduce a dominating positive function on Du.

DEFINITION 7.1.5. The maximal function of u is defined to be Myu: RF —

el |l (B(z, 7))
= sup LA T))
(Mp)(w) := T>Io) m(B(xz,r))

Note that My always exists since its range includes infinity.

(7.1.4)

PROPOSITION 7.1.6. The maximal function My is lower semicontinuous, i.e.
(Mp) ' ((er, 0)) is open for all a > 0. Hence, My is both j and m-measurable.

Proof. Given a > 0 and x € E := (Mp) ' ((«,00)), we will show that z is an
interior point of E. By definition,

Hence, there exists r,¢ > 0 such that

B
M =t>a, and |y|(B(z,7)) = tm(B(z,7)).
Since ¢ > «, there is § such that (r +§)¥ < r*L. Consider the open ball B(z,4).
We will show that B(z,d) C E. In fact, for each y € B(x,r), A-inequality gives
B(y,r 4+ 6) D B(xz,r). Therefore, by the ratio of radii and translation invariance
of the Lebesgue measure,

[ul(B(y,r +9) ||(B(z,7))
Mpy) 2 m(B(y,r +9)) 2 m(B(y,r +0))
_ tm(B(x,r)) . r¥
m(B(y,r +9)) (r+40)k
> .

Hence, Mu(y) € (o, 00), and B(x,d) C E. Consequently, E is open, and My is
lower-semicontinuous. |

LEMMA 7.1.7. Let W := Y, B(z;,7;) C RE. Then there exists S € {1,...,N}
such that

(a) Fori# je S, B(x,r)NB(xj,r;)=2.
() W C U,eg B(xi,3r4).
(c) m(W) < 3km(UieS B(zi,ri)) = 3 ZieS m(B(x;,1;)).

Proof. (a). Denote B; = B(z;,r;). Order {B;} such that r; > ry > -+ > ry.
Choose B;, := B; with the largest radius 7;, = r;. Remove B; from the collection
{B;} if BjNB;, # @. Add i, to S and reorder the remaining collection. Then, pick
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B;, with the second largest radius r;, from the remaining collection and iterate.
Since the collection is finite, after finitly many iterations, we will obtain (a).

(b). If B; is removed in iteration n, then B; N Bj # &, and r; < r;,. Hence, for
each y € B(z;,1;),
ly — i | =y — x5+ x5 — 25,
<y — ;] + |o; — i, |
S Tip + 2Tin = 37’1‘71.

So, B(zj,r;) C B(w,,3r;,) for 1 < j < N. It follows that W C |, g B(x;, 31).

€S

(¢). By scaling (more precisely, by property (e) in Theorem (2.4.4) with the linear
map T'(z) := 3z, and A(T) = det(T) = 3*), from (b) we see that

m(W) < m(UB(mi,?m)) => m(B(x:,3r:)) <3°Y m(B(z;,r;)).

€S €S €S

PROPOSITION 7.1.8. For all A > 0, m({x : Mu(x) > \}) < 3FA~1|u|(R¥).

REMARK. Recall that |u|(X) < oo. Thus, as A — 0, m({z : My > A}) — 0. In
other words, the maximal function cannot be large on a large set, in sense of the
Lebesgue measure.

Proof. Given A > 0, define F := {z : Mu(xr) > A}. Since My is lower semi-
continuous, F is open. Suppose K C F is compact. For each x € K, by definition
of My, there is r, > 0 such that

[ul(B(x,72)) > Am(B(z, 72)).

Hence, {B(z,r;) : * € K} is an open cover of K. By compactness, K C
Ui‘il B(zy,1;), for some N € N. By Lemma (7.1.7), there is a finite S C {1,..., N}

such that
< 3F Z m(B(z;, 1))

zGS

Z |\l (B(zi,74))

ZGS

3k§|m(Rk). (7.1.5)

Since inequality (7.1.5) holds for all compact K C E, by inner regularity of m,
m(E) < 3\~ (R¥). .

DEFINITION 7.1.9 (Weak L!). Let f: R* — C be m-measurable. We say f €
weak L' if there is M > 0, such that for all A € (0, 00),

m({|f] > \}) < M. (7.1.6)
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REMARK 7.1.10. Every f € L'(RF) is in weak L' because

171l > /{ o Mdm {1 )

Certainly weak L' is strictly large than L'. Consider the function f(x) :=1/z on
(0,1). Then f ¢ L', but

Aom({l/z > A}) = A-m((0,1/)) =1, VA > 0.

DEFINITION 7.1.11. Let f : R¥ — C. Define the maximal function of f to be

1
(Mf)(x) :=sup (B /B(x’r) | f| dm. (7.1.7)

r>0 M

REMARK 7.1.12. Let f € L}(R¥) and define the a complex Borel measure u by
dp := fdm. Then, M f is exactly Mu, and by Proposition (7.1.8)

Am({Mf > A}) < 3°|ul(RY) = 3°] £, (7.1.8)

for all A > 0. This is a special case of Hardy-Littlewood maximal inequality.
Moreover, the operator M sends L' to weak L' with a bound 3F.

7.2 Lebesgue Points

DEFINITION 7.2.1 (Lebesgue points). If f € LY(R¥), we say 7 € RF is a
Lebesgue point of f if

1

tiy s | 1) = f)]dm() =0 (7.2.1)

REMARK 7.2.2. If 2 is a Lebesgue point of f, then

. 1 -~
S e |y ) 20| =0
. 1 _
) o, T ) — F )| =0
. 1 .
ll—%m(B(J?O?T))/B(xU,r) f(@)dm(z) = f(xo). (7.2.2)

In general, equation (7.2.1) asserts that the averages of |f — f(x)| are small on
small open balls at z. Thus, the Lebesgue points of f are the points where f
does not oscillate too much in average. Also, if f is continuous at x, then z is a
Lebesgue point of f because |f(y) — f(z)] <e =0, as |y —z| <r — 0.

THEOREM 7.2.3 (Lebesgue Differentiation Theorem). If f € LY(RF), then
m-almost every x € R* is a Lebesgue point of f.
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Proof. Step 1: For each r > 0, define T}, f: R* — [0, cc], by

(T f)(x) == |f = f(z)[dm. (7.2.3)

]. /
m(B(m, T)) B(.TZ,’V’)

(Tf)(z) := limsup(T, f)(x). (7.2.4)

r—0

We want to show (T'f)(x) = 0, for m-almost every z € R*.

Step 2: Fix an n € N. Since C,(R¥) is dense in L!'(R*), we can pick g € C.(RF)
such that || f — g|l1 < 1/n. Moreover, by continuity of g, (T'g)(z) = 0, for all
z € R¥

Step 3: Let h:= f — g € L'(R¥). Then for all z € R*,

(Toh)(x) = m(B(lm)) /B =0 ()~ e am
1
< (m<3<>> / =g dm> 1) - gl)]
1
< (m(B(a:,T)) /B N yh|dm> + h(z). (7.2.5)

Step 4: Also, for all x € R”,

(1) (@) = (To(g + h)(z) = |9+ = (9(x) + h(z))| dm

1
= m<B(W</BW) |9 = g()|dm + /BW) |h = h(z)| dm)
< (T.9)(z) + (T h)(z). (7.2.6)

Step 5: Take the limsup,_,, on inequality (7.2.6) and apply inequality (7.2.5):

(Tf)(x) < (Tg)(x) + limsup(T,.h)(z)

r—0

< 0+ sup(T,.h)(z)

r>0

< sup |h| dm + |h(z)|

1
r>0 m /B(x,r)
= (Mh)(z) + |h(z)]. (7.2.7)

Step 6: For all y > 0 such that (7'f)(z) > 2y, we have (Mh)(z) > y or |h(x)| > y.
Thus,

{z: (Tf)(x)>2y} C{z: (Mh)(z) >y} U{x:|h(z)| >y} (7.2.8)

93



Differentiation

By inequality (7.1.8), and ym({|h| > y}) < ||h||1, we see that

m({Tf >2y}) <m({Mh>y}) +m({[h] > y})

1 1
< 3"~ [l + Al

Y Y

1
<@ +1)— 7.2.9
<@ 1) (729
where the last part is given by ||h||; < 1/n.

Step 7: Note that m({T'f > 2y}) is independent of n. (Although we have done
a lot of approximations starting with n, the Lebesgue measure is fixed once we
pick y.) Since inequality (7.2.9) holds for all n € N, as n — oo, we obtain
m({Tf > 2y}) = 0. By completeness of m, {T'f > 2y} is m-measurable, for all
y > 0. By monotonicity,

m({Tf > 0}) = lim m({Tf >1/N}) =0,

Therefore, the set for which Tf # 0 has Lebesgue measure 0; equivalently, m-
almost every = € R¥ is a Lebesgue point of f. |

COROLLARY 7.24. If u < m and [ := % is the Radon-Nikodym derivative of
w with respect to m, then f = Du, m-a.e.

Proof. 1f x is a Lebesgue point of f,
1
1) =18 ) T
w(B(z,r))
— i — Dy(a).
P m(Be.r) ~ MY
By Lebesgue Differentiation Theorem (7.2.3), Du(z) exists and Du(z) = f(x) for
m-a.e. all x € R*. |
COROLLARY 7.2.5. If f € LY(R), then for m-a.e. x € R,
= lim — / fdm. (7.2.10)

e—0 €

Proof. We will show that

1 r+e
/ |f = f(z)|dm — 0, ase— 0.

€
In fact, by positivity of m and |f — f(z)],

zte z+e
[ t@lams 2 [ @) dm

2
= n(B.9) /Bw) | = fz)] dm.
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By Lebesgue Differentiation Theorem (7.2.3), almost every x is a Lebesgue point.
Thus, as ¢ — 0, RHS — 0, and we obtain

i/ﬂcx+g|f—f(x)]dm—>0. |

DEFINITION 7.2.6 (Nicely shrinking sets). Let z € R¥ and {E,} be a sequence
of Borel sets in R*. We say {E,} shrinks to  nicely if there is @ > 0 and a
sequence of positive numbers r,, — 0, such that for all n € N, E,, C B(x,r,), and
m(E,) > am(B(z,r,)).

