# PRINTABLE VERSION

# **Ouiz 14**

# You scored 100 out of 100

### **Question 1**

# Your answer is CORRECT.

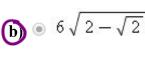
Given triangle ABC, the measure of angle A is  $60^{\circ}$ , the length of BC is  $\sqrt{3}$ , and the length of AC is  $\frac{1}{5}$ . How many solutions are there for the measure of angle B? Check

SSA

a) Cannot be determined.



**b**) 3




#### **Question 2**

### Your answer is CORRECT.

Given triangle ABC, the measure of angle A is 45°, the length of AB is 6, and the length of AC is 6. What is the length of side BC? SAS

$$\mathbf{a)} \odot \sqrt{78 - \sqrt{2}}$$

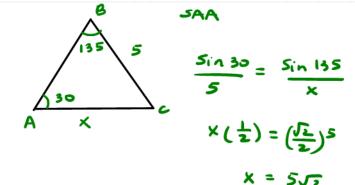




d) 
$$\bigcirc$$
 6 $\sqrt{2}$ 

$$6\sqrt{2}$$

$$A^{\frac{1}{2}} = 6^{\frac{1}{2}} + 6^{\frac{1}{2}} - 2(6)(6) \quad \text{(os 45)}$$

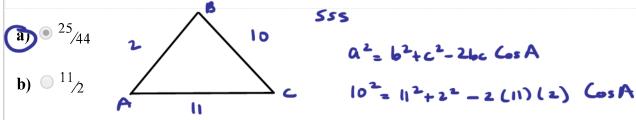

$$A^{\frac{1}{2}} = 36 + 36 - 2(36)(\frac{\sqrt{12}}{2})$$

### **Question 3**

# Your answer is CORRECT.

ABC is a triangle with angle  $A = 30^{\circ}$ , angle  $B = 135^{\circ}$ , and BC = 5 cm. Find AC.

- a)  $0.5\sqrt{6}/2$
- **b**)  $5\sqrt{2}$ 
  - **c)** 0 15/2
  - d)  $\sqrt{5}$
  - **e)** 0 10
  - **f)** None of the above.




### **Question 4**

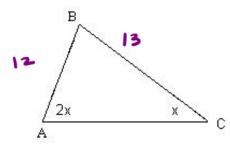
### Your answer is CORRECT.

ABC is a triangle with AB = 2, BC = 10, and AC = 11. Find cos(A).

Note: You are asked to find the cosine of A, not the measure of angle A. Do not use a calculator.



- c)  $\frac{25}{22}$   $\frac{100}{21} + 4 4 + \cos \theta$
- d)  $0^{217}/44$
- e) 05
- **f)** None of the above.


#### **Question 5**

# Your answer is CORRECT.

Determine the angle x in the triangle given below with AB = 12 and BC = 13.

Hint: Use the Law of Sines along with a double-angle formula.

5/20/2015 Print Test



**a)** 
$$\bigcirc x = \frac{1}{2} \cdot \arccos(\frac{13}{24})$$

$$\frac{\sin x}{12} = \frac{\sin (2x)}{13}$$

**b)** 
$$x = \arccos(\frac{13}{12})$$

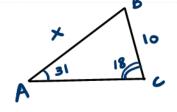
$$\frac{\sin x}{12} = \frac{2\sin(x)\cos(x)}{13}$$

c) 
$$x = \arcsin(\frac{13}{6})$$

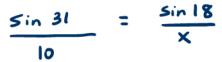
**d)** 
$$x = \frac{1}{2} \cdot \arcsin(\frac{12}{13})$$

(e) 
$$x = \arccos(\frac{13}{24})$$

**f)** None of the above.


### **Question 6**

## Your answer is CORRECT.


In triangle ABC,  $\angle A$  measures 31°. If  $\angle C$  measures 18° and BC has length 10, find AB.



$$10 \sin \left( \frac{18^{\circ}}{31^{\circ}} \right)$$



$$\frac{10\sin\left(18^{\circ}\right)}{\sin\left(31^{\circ}\right)}$$



d)  $\bigcirc$   $5\sqrt{3}$ 

$$\frac{10 \sin \left(31^{\circ}\right)}{\sin \left(18^{\circ}\right)}$$

**f)** None of the above.

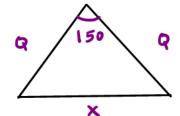
#### Question 7

5/20/2015 Print Test

### Your answer is CORRECT.

An isosceles triangle has a vertex angle measuring 150°. The two equal sides have length Q inches. What is the length of the base (in inches)?

a) 
$$\sqrt{2Q^2 - Q\sqrt{3}}$$


**b)** 
$$\bigcirc \sqrt{2 Q^2 + 2 Q \sqrt{3}}$$

**c)** 
$$\bigcirc \frac{1}{2} Q \sqrt{8 + 2\sqrt{3}}$$

$$\mathbf{d}$$
)  $\mathcal{Q}\sqrt{(2-\sqrt{3})}$ 

e) 
$$Q\sqrt{(2+\sqrt{3})}$$

**f)** None of the above.



$$X^{2} = 2Q^{2} - 2Q^{2} \left( \frac{-\sqrt{3}}{2} \right)$$

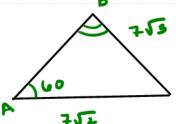
$$X = \sqrt{Q^2(2+\sqrt{3})}$$

#### **Ouestion 8**

### Your answer is CORRECT.

In triangle ABC, the measure of angle A is  $60^{\circ}$ , the length of BC is  $7\sqrt{3}$ , and the length of AC is  $7\sqrt{2}$ . Find all possible measures for angle B.

a)  $0.60^{\circ}$ 




c)  $945^{\circ}$  or  $135^{\circ}$ 



**e)**  $0.30^{\circ}$  or  $150^{\circ}$ 

**f)** None of the above.



$$(\frac{\sqrt{3}}{2}) 7\sqrt{2} = SinB(7\sqrt{3})$$

$$Sin B = \frac{\sqrt{3}(7\sqrt{2})}{(7\sqrt{3})2}$$

$$Sin B = \sqrt{2}$$

$$\sin B = \sqrt{2}$$

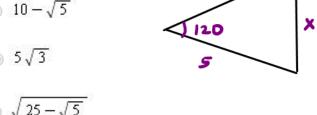
B = 180 -45 = 135

# **Question 9**

# Your answer is CORRECT.

Two cyclists leave the corner of State Street and Main Street simultaneously. State Street and Main Street are not at right angles; the cyclists' paths have an angle of 120° between them. How far apart are the cyclists after they each travel 5 miles? The answers below are given in miles. *Hint: Use the* 

Law of Cosines






c) 
$$\sqrt{25-\sqrt{5}}$$

d) 0 5

e) 0 10



**f)** None of the above.

#### **Question 10**

### Your answer is CORRECT.

Given triangle ABC with AB = 5 and BC =  $5\sqrt{3}$ . The measure of angle A is 120°. How many choices are there for the measure of angle C?

(a) • 1

**b**) 3

 $\mathbf{c}) \bigcirc 2$ 

**d)** 0

e) 4

**f)** None of the above.

5/3

120+150 4180火

= Sin C