Math 1330 Test 2 Review

Where: CASA Testing Center(s) - Look in your confirmation email
Time: 50 minutes
Questions: 11 Multiple Choice +3 Free Response $=$ Total 14
Points: 67 for Multiple Choice Part +33 Free Response $=$ Total 100

What is covered: All sections of Chapter 4

What to bring: Cougar card
Make up Policy: NO MAKE-UPS!
Plan to be at the testing center 10-15 minutes before your scheduled time. If you are late, then try to reschedule through your CASA account.

If you miss your test, you will get a zero for the test. Your Final exam score will replace ONE lowest score test grade.
No calculators allowed during the test!

How to study:

- Make sure you do understand all the concepts covered.
- Solve ALL problems on this review sheet.
- Take Practice Test 2 BEFORE your test. It is for practice AND extra credit. 10% of your best score will be added to your Test 2 score.
- Know how to write COMPLETE answers to free response problems. NO skipping steps!

1. Convert the following degree measures to radians.
a. 120°
b. 225°
2. Convert the following radian measures into degrees.
a. $\frac{5 \pi}{6}$
b. $\frac{61 \pi}{36}$

KNOW YOUR UNIT CIRCLE!

Unit circle will not be provided; make sure you know it!

3. Evaluate the following if possible:
a. $\sin \left(300^{\circ}\right)$
b. $\tan \left(\frac{3 \pi}{4}\right)$
c. $\sec \left(150^{\circ}\right)$
d. $\csc \left(-\frac{2 \pi}{3}\right)$
e. $\sin \left(180^{\circ}\right)$
f. $\cos \left(90^{\circ}\right)$
g. $\cot \left(\frac{\pi}{2}\right)$
h. $\tan \left(90^{\circ}\right)$
i. $\tan \left(\frac{3 \pi}{2}\right)$
j. $\cot \left(180^{\circ}\right)$
4. A car has wheels with a 10-inch radius. If each wheel's rate of turn is 4 revolutions per second, how fast is the car moving in units of $\mathrm{in} / \mathrm{sec}$?
5. Find the area of the sector of a circle with central angle
a. $\theta=225^{\circ}$ and radius $r=4 f t$.
b. $\theta=\frac{2 \pi}{3}$ and radius $r=30 \mathrm{in}$.

KNOW THE SPECIAL TRIANGLES: $\mathbf{3 0}{ }^{\circ} \mathbf{- 6 0} \mathbf{- 9 0}$ and $\mathbf{4 5}^{\circ}-\mathbf{4 5}^{\circ} \mathbf{- 9 0 ^ { \circ }}$
6. a) In the figure below, angle B is a right angle, $m(D)=30^{\circ}$ and $m(A C B)=60^{\circ}$. If $A C=8$, find the length of $A D$.

b) In the figure below, angle B is a right angle, $m(D)=45^{\circ}$ and $m(A C B)=60^{\circ}$. If $A C=10$, find the length of $A D$.

c) In the figure below, $B D$ is an altitude in the triangle $A B C, m(A)=30^{\circ}$ and $m(C)=45^{\circ}$. If $C D=20$, find the length of $A D$ and $A B$.

KNOW TRIANGLE FACTS!

- The sum of the three angles of a triangle add up to 180°.
- If one side of a triangle is longer than another side, then the angle opposite the longer side will have a greater degree measure than the angle opposite the shorter side, and viceversa.
- Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$

7. In tringle $A B C$, the sides have length 8,15 and 17 .

If A is the smallest angle, find $\cos (A)$ and $\tan (A)$.
8. Given a triangle $A B C$ with right angle $C, A C=7$ and $A B=10$.

Find all six trigonometric functions of angle A.
9. Let $P(x, y)$ denote the point where the terminal side of an angle θ meets the unit circle. If P is in Quadrant IV and $x=\frac{4}{5}$, evaluate the six trigonometric functions of θ.
10. a) Given $\cos (\theta)=-\frac{4}{5}$ and $\tan (\theta)>0$, find $\csc (\theta)$.
b) Given $\sin (\theta)=-\frac{1}{4}$ and $\tan (\theta)<0$, find $\cos (\theta)$.

11. Simplify the following expressions:

a) $\frac{9 \tan (x) \cot (x)}{3 \sin ^{2}(x)+3 \cos ^{2}(x)}$
b) $4 \sin ^{2}(x)+4 \cos ^{2}(x)+1+\tan ^{2}(x)$
c) $2 \sec (x) \cot (x)+2 \csc (x) \tan (x)$
d) $5 \sin (x) \csc (x)-2 \cos (x) \sec (x)$