REMARK 7.2.7. Note that F,, need not contain x itself. For example, E,, :== (0, %)
shrinks to 0 nicely in R. The condition of « requires each E, to occupy certain
portion of the ball B(z,r,). To illustrate this, E, := (0,%) x (0,75) does not
shrink nicely to (0,0) in R2.

PROPOSITION 7.2.8. Suppose f € L*(R¥) and v € R¥ is a Lebesque point of f.
If {E,} shrinks to x nicely, then

() = Tim — /Efdm. (7.2.11)

n—oo m(E,)

Hence, it holds for almost every x € R*.

Proof. Let a and {r,} be the positive number and sequence that are associated
to {E,}. Hence, E, C B(x,r,) and
1
f-f@ldn< — s [ 7= f@)ldn
m(En) ~/En m(En B(z,ryn)

1
O(TTL(B(JZ‘,T’n) /B(z,rn) |f - f(I)| dm

—_ —

<

Since r, — 0, the RHS — 0 by definition of Lebesgue point, and we obtain
equation (7.2.11). [

THEOREM 7.2.9. Let f € L'(R) and for all x € R,

F(z) = / " Fdm.

oo

Then, F'(x) = f(x), at every Lebesgue point x of f, hence F' = f, m-a.e.

Proof. Let x be a Lebesgue point of f. Suppose r,, > 0, for all n € N, and r,, — 0.
Then E,, := [z, + r,] shrinks to = nicely. By Proposition (7.2.8),

FL(e) = lim —(F(x+ ) — F(ra))

n—oo 1,
1 T+ry
= lim / fdm = f(z).
n—00 Iy J,.
Likewise, S, := [r,x — r,,] also shrinks to x nicely, and F’ (z) = f(z). Hence,
F'= f, m-a.e. |
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7.3 The Fundamental Theorem of Calculus

QUESTION. Let f: [a,b] — C. Recall that if f is continuous on [a, b] and differen-
tiable everywhere on (a,b), then

= /:C f'dm, x € [a,b]. (7.3.1)

However, if f’ no longer exists everywhere on (a,b), what other assumptions are
necessary?

REMARK 7.3.1. It turns out it is not enough even with f continuous on |[a, b],
f" defined m-a.e. on [a,b], and f" € L'([a,b]). We shall see that in the following
example.

EXAMPLE 7.3.2 (The Cantor Function). Step 1: We proceed the standard
Cantor set construction on [0,1]. For n = 0, remove Ey; := (3,2) from [0,1]. Let
= % on Ey;. We denote that f(Ep;) = % For n = 1, remove the middle third
intervals of the remaing intervals [0, 1]\ Eo,;. We have Ey 1 == (5, 2), E12 = (£, 3).
Let f(Evo) := 5, f(E12) == 5.

Step 2: In general, for each n, there are 2" many disjoint E, ;. ’s, each with
measure 3~ !, from the remaining disjoint intervals. Hence, E, := Z; E, k.
has measure 3 - (3)". Let E :=J;" E,. We see that

3
f-35(5) -
=3
Define f: E — [0, 1], given by

2%, — 1
fla) == 7€ B (7.3.2)

Note that f(E) := %, i %, %, ...}, which is dense in [0, 1]. Moreover, since f is

constant on each open set E,,, f'|g,, =0. Thus, f'=0on E.

Step 3: Now we want to extend f continuously from E to [0,1]. Let f(0) :=0
for all @ € [0,1] \ E, define f(z) := sup{f(t) : t < x}. Note that f is increasing.
To see that f is continuous, we first show that f is surjective.

For eachy € [0,1],let S :={z € E: f(z) <y}, and ¢ := sup(S). By monotonicty,
f(t) < y. Suppose f(t) < y, then by density of f(E), there is E,j, such that
f(t) < f(Eug,) < f(y). Hence, t # sup(S), which is a contradiction; and f is
surjective.

Step 4: For all x € [0,1], € > 0, there are E, ;, = (a,b) and E,/ = (a', V'), such
that b < z < d/, and

fx) =& < f(Eny,) < f(2) < f(Ewg,) < () +¢

96



The Fundamental Theorem of Calculus

By monotonicity and surjectivity, f((b,a’)) C (f(x) —¢, f(x) +¢). Therefore, f is
continuous from [0, 1] to [0, 1].

Step 5: Finally, recall that m(E) = 1, and the Cantor set C' = [0,1] \ E has
measure zero. Thus, f' =0, m-a.e. and f’ € L'([a, ]). However,

) = F(0) =14 /0 7 dm.

Answer. In order to obtain equation (7.3.1), we need to introduce a stronger con-
dition than merely continuity on f: absolute continuity.

DEFINITION 7.3.3 (Absolute continuity). A function f: I := [a,b] — C is
called absolutely continuous if for any € > 0, there is 0 > 0, such that whenever
{(cv, B;)}-, is a finite collection of disjoint intervals in I, with Y " | (8; — o) < 9,

we have
Z|f ﬁz az | <e.

REMARK 7.3.4. Obviously, absolute continuity implies uniform continuity, hence
continuity. Also, the space of absolutely continuous functions is a vector space.

THEOREM 7.3.5. Let I = [a,b], f : I — R be continuous and non-decreasing.
Then, the following are equivalent:

(i) f is absolutely continuous.

(i1) f maps sets of measure zero to sets of measure zero.

(iti) f is differentiable m-a.e. on I, f' € L*(I), and f(z)— f(a) = [ f' dm.
Proof. (1) = (ii). Let M be the o-algebra of Lebesgue measurable sets. Let
EcC I, Ee€ M and m(E) =0. We will show that m(f(E)) = 0.

Step 1: Without loss of generality, supose E C (a,b). Given € > 0, by absolute
continuity there is § > 0 such that there exists an open set V' O F with m(V) < 4,
by outer regularity.

Step 2: Since V is open, we may write V = =, (as, 5;), where (o, 3;)’s are
disjoint. (To see this, let {q1,qq, ...} be rationals in V, let B(q,m) C V with r;
maximum. Remove B(qy,71) and iterate.) Thus,

> (B — ) =m(V) = Z\f@ flag)| <e.

i=1

Step 3: Since m is a positive measure and E C V', we have

m(f(E)) < Z |f(Bi) — flay)| <e.

Let e — 0, then m(f(F)) = 0, and we conclude (ii).
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(#1) = (1i). Suppose f maps sets of measure zero to sets of measure zero.

Step 1: Define g(z) := x + f(z),z € I. For all segment (a,b) C I,

m(g((a,0))) = m((a, b)) +m(f((a,b))) = (b= a) +m(f((a,0))).

If m(E) =0, then m(f(EF)) = 0 and E does not contain any segments. Hence, g
also satisfies (7).

Step 2: Since g is continuous, and strictly increasing on [g(a), g(b)], g~' is also
continuous. Thus, g: I — [g(a),g(b)] is a homeomorphism. Consequently, g
preserves all the topological properties. Then, FE is a Borel set in [g(a), g(b)] if and
only if g~}(E) is a Borel set in I.

Step 3: Moreover, for all E C I, E € M, by regularity £ = K U F, where K is
an Fy-set and m(F) = 0 by Theorem (2.3.1)(c). Thus, K = |J;2, C;, where C; is
closed, hence compact in I. Since g is a homeomorphism, ¢(C;) is compact and
closed in [g(a), g(b)]. Also, recall that g satisfies (ii), so m(g(F')) = 0. Hence, g(E)
is also a union of an Fjy-set, which is measurable, and a set of measure zero. We
conclude that g(E) € M.

Step 4: Define a measure p: M — R by pu(E) := m(g(E)). Note that p is well-
defined because g(E) € M. Since g is injective, disjoint sets in I are mapped
to disjoint images. By o-addivity of m, we see that p is indeed a positive and
bounded measure. Moreover, 1 < m because satisfies (it).

Step 5: By Radon-Nikodym Theorem (6.2.3), du = hdm, for some h € L'(m).
If follows that

9(x) = g(a) = m([9(a), g(2)]) = m(g([a, 2]))
= u(la, x]) :/ hdm.

Hence,

(a0 J@) = (a+ J@) = [ ham

a

o)~ 1 = [ “(h—1)dm.

By Theorem (7.2.9), f'(x) = h(z) — 1 for m-a.e. x, and we conclude (4i1).

(iii) = (i). Let f be differentiable m-a.e. on I, f' € L'(m) with f(z) — f(a) =
[ f'dm. Define a measure pu: M(I) = R, by

w(E) :—/Ef/dm. (7.3.3)

It follows that u < m. By absolute continuity of measures, Proposition (6.2.6),
given £ > 0, there is ¢ such that whenever m(E) < ¢, then |u(E)| < . Moreover,
since it holds for all E € M, we conclude that |u|(E) < ¢, and thus || < m.
(Because |p| takes supremum of p over all finite partitions, and m is positive.)
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Finally, suppose F

m(E) = (8 — o) <
> 1580 — fled) = 3 In((es, 5)
< Z ‘M‘((Oﬁ,ﬂi))

<|ul(E) <e.

Ui, (cu, B;) is a finite union of disjoint intervals with
0. Then,

Therefore, f is absolutely continuous and we conclude (7). [

DEFINITION 7.3.6 (Total variation function). Let f : [a,b] — R be absolutely
continuous. The total variation function F': [a,b] — [0, 00) is defined by

F(x):= sup Z |f(t; 1), (7.3.4)
{t }l 0 i=1
where {t;}¥, is any finite partition of [a,b] with a =ty < t; < -+ <ty =b.

