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Math.1330 – Section 8.3    
Hyperbolas 

 
A hyperbola is a conic section formed by intersecting a right circular cone with a 
plane at an angle such that both halves of the cone are intersected. This intersection 
produces two separate unbounded curves that are mirror images of each other. 
 

 
 
 
Definition: A hyperbola is the set of all points, the difference of whose distances 
from two fixed points is constant.  Each fixed point is called a focus (plural = foci). 
 
The focal axis is the line passing through the foci. 
 
Notice that the definition of a hyperbola is very similar to that of an ellipse.  
The distinction is that the hyperbola is defined in terms of the difference of two 
distances, whereas the ellipse is defined in terms of the sum of two distances. 
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As with the ellipse, every hyperbola has two axes of symmetry.  
 

• The transverse axis is a line segment that passes through the center of the 
hyperbola and has vertices as its endpoints.  
 

• The foci lie on the line that contains the transverse axis. 
 

• The conjugate axis is perpendicular to the transverse axis and has the co-
vertices as its endpoints.  
 

• The center of a hyperbola is the midpoint of both the transverse and 
conjugate axes, where they intersect.  
 

• Every hyperbola also has two asymptotes that pass through its center. As a 
hyperbola recedes from the center, its branches approach these asymptotes.  
 

• The central rectangle of the hyperbola is centered at the origin with sides 
that pass through each vertex and co-vertex; it is a useful tool for graphing 
the hyperbola and its asymptotes. To sketch the asymptotes of the hyperbola, 
simply sketch and extend the diagonals of the central rectangle 
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Deriving the Equation of a Hyperbola Centered at the Origin 
 
Let (−𝑐𝑐, 0) and (𝑐𝑐, 0) be the foci of a hyperbola centered at the origin. The 
hyperbola is the set of all points (𝑥𝑥, 𝑦𝑦) such that the difference of the distances 
from (𝑥𝑥, 𝑦𝑦) to the foci is constant, as shown below 
 
 
 
 
 
 
 
 
 
 
 
 
If (𝑎𝑎, 0) is a vertex of the hyperbola, the distance from (−𝑐𝑐, 0) to (𝑎𝑎, 0) is  
𝑎𝑎 − (−𝑐𝑐) =  𝑎𝑎 + 𝑐𝑐.  The distance from (𝑐𝑐, 0) to (𝑎𝑎, 0) is 𝑐𝑐 − 𝑎𝑎 .  
The difference of distances from the foci to the vertex is (𝑎𝑎 + 𝑐𝑐) − (𝑐𝑐 − 𝑎𝑎) = 2𝑎𝑎. 
If (𝑥𝑥, 𝑦𝑦) is a point on the hyperbola, then we can define the following variables: 

𝑑𝑑2 =  the distance from (−c, 0) to (x, y) 
𝑑𝑑1 =  the distance from (c, 0) to (x, y)  

 
By the definition of a hyperbola, 𝑑𝑑2 − 𝑑𝑑1  is constant for any point (x, y) on the 
hyperbola. We know that the difference of these distances is 2a for vertex (a, 0).  
It follows that 𝑑𝑑2 − 𝑑𝑑1 = 2𝑎𝑎 for any point on the hyperbola. We will begin the 
derivation by applying the distance formula. The rest of the derivation is algebraic. 
 

𝑑𝑑2 − 𝑑𝑑1 = ��𝑥𝑥 − (−𝑐𝑐)�2 + (𝑦𝑦 − 0)2 − ��𝑥𝑥 − (𝑐𝑐)�2 + (𝑦𝑦 − 0)2 =  2𝑎𝑎 
 

��𝑥𝑥 + (𝑐𝑐)�2 + 𝑦𝑦2 − ��𝑥𝑥 − (𝑐𝑐)�2 + 𝑦𝑦2 =  2𝑎𝑎 
 
After a lot of algebraic calculations and using 𝑏𝑏2 = 𝑐𝑐2 − 𝑎𝑎2, one can derive 
 

𝑥𝑥2

𝑎𝑎2
−
𝑦𝑦2

𝑏𝑏2
= 1. 
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Basic Horizontal Hyperbola centered at (0,0): 
 
Equation: 𝑥𝑥

2

𝑎𝑎2
− 𝑦𝑦2

𝑏𝑏2
= 1. 

 
Asymptotes: 𝑦𝑦 = ± 𝑏𝑏

𝑎𝑎
𝑥𝑥 

 
Foci: (±𝑐𝑐, 0), where 𝑏𝑏2 = 𝑐𝑐2 − 𝑎𝑎2 
 
Vertices: (±𝑎𝑎, 0) 
Length of transverse axis is 2𝑎𝑎. 
 
Co-Vertices: (0, ±𝑏𝑏) 
Length of conjugate axis is 2𝑏𝑏. 
 
Eccentricity: 𝑐𝑐

𝑎𝑎
  (> 1) 
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Basic Vertical Hyperbola centered at (0,0): 
 
Equation: 𝑦𝑦

2

𝑎𝑎2
− 𝑥𝑥2

𝑏𝑏2
= 1. 

