Math. 1330 - Section 6.3
 Solving Trigonometric Equations

Recall algebraic equations: some of them have one solution, some of them two solutions, some of them infinitely many, and there are equations that do not have solutions at all.

Linear Equations: $\quad 2 x+5=1 \quad$ (One solution!)
Quadratic Equations: $\quad x^{2}+4 x-12=0$ (Two solutions!)

In this section, we will use all of the tools we have learned/covered in our study of trigonometry to solve trigonometric equations.

An equation that involves a trig function is called a trigonometric equation. Since trigonometric functions are periodic, there may be infinitely solutions to some trigonometric equations.

Let's say we want to solve the equation: $\sin (x)=1$
Thinking of unit circle, the first angle that comes to mind is: $\boldsymbol{x}=\frac{\pi}{2}$.
So over one period $[0,2 \pi)$, this equation has only one solution.
Graphically, the solution of $\sin (x)=1$ is given by the intersection of the graph of sine with the line $y=1$ over the interval $[0,2 \pi)$:

Remember the period of the sine function is 2π, thus sine repeats itself after each rotation. Therefore, all possible solutions of this equation are:

$$
x=\frac{\pi}{2}+2 k \pi, \quad \text { where } k \text { is any integer. }
$$

If you graph the big picture of sine function and look at the intersection of line $y=1$ with the graph of sine, we get exactly the same solution set:

Thus, $\sin (x)=1$ has infinitely many solutions $\left\{x=\frac{\pi}{2}+2 k \pi, k\right.$ integer $\}$.

Let's do one more example: $\sin (x)=\frac{1}{2}$
On the unit circle, the only angles we get over one period interval $[0,2 \pi)$ are:

$$
x=\frac{\pi}{6} \quad \text { and } x=\frac{5 \pi}{6} .
$$

Graphically, the solution of $\sin (x)=\frac{1}{2}$ is given by the intersection of the graph of sine with the line $y=\frac{1}{2}$ over the interval $[0,2 \pi)$:

Since the period of the sine function is 2π, then all possible solutions of this equation are:

$$
x=\frac{\pi}{6}+2 k \pi \text { and } x=\frac{5 \pi}{6}+2 k \pi, \quad \text { where } k \text { is an integer } .
$$

If you graph the big picture of sine function and look at the intersection of line $y=\frac{1}{2}$ with the graph of sine, we get exactly the same solution set:

Again, there are infinitely many solutions to this equation.

Recall: For sine and cosine functions, the period is 2π.
For tangent and cotangent functions, the period is π.

Example 1:

a) Solve the equation in the interval $[0, \pi): \tan (x)=-1$
b) Find all solutions to the equation: $\tan (x)=-1$

Example 2:

a) Solve the equation in the interval $[0,2 \pi): 2 \cos (x)+4=3$
b) Find all solutions to the equation: $2 \cos (x)+4=3$

Remark: If the trigonometric function used in an equation is of the form $\sin (B x), \cos (B x)$ and $/$ or $\tan (B x)$, then the period will change accordingly.

Here are the graphs of $f(x)=\sin (x)$ and $g(x)=\sin (2 x)$ over one period:

The solution to $\sin (x)=1$ is $x=\frac{\pi}{2}$.
The solution to $\sin (2 x)=1$ is $2 x=\frac{\pi}{2} \rightarrow x=\frac{\pi}{4}$.

Example 3: Solve the equation in the interval $[0, \pi): \sqrt{2} \sin (2 x)-1=0$

Example 4: Find all the solutions to the equation: $\cos (4 x)+1=1$.

Example 5

a) Find all solutions to the equation in the interval $[0,4 \pi): 2 \sin \left(\frac{x}{2}\right)=-\sqrt{3}$
b) Find all solutions to the equation in the interval $[0,8 \pi): 2 \sin \left(\frac{x}{2}\right)=-\sqrt{3}$

Example 6. Solve the equation in the interval $[0,2): \cot (\pi x)=1$

Example 7. Find all solutions of the equation in the interval $[0, \pi)$:
$2 \cos \left(2 x-\frac{\pi}{4}\right)=\sqrt{2}$

Example 8. Find all solutions of the equation $4 \sin (2 x)+1=2$

Example 9. Find all solutions of the equation in the interval $[0,2 \pi)$:
$2 \sin ^{2}(x)+1=3$

Example 10. Find all solutions of the equation in the interval $[0,2 \pi)$:
$2 \sin ^{2}(x)-5 \sin (x)-3=0$

Example 11. Find all solutions of the equation in the interval $[0,2 \pi)$:

$$
\tan ^{3}(x)-\tan (x)=0
$$

Example 12. Find all solutions of the equation in the interval $[0,2 \pi)$:

$$
\csc ^{2}(x)=4
$$

Example 13. Find all solutions of the equation in the interval $[0,2 \pi)$:

$$
\sin ^{2}(x) \cos (x)=\cos (x)
$$

Example 14: Let $f(x)=\cos ^{2}(x)-\sin ^{2}(x)$.
Find the x -intercepts of this function over the interval $[0,2 \pi)$.

Example 15. Without solving the equation, determine the number of the solutions on the given interval:
a) $\sin (x)=1$ over $[0,2 \pi) \quad \rightarrow \quad$ Number of solutions: \qquad .
b) $\sin (x)=\frac{1}{4}$ over $[0,2 \pi) \quad \rightarrow \quad$ Number of solutions: \qquad .
c) $\sin (x)=-\frac{1}{5}$ over $[0,2 \pi) \quad \rightarrow \quad$ Number of solutions: \qquad .
d) $\sin (x)=-1$ over $[0,2 \pi) \quad \rightarrow \quad$ Number of solutions: \qquad .
e) $\sin (x)=2$ over $[0,2 \pi) \rightarrow \quad$ Number of solutions: \qquad .
f) $\sin (x)=1$ over $[0,4 \pi) \rightarrow \quad$ Number of solutions: \qquad .
g) $\sin (x)=\frac{1}{4}$ over $[0,4 \pi) \quad \rightarrow \quad$ Number of solutions: \qquad .
h) $\sin (x)=0$ over $[0,4 \pi) \quad \rightarrow \quad$ Number of solutions: \qquad .
i) $\sin (x)=-5$ over $[0,4 \pi) \quad \rightarrow \quad$ Number of solutions: \qquad .

Example 16. Determine the number of the solutions OVER ONE PERIOD.
a) $2 \cos (x)=1 \quad \rightarrow \quad$ Number of solutions:
b) $4 \cos (2 x)+1=2 \rightarrow \quad$ Number of solutions: \qquad .
c) $4 \cos (2 x)+2=2 \rightarrow \quad$ Number of solutions: \qquad .

Example 17. Determine the number of the solutions On the Number Line.
a) $\cos (x)=\frac{1}{2} \quad \rightarrow \quad$ Number of solutions: \qquad .
b) $2 \cos (x)=4$
$\rightarrow \quad$ Number of solutions: \qquad .