LEMMA 7.3.7. If f: [a,b] — R is absolutely continuous, then the total variation
function F', F+ f, and F — f are absolutely continuous and non-decreasing.

Proof. First, we will show they are non-decreasing. Suppose x,y € I, with z <y,

and {¢;}, is a partition of [a, z|. Then, the set {¢;}"_; U{t,41 := y} is a partition
of [a,y]. By definition of F, we have

Ply) = [f(y) = f@)]+ 3 [F(8) = fltin)] (7.3.5)

Since it holds for any partition, by taking the supremum on the RHS of inequality
(7.3.5), we see that

Fly) 2 1f(y) = f(@)] + F(z). (7.3.6)
By simple arithmetics,
F(y) = F(x),
F(y) = f(y) = F(z) — f(2),
(y) + fy) = F(z) + f(x).

Therefore, F', F'— f, and F' + f are all non-decreasing.

Step 1: Now to show that F' is abolutely continuous, first observe that by defini-
tion of F, for all (a, 8) C I,

N

F(B) = F(a) = sup > _[f(t:) = f(tia)], (7.3.7)

{ti}fvzo i=1
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where {t;}¥, is a finite partition of [a, 3].

Step 2: Since f is absolutely continuous, for all € > 0, there is § > 0 such that
if {(ou, B;)}, is a collection of disjoint intervals with Y ., (5 — a;) < d, we have
Som 1 f(Bi — flay)| < e. For each i, let {ti,j}évio be an arbitrary finite partition of
(ai)ﬁi)- Then,

i < (tij — tz‘a‘l)) = zn:(ﬁi — ;) <0

i=1

Note that {(; j,%;;4+1) : 0 <7 <n,0 <j < N,} is also a finite partition of disjoint
intervals. Thus,

Z |f(tig) — f(tij—1)| <e. (7.3.8)

Step 3: Again, since equation (7.3.8) holds for any finite partition {t;,}, taking
the supremum over all {¢;; : 0 < j < N,} gives

N

> F(B;) — Flai) <e. (7.3.9)

i=1

Since F'is non-decreasing, F'(3;) — F(co;) = |F(8;) — F ()|, and we obtain absolute
continuity for F' simply by using 5. Therefore, F'+ f and F'— f are also absolutely
continuous. [

THEOREM 7.3.8 (The Fundamental Theorem of Calculus). If f: I — C is
absolutely continuous, then f' exists m-a.e., f' € L'(I) and for all x € I,

f(@) = fla) = [ ]f'dm. (7.3.10)

REMARK. Note that f need not be non-decreasing.

Proof. Tt suffices to prove for f: I — R, by taking Re(f) and Im(f) as usual.
Consider the total variation F' of f. Define f; := %(F + f) and fo := %(F - f).
By the previous Lemma, f; and f; are absolutley continuous and non-decreasing.
Applying the previous results, we see that

filz) — fi(a) = fidm and fa(x) — faa) = fodm.

la,x] la,x]

Hence,

where ' = f] — f5. |
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Chapter 8

Product Spaces

8.1 Measurability on Cartesian Products

In this section, let (X, M) and (Y, N) be measurable spaces. We want to extend our
results on integrability, measurability, as well as measures, from measure spaces to
thier Cartesian products. Hence, it is essential to construct a o-algebra on X x Y
from a set-theoretic approach that is relevant to both (X, M) and (Y, N).

DEFINITION 8.1.1 (Algebra). An algebra A C P(X) is a nonempty collection of
subsets in X such that A is closed under finite unions and complement. Note that
by the De’Morgan’s Laws, A is closed under finite intersections and set differences.
Obviously, if in addition A is closed under infinite unions, then A is a o-algebra.

DEFINITION 8.1.2 (Monotone class). A monotone class M C P(X) is a
nonempty collection of subsets in X such that M is closed under countable in-
creasing unions and countable decreasing intersections. That is, if for each i € N,

Ai C Ai+1, Bi D Bi+1a and AZ', Bi S M, then U;)il Ai and ﬂfil BZ' e M.

Let S € P(X). The monotone class generated by S is the intersection of all
monotone classes that contains S. It is defined similarly as in Proposition (1.2.1).
Thus, it is the smallest monotone class that contains S.

REMARK 8.1.3. Hence every g-algebra is a monotone class.

THEOREM 8.1.4 (Monotone Class Theorem). If A is an algebra of a set X, then
the monotone class M generated by A is precisely the o-algebra ¥ generated by A.

Proof. Obviously, M C ¥, we will show ¥ C M. By assumption, A C M.
Observe that given disjoint sequence {E;}°, in M, if we let E}, := Ule E;, then
{E}}72, is an increasing sequence, and let

E:Q&:Qg
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If M is an algebra, then E; € M and by definition of monotone class, £ € M.
Hence, M is a o-algebra of A, and we obtain ¥ C M. Claim: M is an algebra.

Step 1: For all £ € M, define
M(E)={FeM:E\F,F\E,ENF e M}. (8.1.1)

Note that @, F € M. Also, the properties listed above are symmetric. That is,
F e M(F) if and only if E € M(FE).

Step 2: We will show M(FE) is a monotone class. Suppose F; C F, C ... is an
increasing sequence in M(E). Let F := J;2, F;. We need to show E\ F, F\ E,
and ENF € M(E). Observe that (E'\ F;) D (E'\ Fi+1) are in M, thus

oo

E\F=()E\F)eM.
i=1
Similarly, F'\ E and ENF € M and it follows that F € M(FE). Likewise, for

a decreasing sequence Fy O Fy D ... in M(E), N2, F; € M(E). Consequently,
M(E) is a monotone class.

Step 3: Fix an F € A. For all ' € A, by definition of algebra, F'\ E, E \ F,
FNE e AcC M. Then, F € M(FE) and thus A C M(FE). Recall that M(E) is a
monotone class. Therefore, M C M(E), for every E € A.

Moreover, if F' € M, then F' € M(E), for all E € A. From Step 1, we see that
E € M(F). Thus A C M(F) and M C M(F). Conclusion': For all E € M,
M C M(E).

Step 4: Finally, given any E, F' € M C M(E), by definition of M(E), E\ F, F'\

F,ENF € M. Furthermore, since X € A C M, E° € M. Together with the
finite unions property of monotone class, M is an algebra. ]

DEFINITION 8.1.5. A measurable rectangle F € X x Y is in the form A x B,
where A € M, B € N. An elementary set is a finite union of disjoint measurable
rectangles. Denote £ the collection of all elementary sets, and M ® N the o-algebra
generated by £. Note that £ is an algebra.

COROLLARY 8.1.6. The o-algebra M ® N is the smallest monotone class con-
taining €.

Proof. Since & is an algebra, M ® N is the monotone class generated by &, by the
Monotone Class Theorem. |

DEFINITION 8.1.7 (Cross section). Let E C X x Y. Define the x-section and
y-section respectively by

E,={yeY :(zx,y) € E} and EY:={reX:(z,y) € E}.

I This step is purely set-theoretic and definition-based. Read and proceed carefully. The main
idea here is to extend the fact that M(E) is a monotone class that contains M for all E € A to
that for all £ € M, which leads to the argument in Step 4.
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PROPOSITION 8.1.8. [f E € M ® N, then EY € M and E, € N, for allx € X
andy €Y.

Proof. Let Q:={E : EY € M,Vy € Y}. We will show that Q is a o-algebra that
contains M ® N. First, we begin with rectangle. Suppose F = A x B, where
A€ M and B € N. Then,

v — A ifye B,
g y¢B,

and EY € M. Next, we show that € is a g-algebra. In fact,

(i) X xY € Q because it is a rectangle.

(ii) If E, € Q for each n, then ({2, E,)Y = U,—, EY € M.

(iii) Given E € Q, (E°)Y ={z: (x,y) ¢ E} ={z: (x,y) € E}* = (EY)° € M.
Thus, €2 is a c-algebra that contains all measurable recetangles. Hence, 2 D &,

and 2 D M ® N. The proof for E, is the same. |

PROPOSITION 8.1.9. If f: X XY — C is M ® N-measurable, then fY(x) :=
f(z,y) is M-measurable. Likewise, f.(y) := f(x,y) is N-measurable.

Proof. Let V be open in C, by measurability of f, f~(V) € M ® N. Hence,

(V) ={z: @y € [TV ={a: fla,y) €V}
={z: (f")(@) eV}=(f")""(V) e M,

by Proposition (8.1.8). Thus, f¥ is M-measurable; likewise for f,. [

8.2 Product Measures

In this section, let (X, M, u) and (Y, N,v) be positive o-finite measure spaces.
After the construction of the g-algebra M ® N on X x Y, we want to construct a
natural measure on M ® N, again relevant to both p and v.

THEOREM 8.2.1. Suppose Q € M®N. Define p(x) := v(Q,) and Y(y) = u(QY).
Then, ¢ is M-measurable and v is N-measurable. Also,

[ @ dute) = [ w@yavty) (8:2.1)

Y

Proof. First suppose () is a measurable rectangle, ) = A x B, for some A € M,
B € N. Then,

o(r) =v(Q.) =v(B)xalz), and  ¥(y) = w(Q") = u(A)xs(y).
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Both functions are respectively M and N-measurable. Also,
[ Q2 duta) = viByua) = [ w(@)avty).
X

Let Q be the collection of @ € M ® N for which the conclusions hold. Recall
that M ® N is the monotone class generated by £. Thus, if we can show (Q is a
monotone class that contains £, then M ® N = €.

We will first show £ C Q. Let {Q;}Y, be a finite collection of disjoint measurable
rectangles. Then, by addivity of v,

N N N
A(Uer) =(U@) = X vi@n),
i=1 i=1 i=1
which is M-measurable. Similarly, we have N-measurability by

N

u((U Q) - gu«@i)y).

