Math.1330 – Section 6.3 Solving Trigonometric Equations

Recall algebraic equations: some of them have one solution, some of them two solutions, some of them infinitely many, and there are equations that do not have solutions at all.

Linear Equations: 2x + 5 = 1 (One solution!) Quadratic Equations: $x^2 + 4x - 12 = 0$ (Two solutions!)

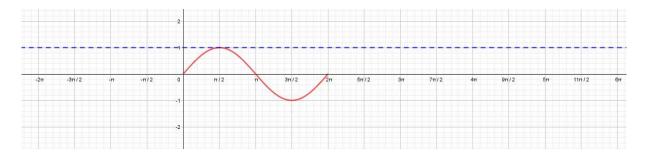
In this section, we will use all of the tools we have learned/covered in our study of trigonometry to solve *trigonometric equations*.

An equation that involves a trig function is called a trigonometric equation. Since trigonometric functions are periodic, there may be infinitely solutions to some trigonometric equations.

Let's say we want to solve the equation: sin(x) = 1

Thinking of unit circle, the first angle that comes to mind is: $x = \frac{\pi}{2}$. So over one period [0,2 π), this equation has only one solution.

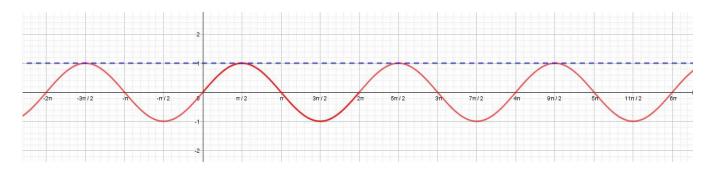
Graphically, the solution of sin(x) = 1 is given by the intersection of the graph of sine with the line y = 1 over the interval $[0,2\pi)$:



Remember the period of the sine function is 2π , thus sine repeats itself after each rotation. Therefore, all possible solutions of this equation are:

$$x = \frac{\pi}{2} + 2k\pi$$
, where k is any integer.

If you graph the big picture of sine function and look at the intersection of line y = 1 with the graph of sine, we get exactly the same solution set:



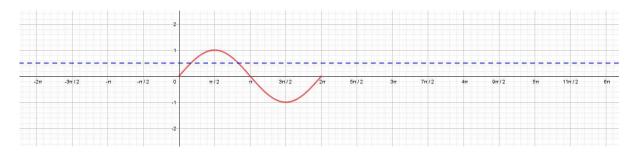
Thus, sin(x) = 1 has infinitely many solutions $\left\{x = \frac{\pi}{2} + 2k\pi, k \text{ integer}\right\}$.

Let's do one more example: $sin(x) = \frac{1}{2}$

On the unit circle, the only angles we get over one period interval $[0,2\pi)$ are:

$$x=\frac{\pi}{6}$$
 and $x=\frac{5\pi}{6}$.

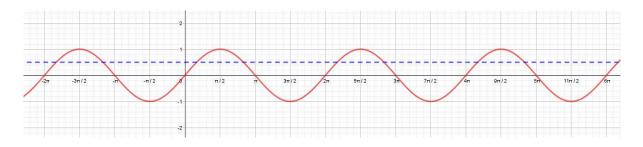
Graphically, the solution of $sin(x) = \frac{1}{2}$ is given by the intersection of the graph of sine with the line $y = \frac{1}{2}$ over the interval $[0,2\pi)$:



Since the period of the sine function is 2π , then all possible solutions of this equation are:

$$x = \frac{\pi}{6} + 2k\pi$$
 and $x = \frac{5\pi}{6} + 2k\pi$, where k is an integer.

If you graph the big picture of sine function and look at the intersection of line $y = \frac{1}{2}$ with the graph of sine, we get exactly the same solution set:



Again, there are infinitely many solutions to this equation.

Recall: For sine and cosine functions, the period is 2π .

For tangent and cotangent functions, the period is π .

