Math 1330
Homework 20 (5.4, models)
Problem 5.4.46 refers to problem 46 in Chapter 5, Section 4 of the online text. Record your answers to all the problems in the EMCF titled "Homework 20."

1. Problem 5.4.46
A. $-5 ; \quad 2 / 3$
B. $5 ; \quad-2 / 3$
C. doesn't exist; 2/3
D. $-5 ; \quad$ doesn't exist
E. doesn't exist; doesn't exist
2. Problem 5.4.48
A. $\quad-0.3 ; \quad 0.5$
B. $0.3 ;$ doesn't exist
C. doesn't exist; 0.5
D. $\quad-0.3 ; \quad \frac{\pi}{6}$
E. doesn't exist; doesn't exist
3. Problem 5.4.50
A. $\frac{5}{13} ; \quad \frac{7}{24}$
B. $\frac{12}{5} ; \quad \frac{\sqrt{674}}{7}$
C. $\frac{5}{13} ; \quad \frac{24}{7}$
D. $\quad \frac{5 \sqrt{119}}{119} ; \quad \frac{7}{25}$
E. None of the above
4. Problem 5.4.52
A. $\sqrt{17} ; \quad \frac{4 \sqrt{33}}{33}$
B. $\sqrt{17} ; \quad \frac{\sqrt{33}}{4}$
C. $\sqrt{15} ; \quad \frac{7}{4}$
D. $\frac{\sqrt{17}}{4} ; \quad \frac{\sqrt{33}}{7}$
E. None of the above
5. Problem 5.4.54
A. $-\frac{5 \sqrt{2}}{7} ; \quad-\frac{3 \sqrt{10}}{20}$
B. $\quad \frac{\sqrt{2}}{10} ; \quad-\frac{2 \sqrt{10}}{3}$
C. $\frac{7 \sqrt{2}}{10} ; \quad-\frac{2 \sqrt{10}}{3}$
D. $\quad-\frac{7 \sqrt{2}}{10} ; \quad-\frac{3 \sqrt{10}}{20}$
E. None of the above
6. Problem 5.4.64: Which of the following points lies on the graph of the function that is given?
A. $\left(\frac{\pi}{4}, 0\right)$
B. $\left(0, \frac{\pi}{4}\right)$
C. $\left(-2, \frac{\pi}{4}\right)$
D. $\left(\frac{\pi}{4},-2\right)$
E. $\left(-2, \frac{3 \pi}{4}\right)$
7. Determine the equation of the sine function which has amplitude 2 and period 4.
A. $y=4 \sin \left(\frac{\pi}{4} x\right)$
B. $y=2 \sin (4 x)$
C. $y=4 \sin (2 x)$
D. $y=2 \sin \left(\frac{\pi}{2} x\right)$
8. Determine the period of the given graph.
A. $\frac{\pi}{3}$
B. 6
C. 3
D. π
E. $\frac{2 \pi}{3}$

9. Given the following, determine the maximum, minimum, and x-intercepts in the interval $[-2 \pi, 2 \pi]$.

$$
y=3 \cos \frac{x}{2}
$$

A. Maximum: 3 Minimum: -3 x-intercepts: $(\pm \pi, 0)$
B. Maximum: $3 / 2$ Minimum: $-3 / 2$ x-intercepts: $\left(\pm \frac{\pi}{2}, 0\right),\left(\pm \frac{3 \pi}{2}, 0\right)$
C. Maximum: 3 Minimum: -3 x-intercepts: $\left(0, \pm \frac{\pi}{2}\right),\left(0, \pm \frac{3 \pi}{2}\right)$
D. Maximum: 3 Minimum: -3 x-intercepts: $\left(\pm \frac{\pi}{2}, 0\right),\left(\pm \frac{3 \pi}{2}, 0\right)$
10. The voltage V produced by an alternating current generator is $V(t)=229 \sin (120 \pi t)$. What are the amplitude and period of $\mathrm{V}(\mathrm{t})$?
A. amplitude: 114.5 period: $1 / 60$
B. amplitude: 229 period: $1 / 60$
C. amplitude: 229
period: 120π
D. amplitude: 229
period: 60
E. amplitude: 458
period: $1 / 60$
11. Determine an equation of the form $\mathrm{y}=\mathrm{A} \cos \mathrm{B}(x-\mathrm{C})+\mathrm{D}$ for the following graph:

A. $y=-5 \cos \frac{\pi}{15}(x+10)-2$
B. $y=-5 \cos \frac{\pi}{30}(x-10)-2$
C. $y=-5 \cos \frac{\pi}{15}(x-10)-2$
D. $y=5 \cos \frac{\pi}{15}(x-10)-2$
E. $y=-5 \cos 15 \pi(x-10)-2$
12. Assume that you are aboard a research submarine doing submerged training exercises in the Pacific Ocean. At time $t=0$ you start porpoising (alternately deeper and then shallower). At time $t=4 \mathrm{~min}$ you are at your deepest, $\mathrm{y}=-800 \mathrm{~m}$. At time $\mathrm{t}=9 \mathrm{~min}$ you next reach your shallowest, $\mathrm{y}=-200 \mathrm{~m}$.
Assume that y varies sinusoidally with time. Find an equation expressing y as a function of t.
A. $y(t)=-500 \cos \frac{\pi}{5}(t-4)-300$
B. $y(t)=-300 \cos \frac{\pi}{15}(t-9)-500$
C. $y(t)=-300 \cos \frac{\pi}{5}(t-4)-500$
D. $y(t)=-500 \cos \frac{\pi}{15}(t-9)-300$
E. None of the above (not the right answer)

13 The Pressure, $\mathrm{P}\left(\right.$ in $\left.\mathrm{lbs} / \mathrm{ft}^{2}\right)$, in a pipe varies over time. Five times an hour, the pressure oscillates from a low of 90 to a high of 230 and then back to a low of 90 . The pressure at $t=0$ is 90 . What is the period of this function in minutes?
A. 60 minutes
B. 15 minutes
C. 12 minutes
D. 10 minutes
E. 5 minutes
14. Write a sine function with a positive vertical dilation, given the amplitude is 6 , the phase shift is 5 to the left, the vertical shift is 4 down, and the period is 3 .
A. $y(t)=6 \sin \frac{2 \pi}{3}(x+5)-4$
B. $y(t)=5 \sin \frac{2 \pi}{3}(x+6)-4$
C. $y(t)=6 \sin \frac{2 \pi}{3}(x-5)-4$
D. $y(t)=6 \sin 3(x+5)-4$
E. $y(t)=6 \sin 3(x-5)-4$
15. A signal buoy in the Gulf of Mexico bobs up and down with the height h of its transmitter (in feet) above sea level modeled by $\quad h(t)=\mathrm{a} \sin (\mathrm{b} t)+5$, where t represents seconds. During a small squall its height varies from 1 ft to 9 ft and there are 3 seconds from one $9-\mathrm{ft}$ height to the next. What are the values of the constants a and b ?
A. $\quad a=4 ; \quad b=3$
B. $\quad a=4 ; \quad b=\frac{\pi}{3}$
C. $\quad a=9 ; b=\frac{2 \pi}{3}$
D. $\quad a=4 ; \quad b=\frac{2 \pi}{3}$
E. $\quad a=1 ; \quad b=\frac{2 \pi}{3}$