To check equation (8.2.1),
/ ((LNJ an) ap() = ZNJ [ v((@))duto

=3 [ w@r) v

_/X”<<QQi)y> du(y).

Therefore, £ C Q. To see that €2 is a monotone class, let {Q,}>2, be a sequence
in 2. We will show countable union and intersection properties as follows.

Step 1: Suppose Q, € Qny1. We will show @ = |J~, @, € Q. For each
x € X, by countable addivitiy and positivity of v, v((Qn)z) < V((Qn+1)z), and
v((Qn)z) — v(Q,) by monotonicty. By Monotone Convergence, ¢(z) = v((Q.))
is M-measurable. Likewise, ¢(y) = pu(QY) is N-measurable. Moreover,

tin [ Q) dn(e) = [ 1(@2) dute),

tim [ (@) dv(o) = [ (@) ().

Recall that
[ @ an) = | @ vy,
X Y
for all n. So, the limits are equal and @ € 2.
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Step 2: Suppose the @,’s are disjoint. We will show (J,~, @, € Q. From Step
1, it suffices to show that if Q,Q" € Q and QN Q' = &, then QU Q" € . In
fact, v((QU Q")) = v(Q.) + v(Q). So, ¢(x) is M-measurable; and (y) is N-
measurable likewise. Moreover, the equality of integral follows simply by linearity.

We conclude that |7, Q, € Q.

Step 3: Now suppose @, 2 Qy+1. We will show Q := (", € Q. We first assume
@1 € A x B, for some measurable rectangle with p(A),v(B) < oco. Similar to
Step 1, v((Qn).) — v(Q.) by monotonicity of v, and hence ¢(x) is M-measurable
by Corollary 1.3.5. Likewise, 1(y) is N-measurable. Also, v((Qn).), u((Qn)Y) <
pu(A)v(B) < co. By Dominated Convergence,

tim [ v(Q).) du() = /X V(@Q2) du(z),

tin [ (@) dvty) = [ (@) vty

Thus, the limits are equal.

Step 4: In general, by o-finiteness, there are disjoint partitions {X;}2, and
{Y;}32, of X and Y with u(X;),v(Y;) < oco. For each Qy, let Qy ij) = Qn N
(X; xY;). By Step 3, (o @iy € Q. Since {(~, Qn i) : %, J € N} is a disjoint
sequence, from Step 2,

U < Qn,(i,j)> = ﬂ < U Qn,(i,j))
ijeN \n=1 n=1 \ijeN
=(N@=Qcq
n=1

Therefore, 2 = M ® N. |
DEFINITION 8.2.2. The product measure o x v: M @ N — [0, 00| is defined
0 0)(@Q = [ Q) duta) = [ u(@)avty). (3:22)

X Y

REMARK 8.2.3. Note that u x v is indeed a measure because o-addivity follows
from Step 2 in the proof of Theorem (8.2.1), using Monotone Convergence for
series.

REMARK 8.2.4. Note that M ® N is not necessarily the completion of 1 X v even
if M, N are the completions of u,v. To see that, pick A := &, B ¢ N. Then
(uxv)(AxY)=0,but Ax B¢ M ® N.

THEOREM 8.2.5 (Fubini’s Theorem). Let (X, M, ) and (Y, N,v) be o-finite
measure spaces, [ be compler M & N-measurable.

(a) If f >0, then

/x Qf_di = Xxyfd(“”)—/y /Xfydu dv.  (8.2.3)

M-measurable N-measurable
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(b) If f € L'(u x v), then for p-a.e. x € X, f, € L*(v),

/|fxdv< .,
Y

and (x) == [, fodv € L'(p). Likewise for f¥ and ¢(y) := [ f¥dp.

(c) If [ is complex and
/ (/Ymrdu) dyi < 00,

then f € L'(u x v) and (b) holds.
(d) For all M ® N-measurable f € L'(u x v),

(e e ([ o

REMARK 8.2.6. From (b) and (c), if f is complex M ® N-measurable and

| [ 1 < .
Joan [ remar= [ av [ e <o

Proof. (a). From Theorem (8.2.1), we see that equation (8.2.3) holds for char-
acteristic functions, hence simple functions. Now choose a sequence of simple
measurable simple functions s,, > 0, such that s,(z,y)  f(z,y) pointwise. Thus,
(sn)z, and s, are increasing sequences to f, and f, respectively. By Monotone
Convergence on (Y, N,v) and (X x Y, M @ N, u x v),

then

lim [ (sp).dv = / fody,
Y

n—oo Y
lim spd(p x v) = fd(p xv).
=0 Jxxy XxY
Also, 1, (x fY Sn)e dv is M-measurable. By Monotone Convergence on (X, M, i),

fy fzdv is M measurable, and

/ lim ¢, dp = lim / U, dpt.
X n—oo n—oo X

() (1 frore)
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= tim [ ([ sy

n—oo

= lim Spd(p X v)

n—oo XY

= fd(pxv).

XxY

Likewise, the proof for fY is the same. |

(b). Since |f| € L*(p x v), from (a) on |f],

[ [ s [ [ ifdava

= [ ifldtex ) <.
XxXY
Therefore, ¢ € L' () and likewise for f¥ and . [

(c). Again from (a),

so> [ ([ islwr)anz [ irlagocn,

Hence, f € L*(pu x v). [ |
(d). Write f = (u™—u~)+i(vT—v7), then apply (a) on each function as usual. W

We will see that the hypotheses in Fubini’s Theorem are necessary with the fol-
lowing counterexamples.

EXAMPLE 8.2.7 (L'). Suppose X,Y := N, and u,v are the counting measures.
Consider the function a: X x Y — R, by

1 0 0 0

—%1100

ol A
g8 4

[N

Note that a ¢ L'(u x v). Then, the row sum is given by

advdu = = 2.
Jofpoavan=323
On the other hand, the coloum sum is
/ / adpdry = ZZanym =0.
Y /X m=1n=1

Hence, the integrals are not equal.
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EXAMPLE 8.2.8 (o-finiteness). Let X,Y := [0, 1], u be the Lebesgue measure, and
v be the counting measure. Note that v is not o-finite on Y. Define

fla,y) = {(1) i ;‘Z (8.2.4)

//fyd,udV:/OdI/:O.
yJx Yy
//fmdyduz/lduzl.
xJy X

Thus, again the integrals are not equal.

Then, fY =0, u-a.e., so

On the other hand,

EXAMPLE 8.2.9 (M ® N-measurability). Assume the continuum hypothesis. By
Zermelo-Frankel, there is bijective j: [0,1] — W, where W is well-ordered. More-
over, for all z € W, {y : y < 2} is at most countable. Define Q := {(z,y) € [0,1]*:
j(z) < j(y)}. Define f := xq and Consider

) = {1, (2,9) € Q. 5(x) < i(y),

0, else.

Thus, f, is N-measurable. Fix z, then {y : j(y) < j(z)} = {y : f.(y) = 0} is at
most countable. Therefore, integrating with the Lebesgue measure gives

/ fedmdm = 1.
0,1] J[0,1]

On the other hand, fY is M-measurable, and {z : f¥(z) = 1} = {z : f(z,y) =
1} ={z:j(x) < j(y)} is also at most countable. Hence,

/ ffdmdm =0.
[0,1] J[0,1]

Since m is finite and f > 0, f must not be M ® N-measurable.

8.3 Completion of Product Measures

As we have seen, in general M @ N is not the completion of the o-algebra underlying
i X v even though M and N belong to, respectively, the completions of p and
v. In this section, we will see that the completion of m” x m? is in fact m* on
R" x R®* = R*. Also, we will present an alternative statement of the Fubini’s
Theorem with complete measure spaces.
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PROPOSITION 8.3.1. Let m* be the Lebesque measure on R¥ = R” x R*. Then,
mF¥ is the completion of m" x m?®.

Proof. Step 1: Denote B* the Borel algebra of R¥, and M* the completion of B¥.
First, we want to show B¥ C M"™ ® M*® C MF*. Every k-cell E can be written as

E = ﬁ[l X f[l“
i=1 i=1

where I; is an finite interval, so £ € M" ® M*. Also, every open set in RF
is a countable union of the k-cells. Since B* is generated by these open sets,
B¥ c M™® M°.

Step 2: Suppose E € M" F € M?*. By Theorem (2.4.4), there is F,-set A and
Gs-set B in M" such that A C E C B and m"(B\ A) = 0. Note that A x R® and
B x R® are F, and Gs in M*, respectively. Thus, A x R* C E xR* C B x R?, and

m* ((B x R*) \ (A x R*)) = m*((B\ A) x R*) = 0.
We conclude that E x R® € M*. Likewise, R” x F' € M*. Therefore, E x F =
ExR*NR" x F e MF,and M" ® M* C MF.

Step 3: Let Q € M" ® M?*, we will show m*(Q) = (m” x m*)(Q). Since Q € M*,
there are Borel sets Py, P, € B*, such that P, C Q C P, and m*(P, \ P,) = 0.
However, recall from Step 1 that m”* and m” x m?® agree on k-cells, hence open
sets, hence Borel sets. Thus,

(m" x m*)(Q\ P,) < (m" xm®*)(Py\ P1) = mF(P,\ P,) =0,
we conclude that (m” x m*)(Q) = (m" x m*)(P,) = mF(P)) = m*(Q).2 Therefore,

MP* is the completion of M" ® M? because m” is a complete measure on M*. W

LEMMA 8.3.2. Let (X, M*, i) be the completion of (X, M, ). If f is M*-measurable,
then there is M-measurable g such that f = g p-a.e.