 
Asymptotes: 𝑦𝑦 = ± 𝑎𝑎

𝑏𝑏
𝑥𝑥 

 
Foci: (0, ±𝑐𝑐), where 𝑏𝑏2 = 𝑐𝑐2 − 𝑎𝑎2 
 
Vertices: (0, ±𝑎𝑎) 
Length of transverse axis is 2𝑎𝑎. 
 
Co-Vertices: (±𝑏𝑏, 0) 
Length of conjugate axis is 2𝑏𝑏. 
 
Eccentricity: 𝑐𝑐

𝑎𝑎
  (> 1) 
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Graphing hyperbolas: 
 
To graph a hyperbola with center at the origin:  
 

• Rearrange into the form 
2 2

2 2 1x y
a b

− =  or 
2 2

2 2 1y x
a b

− = . 

 
• Decide if it’s a “horizontal” or “vertical” hyperbola. 

o if 2x  comes first, it’s horizontal (vertices are on x-axis).  
o If 2y  comes first, it’s vertical (vertices are on y-axis).  

• Use the square root of the number under x2  to determine  
how far to measure in x-direction. 

 
• Use the square root of the number under y2 to determine  

how far to measure in y-direction. 
 
• Draw a box with these measurements. 

 
• Draw diagonals through the box. These are the asymptotes.                       

Use the dimensions of the box to determine the slope and                          
write the equations of the asymptotes.  

 
• Put the vertices at the edge of the box on the correct axis.   

 
• Then draw a hyperbola, making sure it approaches the asymptotes smoothly. 

 
• 2 2 2c a b= +  where 2a  and 2b  are the denominators.  

 
• The foci are located c units from the center, on the same axis as the vertices. 

 
 
 
When graphing hyperbolas, you will need to find the orientation, center, values  
for a, b and c, lengths of transverse and converse axes, vertices, foci, equations of 
the asymptotes, and eccentricity. 
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Example 1:  Find all relevant information and graph  1
436

22
=−

yx . 

 
 
 
Vertices: 
Transverse Axis: 
Length of transverse axis: 
 
 
Co-Vertices: 
Conjugate axis: 
Length of conjugate axis: 
 
 
Foci: 
 
 
Slant Asymptotes: 
 
 
Eccentricity: 
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Example 2:  Find all relevant information and graph    
𝑦𝑦2

16
− 𝑥𝑥2

9
= 1. . 

 
 
Vertices: 
Transverse Axis: 
Length of transverse axis: 
 
 
Co-Vertices: 
Conjugate axis: 
Length of conjugate axis: 
 
 
Foci: 
 
 
Slant Asymptotes: 
 
 
Eccentricity: 
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The equation of a hyperbola with center (𝒉𝒉, 𝒌𝒌) not at the origin:   
 

(𝑥𝑥 − ℎ)2

𝑎𝑎2
−

(𝑦𝑦 − 𝑘𝑘)2

𝑏𝑏2
= 1     𝑜𝑜𝑜𝑜     

(𝑦𝑦 − 𝑘𝑘)2

𝑎𝑎2
−

(𝑥𝑥 − ℎ)2

𝑏𝑏2
= 1. 

  
 
To graph a hyperbola with center not at the origin:  
 

• Rearrange (complete the square if necessary) to look like 
  

(𝑥𝑥 − ℎ)2

𝑎𝑎2
−

(𝑦𝑦 − 𝑘𝑘)2

𝑏𝑏2
= 1     𝑜𝑜𝑜𝑜     

(𝑦𝑦 − 𝑘𝑘)2

𝑎𝑎2
−

(𝑥𝑥 − ℎ)2

𝑏𝑏2
= 1. 

 
• Start at the center ( , )h k  and then graph it as before. 

 
• To write down the equations of the asymptotes, start with the equations 

of the asymptotes for the similar hyperbola with center at the origin. 
Then replace x with x h−  and replace y with y k− .  
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Example 3:  Find all relevant information and graph  
(𝑥𝑥−1)2

16
− (𝑦𝑦−3)2

9
= 1 

 
 
 
Vertices: 
Transverse Axis: 
Length of transverse axis: 
 
 
Co-Vertices: 
Conjugate axis: 
Length of conjugate axis: 
 
 
Foci: 
 
 
Slant Asymptotes: 
 
 
Eccentricity: 
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Example 4:  Write the equation in standard form, find all relevant information and 
graph  
 

2799618169 22 =+−− yxyx . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vertices: 
Transverse Axis: 
Length of transverse axis: 
 
 
Co-Vertices: 
Conjugate axis: 
Length of conjugate axis: 
 
 
Foci: 
 
 
Slant Asymptotes: 
 
 
Eccentricity: 
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Example 5:  Write an equation of the hyperbola with center at (-2, 3), one vertex is 
at (-2, -2) and eccentricity is 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 6:  Write an equation of the hyperbola if the vertices are (4, 0) and (4, 8) 
and the asymptotes have slopes 1± . 