Example 1:

a) Solve the equation in the interval $[0,\pi)$: tan(x) = -1

b) Find all solutions to the equation: tan(x) = -1

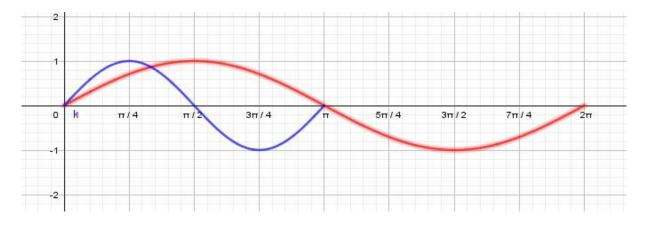
Example 2:

a) Solve the equation in the interval $[0,2\pi)$: $2\cos(x) + 4 = 3$

b) Find all solutions to the equation: $2\cos(x) + 4 = 3$

Remark: If the trigonometric function used in an equation is of the form sin(Bx), cos(Bx) and/or tan(Bx), then the period will change accordingly.

Here are the graphs of $f(x) = \sin(x)$ and $g(x) = \sin(2x)$ over one period:



The solution to sin(x) = 1 is $x = \frac{\pi}{2}$.

The solution to sin(2x) = 1 is $2x = \frac{\pi}{2} \rightarrow x = \frac{\pi}{4}$.

Example 3: Solve the equation in the interval $[0, \pi)$: $\sqrt{2}\sin(2x) - 1 = 0$

Example 4: Find all the solutions to the equation: cos(4x) + 1 = 1.

Example 5

a) Find all solutions to the equation in the interval $[0,4\pi)$: $2\sin\left(\frac{x}{2}\right) = -\sqrt{3}$

b) Find all solutions to the equation in the interval $[0,8\pi)$: $2\sin\left(\frac{x}{2}\right) = -\sqrt{3}$

Example 6. Solve the equation in the interval [0,2): $\cot(\pi x) = 1$

Example 7. Find all solutions of the equation in the interval $[0, \pi)$:

 $2\cos\left(2x - \frac{\pi}{4}\right) = \sqrt{2}$

Example 8. Find all solutions of the equation $4\sin(2x) + 1 = 2$

Example 9. Find all solutions of the equation in the interval $[0,2\pi)$:

 $2\sin^2(x) + 1 = 3$

Example 10. Find all solutions of the equation in the interval $[0,2\pi)$:

 $2\sin^2(x) - 5\sin(x) - 3 = 0$

Example 11. Find all solutions of the equation in the interval $[0,2\pi)$:

 $\tan^3(x) - \tan(x) = 0$

Example 12. Find all solutions of the equation in the interval $[0,2\pi)$: $\csc^2(x) = 4$

Example 13. Find all solutions of the equation in the interval $[0,2\pi)$: $sin^2(x) cos(x) = cos(x)$

Example 14: Let $f(x) = cos^{2}(x) - sin^{2}(x)$.

Find the x-intercepts of this function over the interval $[0,2\pi)$.

Example 15. Without solving the equation, determine the number of the solutions on the given interval:

a) $sin(x) = 1$ over $[0, 2\pi)$	\rightarrow	Number of solutions:
b) $\sin(x) = \frac{1}{4} \operatorname{over} [0, 2\pi)$	\rightarrow	Number of solutions:
c) $\sin(x) = -\frac{1}{5}$ over $[0, 2\pi)$	\rightarrow	Number of solutions:
d) $\sin(x) = -1$ over $[0, 2\pi)$	\rightarrow	Number of solutions:
e) $\sin(x) = 2$ over $[0, 2\pi)$	\rightarrow	Number of solutions:
f) $sin(x) = 1 over [0, 4\pi)$	\rightarrow	Number of solutions:
g) $\sin(x) = \frac{1}{4}$ over $[0, 4\pi)$	\rightarrow	Number of solutions:
h) $sin(x) = 0$ over $[0, 4\pi)$	\rightarrow	Number of solutions:
i) $\sin(x) = -5$ over $[0, 4\pi)$	\rightarrow	Number of solutions:

Example 16. Determine the number of the solutions OVER ONE PERIOD.

a) $2\cos(x) = 1$	\rightarrow	Number of solutions:
b) $4\cos(2x) + 1 = 2$	\rightarrow	Number of solutions:
c) $4\cos(2x) + 2 = 2$	\rightarrow	Number of solutions:

Example 17. Determine the number of the solutions On the Number Line.

a) $\cos(x) = \frac{1}{2}$ \rightarrow Number of solutions:_____. b) $2\cos(x) = 4$ \rightarrow Number of solutions:_____.