Proof. Suppose f is M*-measurable and f > 0. Let {s,} be a sequence of M*-

measurable non-negative simple functions such that s, /* f. Note that

oo

[ = Z(SH—H - Sn)a
n=1

and s, — f. Since each s,,1 — s, is a finite linear combination of characteristics
functions,

f= ZCiXE“ (8.3.1)
i=1

2This is not hard to see using regularity.
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for some ¢; > 0, and E; € M*. By definition of M*, for each FE;, there are
A;, B; € M such that A; C E; C B;, and u(B; \ A;) = 0. Define

g = Z CiXA;»
=1

which is M-measurable. Also, g # f on (E;\ 4;) C (B;\ 4;). Hence, g = f, p-a.e.
The general case follows as usual. |

LEMMA 8.3.3. Let (X, M, ) and (Y, N,v) be complete measure spaces. If h is
(M x N)*-measurable and h = 0 (u X v)-a.e., then for v-almost ally € Y, hY is
M -measurable and h¥(x) = 0 for p-a.e. x € X. Analogous statement can be made

for hy.

Proof. Let P := {(z,y) : h(z,y) # 0}. Then P € (M ® N)* and (u x v)(P) = 0.
By completeness, there is Q € M ® N so that P C @ and (1 x v)(Q) = 0. Then
by Theorem (8.2.1),

/X w(Q") dv =0,

and 1(QY) > 0 on a set T' with v(T") = 0. Hence, if y ¢ T, then p(QY) = 0, and
PY € M by completeness. Therefore, for v-almost all y € Y, hY is M-measurable
and hY =0, u-a.e.; likewise for h,. |

Proof. Let P := {(z,y) : h(xz,y) # 0}. Then P € (M x N)* and (u x v)(P) = 0.
Let @ D P with @ € M x N and (u x v)(Q) = 0. Use Fubini on @Y, use
completeness of u to show PY € M. Definition of PY and all subset of PY € M. W

THEOREM 8.3.4 (Fubini’s Theorem with Completion). Let (X, M, ) and (Y, N,v)
be complete o-finite measure spaces. Let (M ® N)* be the completion of M & N
with respect to p x v. Suppose [ is a (M ® N)*-measurable function on X x Y.
Then, the conclusions of Fubini’s Theorem (8.2.5) still hold, except that f, is
N-measurable for p-a.e. x € X and fY is M -measurable for v-a.e. y € Y.

Proof. By Lemma (8.3.1), we can replace f by an M ® N-measurable function
g such that g = f, (u x v)-a.e. Applying Fubini’s Theorem on g, together with
Lemma (8.3.2), we see that for py-almost all z € X, and v-almost all y € Y,

fe = gz, V-a.e. and f¥=gY, p-ae.

Therefore,

fd(uXV)—/ gd(p xv)

XxY XxY

//fyd,uduz//gydudu
v JX Yy JX

110



Convolutions

//ﬁmMm—//ﬁmmm
XJY XJY

Since the right-hand sides are all equal by Fubini’s Theorem, so are the left-hand
sides. m

8.4 Convolutions

THEOREM 8.4.1 (Convolution). Suppose f,g € L'(R). Define F' on R?, given by
F(x,y) == f(x —y)g(y). Then, for m-almost all x € R, F, € L*(R). Moreover,
for these x’s, the function

h(z) = /Rf(x —y)g(y)dy (8.4.1)
is in L'(R), with ||h]lx < || fllllgll-

Proof. Without loss of generality, we assume both f and g are Borel measurable
functions. Thus, F is also m*-measurable since (z,y) — z —y and y — y are both
measurable maps. By Fubini’s Theorem (8.2.5)(a),

[Plasdy= [ [1Rjaray= [ [ 1@ =plddsolay

- [ [ ir@lasawids = [ 11low)lay
— I/l

where the third equality is given by translation invariance of the Lebesgue measure.
Hence, F' € L'(R). By Fubini’s Theorem (8.2.5)(b), F, € L'(R) for m-almost all
x € R. Moreover,

h(z) = /R F,dy

is in L}(R) and

)
[ e [ Adey\dstA|Fxrdydx=|rf||1||grl. .

DEFINITION 8.4.2. We call i the convolution of f and g, and denote it by fxg.

Convolution of Measures

Let o and A be complex Borel measures on R. Let F': R* = R, by F(z,y) = z+y.
Define the convolution of y and A by

(1 N(E) = (1 x N(F(E)), (8.4.2)
for all Borel set F in R.
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THEOREM 8.4.3. The convolution i % A defines a complex Borel measure on R.

Proof. Since F is continuous, F~'(E) is a Borel set in R%. Recall that Fubini’s
Theorem applies on positive o-finite measures. We will first show that px A defines
a complex Borel measure. It will follow that p * X is well-defined.

By polar decomposition (6.3.1), there are Borel measurable hy € L*(p), hy € L*(N),
such that
dp = hy djp| and dX = hod|)|,

with |hy| = 1, p-a.e., and |hy| = 1, A-a.e. Thus, for all Borel set B in R?,
N = [ 2 de= [ ([ 1)) )it i)

= [ ([ e et ai) ) dleo)

Also, because |xp, hihs| < 1, for p-a.e. x and v-a.e. y,

/ g ke A < A, and
R

/ ( / |szh1h2|d|A|> dlul < Il < oo.

By Fubini’s Theorem (8.2.5)(c), xp,h1hs € L*(ux ). Define h(x,y) := hi(x)ha(y).
Then, h € L'(R?) is Borel measurable and |h(x,y)| = 1, (|u] x |\|)-a.e. More
importantly,

(4 x N)(B) = / xshd(a] x ) (3.4.3)

shows that p x X is indeed a complex Borel measure. *

Finally, if {E,} are disjoint Borel sets in R, then {B, := F~'(E,)} are disjoint
Borel sets in R%. Consequently, p * \ satisfies o-addivity and defines a complex
Borel measure on R. [ ]

REMARK 8.4.4. Observe that |u| * |[A\| = |u* A| by Polar decomposition. Also,
all open sets are o-compact because the collection {(a,b) : a,b € Q} is a basis for
R. Since |g|, |A|, and |p* A| are finite on all Borel sets, i, A, and p* A are regular
complex Borel measures.

THEOREM 8.4.5. The convolution px X\ is a unique complex Borel measure v on
R such that

/R Fdy = /R /R F@ + ) du(z) dA(y), (8.4.4)
for all f € Cy(R).

3By now, we should be able to prove that easily by: Theorem (1.6.8), Monotone Convergence
with splitting, or Dominated Convergence.
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Proof. Define L: Cy(R) — C by

—AAf(x+y)du(x)dA(y)- (84.5)

We will show that L is a bouned linear functional on Cy(R). From equation (8.4.3),
for all f € Cy(R), with || f]|s < 1, by Holder’s inequality,

[ [t ine i@ anm| < [ [ 15+ plduieda)

< [lplll[AF < oo

Therefore, ||L|| < ||u]|[|A]|. By Riesz Representation Theorem of bounded lin-
ear functionals over C, Theorem (6.5.6), there is a unique complex Borel measure
v on R such that

= /Rf dv. (8.4.6)

We will show v = p x A\. Suppose E is an open set in R. By inner regularity, there
is an increasing sequence of compact sets { K, }2°, in E such that (J7, K, = E.
Moreover, by the Urysohn’s Lemma (2.2.11), there is f,, € C.(R) C Cp(R) such
that xk, < fu < x&, fn / xE&. Hence, equations (8.4.5) and (8.4.6) give

/R fudv = / / Fulz + )b, 5) dlul(z) A ()
_ /R /R (£ 0 F)dp(z) dA(y). (8.4.7)

By Monotone Convergence on both sides of equation (8.4.7),

lim fndy_hm//fnoF du(z) d(y)

n—oo n—oo

// (x o F) du(x) dA(y)

/R Xr-1 ) d(p X A)
= (px A)(E).

Hence, v = i+ A on all open sets. Finally, since |v| and |p* A| are finite measures,
by outer regularity, v(E) = (u* A)(E) on all measurable sets E. [

REMARK 8.4.6. The motivation is to see that || f * g|| < || f|lllgll and || * A|| <
llel[ Al in L*(R) and M (R). If we view x as a multiplication on these Banach
spaces, then they become algebras. In general, a Banach algebra is a Banach space
B with || - || and * such that (B, *) is an algebra (not necessarily commutative),
and ||z x y|| < ||z||||y|| for all z,y € B.

Note that (M (R), *) is commutative. Moreover, there is a unit in M (R), by

5,(E) = 1, oeFE,
? o 0, else.

It is not hard to see d, * u = u.
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Chapter 9

The Fourier Transform

9.1 Formal Properties

DEFINITION 9.1.1. Let f,g € L'. We define the convolution of f and g by

(f*g)(z /f r—y)g(y)dy, z€R, (9.1.1)

and the Fourier transform of f as

f(@t) = V%/ﬂ@f(m)e_m dz, teR. (9.1.2)

Sometimes we also call the map F: f +— f the Fourier transform.

REMARK 9.1.2. Observe that | f(t)] < \/%Hle, forallt € R. Thus, F: L' — L*
is a bounded linear translation. Hence, we can show that it is uniformly continuous.

DEFINITION 9.1.3. A function ¢: R — C is a character if |p(t)| = 1 and ¢(s +
t) = o(s)e(t), for all s,t € R. In particular, ¢ is a homomorphism from the
additive group (R, +) to the multiplicative group (C\{0},-). Hence, for all a« € R,
T > €97 is a character.

PROPOSITION 9.1.4. Elementary Properties of the Fourier Transform
(a) If g(x) = € f(x), then §(t) = f(t — ).

(b) If g(x) = f(x — @), then §(t) = e f(1).

() If f.g € L\(R), then J—(f g) = f

(d) If g(x) = f(=x), then §(t) = f(t).

(¢) For X0, if g(x) = (%), then §(t) = Af(\).

(f) If g(x) = —izf(z) and g € L', then f is differentiable and f'(t) = §(t).

