## Math 1330 Test 4 Review

Where: CASA Testing Center(s) - Look in your confirmation email
Time: 60 minutes
Questions: 14 Multiple Choice +2 Free Response $=$ Total 16
Points: 82 for Multiple Choice Part +18 Free Response $=$ Total 100

## What is covered: Section 6.3, Chapter 7, Chapter 8

What to bring: Cougar card

Make up Policy: NO MAKE-UPS!

Plan to be at the testing center 10-15 minutes before your scheduled time.
If you are late, then try to reschedule through your CASA account.

If you miss your test, you will get a zero for the test.
Your Final exam score will replace ONE lowest score test grade.

## No calculators allowed during the test!

## How to study:

- Make sure you do understand all the concepts covered.
- Solve ALL problems on this review sheet.
- Take Practice Test 4 BEFORE your test.

It is for practice AND extra credit.
$10 \%$ of your best score will be added to your Test 4 score.

- Know how to write COMPLETE answers to free response problems. NO skipping steps!


## Section 6.3: Solving Trigonometric Equations

1. Solve the following equations over the indicated interval:
a) $2 \sin (x)-4=-3$ over $[0,2 \pi)$
b) $8 \cos (x)-1=-5$ over $[0,2 \pi)$
c) $4 \sin (2 x)=2 \sqrt{2}$ over $[0, \pi)$
d) $6 \cos (4 x)=-3 \sqrt{3}$ over $\left[0, \frac{\pi}{2}\right)$
2. How many solutions are there to the following equations? (You should be able to answer this kind of problem without solving the equations!)
a) $2 \sin (x)=-3$ over $[0,2 \pi)$
b) $3 \sin (x)=-2$ over $[0,2 \pi)$
c) $3 \cos (x)+4=4$ over $[0,2 \pi)$
d) $2 \cos (x)+2=0$ over $[0,2 \pi)$
e) $2 \cos (x)+6=4$ over $[0,2 \pi)$
f) $3 \sin (x)+3=0$ over $[0,2 \pi)$
g) $3 \cos (x)+4=8$ over $[0,2 \pi)$

## Chapter 7: Solving Triangles, Law of Sines, Law of Cosines and Vectors

3. In a right triangle ABC with right angle C , angle A measures $15^{\circ}$. If the hypotenuse is 20 units long, find the lengths of the legs AC and BC .
4. The angle of elevation to the top of a flag pole from a point on the ground 40 feet from the base of the pole is $51^{\circ}$. Find the height of the flagpole.

5. Find the area of triangle CAT if $m \angle A=120^{\circ}, c=6$ and $t=20$.
6. In triangle $\mathrm{ABC}, m \angle A=45^{\circ}, m \angle B=30^{\circ}$ and $A C=6$. Find $B C$.
7. In triangle $\mathrm{ABC}, m \angle A=60^{\circ}, m \angle B=45^{\circ}$ and $B C=10$. Find $A C$.
8. In triangle $\mathrm{ABC}, m \angle A=60^{\circ}, A B=10$ and $A C=5$. Find $B C$.
9. In triangle $\mathrm{ABC}, m \angle A=120^{\circ}, A B=4$ and $A C=7$. Find $B C$.
10. Let $u=4 i+3 j$ and $v=2 i-2 j$.
a) Find the magnitude of the vector $u$ and the magnitude of the vector $v$.
b) Find the vector $5 u-2 v$.
11. Let $u=\langle 2,-1\rangle$ and $v=\langle 5,3\rangle$. Find the $\operatorname{dot}$ product $u \cdot v$

## Chapter 8: Recognizing Conic Sections and Solving Systems

12. Classify the following conic sections represented by the following equations:
a) $\frac{(x-5)^{2}}{9}+\frac{(y+2)^{2}}{16}=1$
b) $\frac{(x+3)^{2}}{25}-\frac{(y-2)^{2}}{16}=1$
c) $(x+3)^{2}+(y-2)^{2}=100$
d) $(y-2)^{2}=-4(x+3)$
e) $(x+3)^{2}=8(y-2)$
13. Write the equation of a circle with center $(1,-4)$ and radius 5 .
14. Find the center and radius of the circle represented by the following equation:
$x^{2}+y^{2}+6 x-4 y-12=0$
15. State the coordinates of the vertex of the following parabola:
a) $x^{2}+4 x-4 y-8=0$
b) $(y+1)^{2}=8(x+2)$
16. State the vertices of the following ellipses:
a) $\frac{x^{2}}{49}+\frac{y^{2}}{16}=1$
b) $\frac{x^{2}}{36}+\frac{y^{2}}{100}=1$
17. How many solutions does the following system have? Answer by graphing.
a) $\begin{aligned} & x^{2}+(y+2)^{2}=1 \\ & y=x^{2}\end{aligned}$
b) $x^{2}+(y+2)^{2}=4$ $y=x^{2}$
c) $x=y^{2}$
$y=x+10$
d) $x=y^{2}$
$y=-x+1$
18. Find the point(s) of intersection.

$$
\begin{aligned}
& 4 x^{2}+7 y^{2}=23 \\
& 3 x^{2}-y^{2}=11
\end{aligned}
$$

19. Which of the following is the graph of the following conic section:

$$
\frac{(x-2)^{2}}{9}+\frac{(y+1)^{2}}{4}=1
$$





20. Which of the following is the graph of the following conic section:

$$
\frac{(x+1)^{2}}{4}+\frac{(y-1)^{2}}{16}=1
$$





21. Which of the following is the graph of the following conic section:

$$
(y+1)^{2}=8(x-2)
$$





22. Which of the following is the graph of the following conic section:

$$
(y-1)^{2}=-12(x+1)
$$






