Math 1330 Test 2 Review

Where: CASA Testing Center(s) – Look in your confirmation email **Time:** 50 minutes

Questions: 11 Multiple Choice + 3 Free Response = Total 14

Points: 67 for Multiple Choice Part + 33 Free Response = Total 100

What is covered: All sections of Chapter 4 What to bring: Cougar card

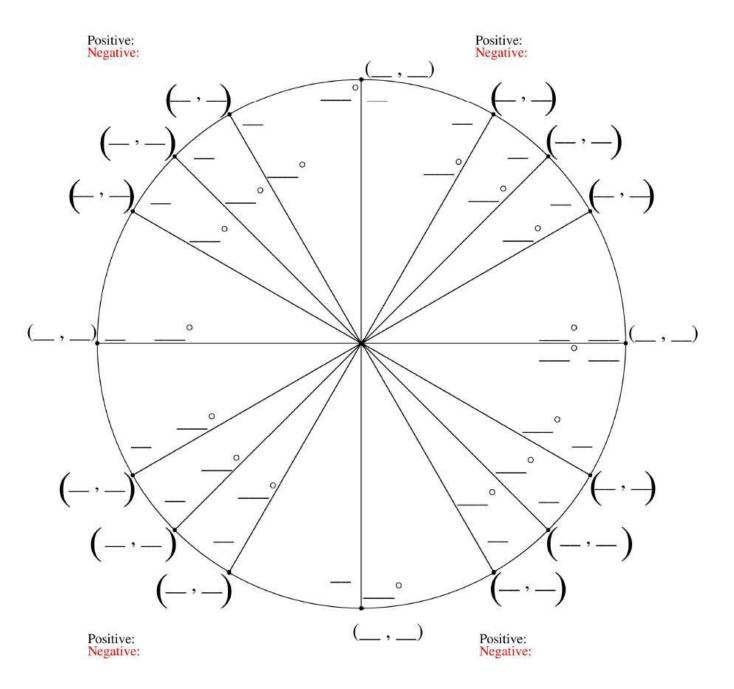
Make up Policy: NO MAKE-UPS!

Plan to be at the testing center 10-15 minutes before your scheduled time. If you are late, then try to reschedule through your CASA account.

If you miss your test, you will get a zero for the test. Your Final exam score will replace ONE lowest score test grade. *No calculators allowed during the test!*

How to study:

- Make sure you do understand all the concepts covered.
- Solve ALL problems on this review sheet.
- Take Practice Test 2 BEFORE your test.
 It is for practice AND extra credit.
 10% of your best score will be added to your Test 2 score.
- Know how to write COMPLETE answers to free response problems. NO skipping steps!


- 1. Convert the following degree measures to radians.
 - a. 120°
 - b. 225°

2. Convert the following radian measures into degrees.

b.
$$\frac{61\pi}{36}$$

KNOW YOUR UNIT CIRCLE!

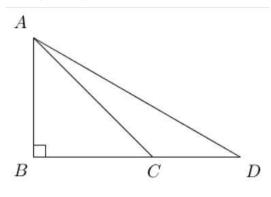
Unit circle will not be provided; make sure you know it!

3. Evaluate the following if possible:

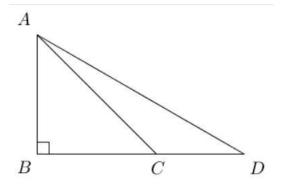
b.
$$\tan\left(\frac{3\pi}{4}\right)$$

- c. sec(150°)
- d. $\csc\left(-\frac{2\pi}{3}\right)$
- e. sin(180°)
- f. cos(90°)
- g. $\cot\left(\frac{\pi}{2}\right)$
- h. tan(90°)
- i. $\tan\left(\frac{3\pi}{2}\right)$
- j. cot(180°)

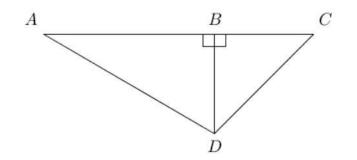
4. A car has wheels with a 10-inch radius. If each wheel's rate of turn is 4 revolutions per second, how fast is the car moving in units of in/sec?


5. Find the area of the sector of a circle with central angle

a. $\theta = 225^{\circ}$ and radius r = 4 ft.


b.
$$\theta = \frac{2\pi}{3}$$
 and radius $r = 30$ in.

KNOW THE SPECIAL TRIANGLES: 30° - 60° - 90° and 45° - 45° - 90°


6. a) In the figure below, angle B is a right angle, $m(D) = 30^{\circ}$ and $m(ACB) = 60^{\circ}$. If AC = 8, find the length of AD.

b) In the figure below, angle B is a right angle, $m(D) = 45^{\circ}$ and $m(ACB) = 60^{\circ}$. If AC = 10, find the length of AD.

c) In the figure below, *BD* is an altitude in the triangle *ABC*, $m(A) = 30^{\circ}$ and $m(C) = 45^{\circ}$. If CD = 20, find the length of *AD* and *AB*.

KNOW TRIANGLE FACTS!

- The sum of the three angles of a triangle add up to 180°.
- If one side of a triangle is longer than another side, then the angle opposite the longer side will have a greater degree measure than the angle opposite the shorter side, and viceversa.
- Pythagorean Theorem: $a^2 + b^2 = c^2$
- 7. In tringle ABC, the sides have length 8, 15 and 17.If A is the smallest angle, find cos(A) and tan(A).

8. Given a triangle *ABC* with right angle *C*, AC = 7 and AB = 10. Find all six trigonometric functions of angle *A*. 9. Let P(x, y) denote the point where the terminal side of an angle θ meets the unit circle. If *P* is in Quadrant IV and $x = \frac{4}{5}$, evaluate the six trigonometric functions of θ .

10. a) Given
$$\cos(\theta) = -\frac{4}{5}$$
 and $\tan(\theta) > 0$, find $\csc(\theta)$.

b) Given
$$\sin(\theta) = -\frac{1}{4}$$
 and $\tan(\theta) < 0$, find $\cos(\theta)$.

11. Simplify the following expressions:

a)
$$\frac{9\tan(x)\cot(x)}{3\sin^2(x)+3\cos^2(x)}$$

b)
$$4sin^2(x) + 4cos^2(x) + 1 + tan^2(x)$$

c)
$$2 \sec(x) \cot(x) + 2 \csc(x) \tan(x)$$

d)
$$5\sin(x)\csc(x) - 2\cos(x)\sec(x)$$