\_/

—
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Proof. (c¢). By Fubini’s Theorem (8.2.5) and translation invariance,

)
e r/(m =ty )
//fx— Sy )e’iytdyd:z:
:m/Rf(x Je " da / ”’tdy
F®)(t)

(f). Consider %(fA(t +h) — f(t)), h # 0. Observe that by Hélder’s inequality,

-
—(e™ = 1) f(x
JAHGEEE
and +(e”"* —1)f(x) € L'. By (a) and linearity,

(At = 7(0) = 7 (7w - @) ) 0

2
d < Sl < oo,

Sl

=7 (G- nr@) o, (913

Note that the RHS of equation (9.1.3) is valid and well-defined. Then, given any
sequence h, — 0,

lim — (e~ — 1) f(z) = ~[e-v7]

n—oo fi,,

By sequential continuity of F,*

im - (7t ) = 70) = F( Jim G = 1) ) @)

= Flg)(1). (9.1.4)

Since equation (9.1.4) holds for all sequence h,, — 0, it holds for h — 0. Therefore,
by the definition of derivative,

A~

ft)=g(), teR ]

Other properties can be proved by direct substitution. |

REMARK 9.1.5. Here are some basic observations of the Fourier transform: By
(a) and (b), it converts multiplication by a character into translation, and
vice-versa. By (c), it converts convolutions to pointwise products. Property
(f) shows that it converts differentiations to products with ti.

'We can also use Dominated Convergence. Since |- (e “thaz 1) f(x)| < |zf(x)| and g € LY,
we can carry the limit inside the integral, without contlnulty of F and L.
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The Fourier Transform

9.2 The Inversion Theorem

In this section, we are working toward the inverse of the Fourier transform. We
will first characterize the range of F. To prepare this, we need a continuity result
for translation.

PROPOSITION 9.2.1. Let f: R - C, y € R, and 1 < p < 0. Define the translate
of f by fy(x) == f(x —y). If f € LP, the map y — [, is uniformly continuous
from R to LP.

Proof. Given ¢ > 0, by density of C.(R) in LP(R), p < oo, there is g € C.(R) such
that ||f — g||, < e. Also, there is [—A, A] such that supp(g) C [-A, 4], for some
A > 0. Thus, g is uniformly continuous on [—A, A] and g = 0 outside. By uniform
continuity, there is 0 < § < min{1, A}, so that for all y, z € R with |y — z| < 0, we
have [g(y) — g(2)| < (34)~'/Pe. Then,

A4S
A\g<x—y>—g<x—z>|pdm=1 9(z —y) — gz — =) dz

A—6
A+é p
< / ((3A)1/p5> do
—A-6
= (3A)71eP(2A +0) < &P,
Thus, ||g, — g.||, < €. Finally by A-inequality,

||fy - szP = ||fy — Gyt Gy — 9T gz — fz”p
<\fy = gyllp + 19y — g:llp + g = fllo
< 3e,

whenever |y — z| < 0. Therefore, y — f, is a uniformly continuous map from R to
LP. [ |

PROPOSITION 9.2.2. If f € L', then f € Co(R) and || f||o < =Sl

Proof. Inequality is shown in Remark (9.1.2). For the continuity of f ,let t, — ¢
in R. Note that for all n,

|[f (@) (e — )| < [2f(2)].

So, f € L'(R). By Dominated Convergence,

lim |f(t,) — f(8)] = lim ——

n—00 n—00 \/27 | JR
1 . ,
= lim f(z)(e ™" — e ") da
o= [ Jim sto )
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The Inversion Theorem

By sequential continuity, f is continuous from R to C. To see f € Cy(R), consider

e~™ = —1. By translation invariance and change of variable,
/f 711513 7171' dx
\/ 27
—zt (z4m/t) dax
\/27T/f
1 T _it
=—— r——)e "da
= [ re=T)
Hence,

t /7 / fﬂ'/t e dxa

and we conclude |2f(t)| < V%—ﬁﬂfo—fw/t\h. By Proposition (9.2.1), the map y — f,
is uniformly continuous. Therefore, as t — +oo, | f(t)| — 0. [

DEFINITION 9.2.3. Let H(t) := e~ !l. For A\ > 0, define

1 . 2 A\

REMARK 9.2.4. Note that 0 < H(A) < 1 and H()\t) — las A — 0. The
last equahty comes from [° H(At)e™ dt = -, and f H(\)e dt =

A—ix? )\—Hz
Moreover, \ﬁ fR hy(z)dzx = 1.
LEMMA 9.2.5. Let f € L', then
fxhy)(x /H (At) ””tf (9.2.2)

Proof. By definitions,

Frhy)(z /f:z— Vha(y
/f:r </H)\t ”ydt>dy

m//fx— H(\)e'™ dt dy.

Note that for each z, f(z—y)H(At)e'™ € L'(m(t) xm(y)). By Fubini’s Theorem
(8.2.5), we can switch the order of integrations. Also, ¢ = e~*@=¥) . ¢ Hence,

(f*h/\ /H )\t (r/fx_ zt(x Y) dy> ztacdt
=/HWWW@&. -
R
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LEMMA 9.2.6. If g € L™ and g is continuous at © € R, then

lim f(g *hy) (@) = g(x). (9:2.3)

Proof. Recall that f fR x)dz = 1. Also, note that for A\ > 0,
1, =z 1 2 1
Zhi(Z - il
A3 =3 \/><1 + 5 )
\/> 2y (@).

Vg—w(g*hx)(x)—gﬂc f/ / z)ha(y
r/ (2))hay) dy

- L [t~ g<x>>§h1<§> dy
x—\s) — g(z))hi(s) ds,

Now consider the following:

=7

where the last equality is given by change of variable and translation invariance.
Now, suppose A, — 0. Since |g(z — As) — g(x)| < 2||g||o, and hy € L', by
Dominated Convergence,

lim (g hy)(x) —

Tim \ﬁ lim (g(z — Ans) — g(x))hi(s)ds

I
g ,/QW/RnAoo

—0. (9.2.4)

Note that the continuity of ¢ is used in carrying the limit inside g(x— A, s). Finally,
since equation (9.2.4) holds for all \,, — 0, it also holds for A — 0. [

LEMMA 9.2.7. Let 1 <p < oo and f € LP. Then

lim
A—0

(f*hy)—f]| =0. (9.2.5)

p

1
V2T
Proof. Step 1: Observe that hy € L9, where ¢ is the exponent conjugate to p,
q € [1,00]. By Holder’s inequality, for all x € X,

(Fem)@) = == [ = pha)ay < 1Ll < .

Hence, (f(x —y) — f(2))hi(y) € L*(m(y)). By Jensen’s inequality (3.1.3),

p

L e - ~ F(@)haly) dy

Veor

_ ’\/%/R(f(x—
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The Inversion Theorem

p

— f(@)ha(y)] dy

< -
27 Jr
< jﬁ / Fa—y) — f@Ph@) dy.  (9.26)

Step 2: Integrating equation (9.2.6) over z, we see that

Hx/127r \/g//’fx— — f(@)Pha(y) dydz.  (9.2.7)

Recall that f € LP. Thus, by Holder’s inequality, |¢%f(x —vy) — f(z)Pha(y) €
L*(m(y)). By Fubini’s Theorem (8.2.5)(c), we can switch the order of integra-
tions in inequality (9.2.7).

(f*hy) —

Step 3: Define g: R — [0, 00], given by
0= [ 1@ =9 - )l d =115, - f13 (9.2.8)

Then, we have

(f % hy) — (9.2.9)

Hx/127r ZS \/IQ?/RQ(?J)h/\(y) dy.

Observe that [|gllec < [Ifyll5 + [IflIZ < 2|[f] < co. Thus, g € L>. Moreover,
since y — f,, is uniformly continuous in L?, g is continuous on R.

Step 4: Finally, note that ¢(0) = 0, by Lemma (9.2.6),

1
lim —— ha(y) dy = lim
o Rg(y)x()y ALO\/%/

_?i%m/ 0= 5)ha(s) ds
= lim — (g*h,\)()

y))ha(—y) dy

A—=0 4/2
=¢(0) = 0.
Therefore, equation (9.2.5) follows from equation (9.2.9) as A — 0. [
THEOREM 9.2.8 (The Inversion Theorem). If f,f € L', and
1 A .
T) = —— t)e'' dt, 9.2.10
ote) = == [ F0) (9:2.10)

then g € Co(R) and f(x) = g(x) for m-almost every x € R.

Proof. By Lemma (9.2.7),

=0.
1

lim
A—0

fxhy) = f

L
V21
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The Fourier Transform

Pick a sequence A\, — 0. Then, {\/#27(]‘ * hy, )} is L'-convergent to f. By Lemma
(3.2.8), there is a subsequence {\,, } such that,?

Lt (f % b, ) (@) = f(0), (9.2.11)

2 k—oo

for m-almost every € R. On the LHS of equation (9.2.11), by Lemma (9.2.5)
and Dominated Convergence,

fz) = lim (f * hy,, )(2)

2 k—oo "k

1 R
= lim [ H\,t)e®t f(t)dt
5= Jm [ HOWOE ()

MAJL%HAt)lIf()

= E /R et f (1) dt
= g(z),

for m-almost all z € R. Finally, note that f € L' and for m-almost all x € R,

1 £ —ixt _ R
=) = —= [ Jetar = F(a).
By Proposition (9.2.2), g € Cy(R). ]

COROLLARY 9.2.9 (The Uniqueness Theorem). If f € L' and f =0 a.e., then
f=0a.e.

Proof. Simply let f = 0 in equation (9.2.10). Then f(z) = g(z) = 0, m-a.e. This
is saying the Fourier transform as a linear map is injective. |

9.3 The Plancherel Theorem

Since m(R) = oo, L? ¢ L', and the definition of Fourier transform cannot be
applied on all f € L2. However, if f € L* N L2, then it turns out that f € L2
and || f]|2 = ||f]l2. In other words, F: L' N L? — L? is a linear isometry. In this
section, we want to extend the Fourier transform to an isometry from L? to L2
This extension is sometimes called the Plancherel transform.

THEOREM 9.3.1 (Plancherel’s Theorem). If f € L' N L?, then feL? and
| fll2 = || fll2- Moreover, F extends uniquely to an Hilbert space isometric isomor-
phism from L? to L?.

2The main reason we are using subsequence here is to pass L'-convergence to almost every-
where pointwise convergence, then apply Dominated Convergence on the integral. Hence, it is
enough to pick one sequence.
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The Plancherel Theorem

Proof. Step 1: Suppose f € L' N L. Define f(z) := f(—z) and g := f f. Then,

= [ #e=witn= [ ra=ni=ay

/fx+8 s)ds = (f_u, f)r2

Step 2: Recall that the maps « — f, and (-, y) are continuous. Thus, g: R — C
is a continuous map. Also, the Cauchy-Schwarz inequality gives

l9(@)] = [{far IS 1 all2 | Fll2 = 1713

Hence, g is bounded. Moreover, by the Fubini’s Theorem (8.2.5),

Jlalde=[| [ s+ 0T

< /R/Rf(w+y)|f(y)ldydx
= [+ nlds [ 176l

= [lfI} < oo

dzx

We conclude that g € L1.
Step 3: Since g € L', by Lemma (9.2.5),

(g% hy)(0 / H(\t)§ (9.3.1)

On the LHS of equation (9.3.1), since g is bounded and continuous, by Lemma
(9.2.6),

lim(g * h,)(0) = V2mg(0) = v2r| 15 (9.3.2)

On the RHS, observe that by the Fubini’s Theorem,

m/(/f“y )i

/fa:—i—y szry)d/ ztydy

= f(1) ~/Rf y)eitv dy
_ Vo |f (o)

Given any sequence A, N\, 0, we have H(A,t) /1. By Monotone Convergence,

Q

im [ HOWg ()dt:/ lim H (M 0)§(1) dt

An—0 R An—0

121



The Fourier Transform

= vor [ |fwar
— V2l 9.3.3)

Hence, equations (9.3.2) and (9.3.3) show that ||f|> = ||f|2, and f € L2.

Step 4: For the extension part, recall that L' N L? is dense in L? because of simple
functions. We will first show that Y := F(L'*NL?) is dense in L2. By continuity, it
is equivalent to show Y+ = {0}. For all @ € R, A > 0, define g, () := H(\z)e™*".
Then, by definition (9.2.3),

F(Gap)(t) = \/12? /R H()\x)em(o‘ft) dz = hy(a —t).

Since g, € L' N L% hy(a —t) € Y. Now, suppose w € Y+. By orthogonality,

(hy + ) (x) = / (e — y)(y) dy
= (ha(z —y),w(y)) > = 0,

for all x € R. Recall that h) is real-valued, by translation invariance,

(w(y), ha(z — y))ze = / w(y)ia(z — ) dy

R

= /Rw(x — s)hy(s)ds
= (wx*hy)(xz) =0,

for all x € R and A > 0. Finally, by Lemma (9.2.7),

1
——(w=xhy) —w

Ver

Consequently, w = 0 and Y is dense in L2.

lim
A—0

=m0~ =0

Step 5: To summarize, F: L' N L? — Y maps a dense subspace in L? to a dense
subspace in L? isometrically. Now, we extend F: L? — L? naturally by

F(f) = lim F(fn),

n—oo

2
where f, € L' N L2 and f, 2> f. Note that such F is well-defined, unique, and
continuous by sequential limit and isometry. Moreover, given any g € L?, there is

fn € Y such that f, LN g. By isometry, F(f,) LN g, where F(f,) = fn. Since
{fa} is L*-Cauchy, f, LN f € L% Then,

F(f) = lim F(fn) =g

n—oo

By Proposition (4.5.2), F is a Hilbert space isometric isomorphism. |
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The Plancherel Theorem

COROLLARY 9.3.2. Let F: L?> — L? be the Fourier transform. Then, the follow-
ing symmetric relations hold: For all f € L?, with f := F(f),

IF(fxiaa) = fllz =0, (9.3.4)

and

IF(FXieam) = fll2 =0, (9.3.5)
as A — oo.

Proof. By isometry and Dominated Convergence,
1f = F(fxaalle = IF(f = fxiaa)l
=|f = fxraallz =0,
and
If = F 7 (Fxieaa)lle = IF (= Fxieaa)ll
=|f = fxiaallz =0,

as A — oo. [ |

COROLLARY 9.3.3. Suppose f € L* and f € L', then
f(x)z/f(t)emdt, m-a.e.
R

Proof. From Corollary (9.3.2), we see that |FX(f) = fll = 0, and F~1(f) = J,
m-a.e. Since f € L', the Inversion Theorem (9.2.8) gives

f(x)—/Rf(t)emdt, m-a.e. [

REMARK 9.3.4 (Important Difference between L' and L?). If f € L', then
the f(t) is defined for all ¢ € R in definition (9.1.1). However, if f € L?, the
Plancherel Theorem defines f uniquely as an element in the Hilbert space L?. In

other words, f(t) is only defined almost everywhere, not as a pointwise function
on R.
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Appendix A

Hamlos’ Approach in the
Construction of Measures

A.1 Preliminaries

DEFINITION A.1.1 (Ring). Let X be a set. A set R C P(X) is a ring if for all
EFeR,wehave EUF€eRand E\FeR.

EXAMPLE A.1.2. Let Q = {[a,b) C R: —00 < a < b < 00} and R denote the
collection of finite unions of elements in (). Then R is a ring.

PROPOSITION A.1.3. If £ C P(X), then there ezists a unique ring R(E) such
that € C R(E) and if R is another ring such that € C R, then R(E) C R.

Proof. Define Q :={R C P(X) : R is aring and £ C R} and define
RE) =[] R
REQ

We will show that R(E) is a ring. Let E, F € R(E). Then E, F € R for all rings
R in €. Since each R is a ring we have that E U F € R and E \ F € R, which
implies that EU F € R(E) and E \ F' € R(E). Hence, R(E) is a ring.

Since £ C R for each R € €, it follows that £ C R(E). Now suppose that R is a
ring such that £ C R. Then, R € Q and R(E) C R.

For the uniqueness, suppose that R(€) and Ry(E) are two such rings that satisfy
the required properties. It follows that R1(€) C R2(E) and Ry(E) C R4(E).
Hence, R1(€) = Ra(E). |

EXAMPLE A.14. If Q = {[a,b) CR: —00 < a < b < oo}, then R(Q) is given by
all finite unions of elements in ().

DEFINITION A.1.5 (o-ring). Let X be a set. A set S C P(X) is a o-ring if

i. Sis aring.
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Preliminaries

ii. if EhEQ, ... € S, then Ujoil E] €S.
THEOREM A.1.6. If X € S for a o-ring S, then S is a o-algebra on X.

Proof. First, by assumption we have that X € S. Next, let & € §. Then since
X eSand Sisaring, E= X\ E € 8. Thus, S is closed under complements.
Finally, let F4, Es, ... € S. Then by definition of a o-ring we have that U;il E; e
S, and therefore S is closed under countable unions. Hence, S is a o-algebra. W

DEFINITION A.1.7. Let £ C P(X). We denote S(€) the smallest o-ring con-
taining £ and we call S(£) the o-ring generated by €£.

DEFINITION A.1.8 (Monotone class). A non-empty subset M C P(X) is
called a monotone class if

i. M is closed under unions of increasing sequences.

ii. M is closed under intersections of decreasing sequences.

DEFINITION A.1.9. Let £ C P(X). Then M(E) is the smallest monotone class
containing £ and we call M(&) the monotone class generated by E.

THEOREM A.1.10. If R is a ring, then M(R) is a o-ring.

Proof. First, if M is a monotone class and a ring, then M is a o-ring. To see this,
let £y, Es, ... € M, and for each n € N, define

ﬂ:O@
j=1

Thus {F,}5°, is an increasing sequence and if M is a monotone class, then
Unsy F € M. Since U2, F = U2, Ej, we have that (J72, E; € M. Hence,
M is closed under countable unions and it is a o-ring.

Next, we show that M(R) is a ring. For each F' € M(R), define K(F') to be
K(F)={E:E\F,F\E,EUF € M(R)}.

Note that if F' € R, then for all £ € R, E € K(F). We claim that K(F) is a
monotone class. To see this, suppose that Fy, Fy, ... € K(F) with Fy C Ey C
E3 C .-+ and let B :=J;Z, ;. We then have that

o

E\F =|J(E;\F).

=1

Since E; \ F € M(R), by definition of K(F), it follows that £\ FF € M(R).
A similar argument shows that F \ £ € M(R) and F UE € M(R). Thus,
K(F) is closed under unions of increasing sequences. Similarly, one can show that
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K(F) is closed under intersections of decreasing sequences, and therefore K (F) is
a monotone class.

We have seen that if F' € R, then R C K(F') and since K (F') is a monotone class,
it follows that M(R) C K (F').

If E € K(F), then by symmetry, F € K(E). Also, we note that if £ € M(R)
and F' € R, then F € K(E). If E € M(R), then R C K(E). We conclude that

Fe M(R) = M(R) C K(F).

Thus, if £ € M(R), then E € K(F) and thus F\FE € M(R) and EUF € M(R),
by the definition of K(F'). This means that M(R) is a ring, and by the first part
of the proof, it follows that M(R) is a o-ring. [ |

THEOREM A.1.11. If R is a ring, then S(R) = M(R).

Proof. From the previous theorem, we have that M(R) is a o-ring such that
R C M(R). Since S(R) is the smallest o-ring containing R, it follows that
S(R) € M(R). But a o-ring is also a monotone class and since M(R) is the
smallest monotone class containing R, it follows that M(R) C S(R). |

A.2 Measures

DEFINITION A.2.1 (measure). Let R be a ring. A measure on R is a function
p: R — [0, 00] satisfying

i u(@)=0.

ii. if By, Fs,... are pairwise disjoint elements in R and if U;’il E; € R, then
(U2 By) = D252, u(Ey).

EXAMPLE A.2.2. Take Q = {[a,b) CR: —o0 < a < b < oo} and let R(Q) be the
ring generated by ). Then there is a measure p such that pu([a,b)) = b —a. We
will give a construction of . For now, define ¢: Q@ — [0,00), by

o(a,b) =b—a.

LEMMA A.2.3. If [a,b] C Uj_(aj,b;), then b—a <377 (bj — a;).

LEMMA A.2.4. IfI1,15,... € Q are pairwise disjoint and P := U(;il I; € Q, then
p(P) =27 e(1;).

Proof. First suppose we have P = [a,b) and I; = [a;, b;). Given € > 0, we have
o0 o0 e
la,b—¢] C P = UIj C U(aj - §7bj).
j=1 j=1
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By compactness of [a,b— ¢] and the Heine-Borel property, there is an N € N such
that

N
£
[CL,b - 5} C U(a’j - gvbj):

and by the preceding lemma it follows that

(b; —a; + Zb—a]

Jj=1

NE

b—a—e<

<.
Il
-

WK

(bj — aj) +e.

<.
Il
—_

Thus we have that o(P) =b—a <377 (b — a;) + 22 = > 2, ¢(;) + 2¢. Since
it holds for all € > 0, we obtain

< ZSO(IJ)

To establish the reverse inequality, fix NV € N. Then we see that

N
UL cP=lab)
j=1

Assume that a; < ay < --- < ay. By disjointness we have b; < a;41, a < a;, and
by <b. Thus,

ng =(b1—a1)+ (by—az)+ -+ (by —an)

< (ay—a1)+ (a3 —az)+ -+ (ay —an—1) + (by — an)
:bN—algb—a
= ¢(P).

As N — oo we obtain

o0

> ell) < (P)

and therefore o(P) = > 72, (1;).

Next we show that ¢ extends uniquely to finite unions of sets in @, i.e., to R(Q).
Take
PhPQ,...,PnGQ and 51,527...,Sm6Q

as pairwise disjoint sequences and assume £ = Uj_; P; = UZ|5;. Then let

Py =PiNs,.
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We note that P;; € () and by the preceding argument we have that

and so
}:Mﬂﬁ= > e(Pu).

But the same number holds for the sequence S; = U;‘lejyl because from the result
that ¢(S)) = >_7_, ¢(Pj1) we obtain

PIECIED PR

Now we can define p(E) = »77_, ¢(P;) for any disjoint sequence P; such that
E = Uj_P;. Now what remains is to show that u is countably additive. Let
Ei, Es, ... € R(Q) be a sequence of pairwise disjoint elements and F = U2 Ej €
R(Q). Write

Ej = U ]l,j~
=1

Let’s assume first that £ € Q. Then by our lemma

For the general case E' € R(Q), write

m

E=|]JI, where I,€Q.

s=1
We have that
I.=I,NE=1InN (U‘;‘;lEj)

I

<
=~
D
S

From the above work, we see that
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and summing over all the s we get

We recall that £ = |J.-, I, and

m m m Ty

E; = nE)=Junwz ) = nny)

s=1 s=1 s=11=1

which represents E; as a disjoint union, so

(2) =33 e(l.n L.

s=1 [=1

On the other hand we have that p(E) =", ¢(I,) and
[,NE=1I,=I,n (U2, U2 1)

From ¢ being countably additive on @), we get that

and summing over s we obtaine

Thus, we conclude that p is countably additive on R(Q). Next, we want to extend
p to the o-ring M(R) where R = R(Q). [ |
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DEFINITION A.2.5 (Hereditary o-ring). Let R be a ring. Let H(R) denote the
set of all ' C X such that Ey, Ey,... € R and £ C 2, Ej. We call H(R) the
hereditary o-ring generated by R.

DEFINITION A.2.6 (Outer measure). An outer measure v on H(R) is a set
function v: H(R) — [0, oo] satisfies the followings:

i. If B,F e HR) and E C F, then v(F) < v(F).
ii. If By, Fy,... € H(R), then V(U;il EJ> < Z]Oil V(Ej).
iii. v(@) =0.

THEOREM A.2.7. Let R be a ring and u a measure on R. Then p* : H(R) —
[0, 00] defined by

wwyﬂﬁ{z)ﬂm:@eRijJ@}
j=1 Jj=1
is an outer measure. Moreover, if E € R, then p*(E) = u(E).

Proof. Property iii. is included in the last sentence because @ € R. For property
i., suppose E,F € H(R), and F C F. By the hereditary property there are
F,F,, ... € R such that

EchGﬂ.

j=1

By taking infimum of sums with measures of such F}’s we conclude

i (B) < 1*(F).

For property ii., consider Ey, E,... € H(R) and let E := |J;Z, Ej;. If for some
Jj € N, u*(E;) = oo, then by monotinicity in property i., we have p*(E) = oo.

Thus suppose p*(E;) < oo for all j € N. By definition of p*, given ¢ > 0, there
are sets Ij 1, Fjs,... € R such that

Ej - UEj’l
=1

and .
. €
W (B + 55 > > B,
=1

for all j > 1. Note that £ C U2, E; C Ujy-, Ejy- Since p*(Ejy) = p(£y,) for
E;; € R, we see that

pr(E) <Y i (E) = w(Ey)
ji=1 ji=1
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(o) i} c o0 .
< (B + )= S W) e
j=1 J=1
Now taking € 0, andwe see that
w(E) <Y wi(E)).
j=1
We conclude that u* is an outer measure. |

A.3 o-Finite Measures

DEFINITION A.3.1. A measure i on aring R is called o-finite if for each £ € R,
there are F1, By, ... € R with E C U;’il E; and p(E;) < oo for all j > 1.

DEFINITION A.3.2. Let p be a measure on a ring R. A set £ € H(R) is p*-
measurable if for all A € H(R),

pH(A) = g (AN E) + p*(An EY).

THEOREM A.3.3. Let i1 be a measure on a ring R. The collection M of all y*-
measurable sets is a o-ring containing R. Moreover, restricting p* to M defines
a complete measure.

Proof. We first prove that M is a ring. Let E, F € M. For all A € H(R), then
since F is p*-measurable,

pH(A) = (AN E) + p* (AN E°).
But since AN E € H(R) and AN E° € H(R), we also have
p(ANE) = (ANENF)+p (AN ENFY),

and
W (ANEY) = (ANENF) +u (AN E° N FY).

Adding these last two expressions gives

p(A) = (ANENF) +u (AN ENFY)
+ U (ANECNF)+ p (ANE°NF°).

Since AN(EUF) € H(R), replacing A by AN (EUF) gives
pP(AN(EUF) = (ANENF)+ " (ANENF) + p*(ANE“NF).
So comparing these two expressions we have
pw(A)=p (AN (EUF))+u (AN E°NFY)
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= (AN(EUF))+u (AN (EUF)°).

Thus we have shown that £ U F € M. Replacing A by AN (E N FY) gives that
E\ F=FEnNFYe M. Therefore, M is a ring.

To show that M is a o-ring, take Ei, Fs,... € M pairwise disjoint and let £ =
UjZ, £j. We then have

(AN (B UEy)) =p* (AN (EyUEy) N Ey) + (AN (B, U Ey) N EY)
=p* (AN Ey) + p* (AN Ey).

By induction, it follows that y*(AN(Uj_, E;)) = 7, p*(AN E;). Hence, for each
n €N,

E;)°)

C:

p(A) = (Aﬂ(U i)+ (An(

<.
Il
—

<.
Il
—

E;)°)

(@

(Aﬁ(U E;)) +pr(An(l

<.
Il
—
.
I
—

= W (ANE)) + p(AnE°).
j=1
Now letting n — oo we obtain
Z (AN E;) + p* (AN E°). (1)
Since (AN E) C U;Z, (AN E;), by subadditivity of u* we have
(AN E) Z (AN E;) (1)

Combining (1) and (f) shows that
W (4) > p (AN E) + (AN EO).
On the other hand, since A C [(AN E)U (AN E*)], we have
pH(A) < (AN E) +p (AN EY)
by subadditivity of u*. Hence,
pr(A) Z W (ANE) + p" (AN ES) = p(A)

and p*(A) = p* (AN E)+ p*(AN E°). We conclude that £ € M and M is a
o-ring.

132



o-Finite Measures

Next, we will show that R C M. For all £ € R, take A € H(R) with p*(A) < oco.
For all € > 0, there are E1, Es, ... € R such that

AcC UE]- and u*(A)+€>Zu*(E])

Also,
WANE) <> 1 (BN E).
j=1
Replacing E by E¢ we obtain
W(ANEY) <3 (B 1 E).

<
Il
—_

Consequently,
p(A) < p(ANE) + pr (AN E)

<Y W(E;NE) + ' (E; N EY)]

Since it holds for any € > 0,
W' (A) = W (AN E) + (AN EC).

Therefore, E € M and M D S(R).

Now, to see that pu* restricted to M defines a measure, denote
= 1| m

We choose F = A in the above calculation. Given a pairwise disjoint sequence
{E;}32, such that F = U;il E;, we have

Z (ENE;)+u (E°NE)) Z“
But since £ = 2, E

< ZM*(EJ)

also holds by subadditivity of p*. Thus we get the desired o-additivity and 7z is a
measure.
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