Math 1330

Homework 20 (5.4, models)

Problem 5.4.46 refers to problem 46 in Chapter 5, Section 4 of the online text. Record your answers to all the problems in the EMCF titled "**Homework 20**."

1. Problem 5.4.46

- A. -5;
- B. 5; -2/3
- C. doesn't exist; 2/3
- D. -5; doesn't exist

2/3

E. doesn't exist; doesn't exist

2. Problem 5.4.48

- A. -0.3; 0.5
- B. 0.3; doesn't exist
- C. doesn't exist; 0.5
- D. -0.3; $\frac{\pi}{6}$
- E. doesn't exist; doesn't exist

3. Problem 5.4.50

- A. $\frac{5}{13}$; $\frac{7}{24}$
- B. $\frac{12}{5}$; $\frac{\sqrt{674}}{7}$
- C. $\frac{5}{13}$; $\frac{24}{7}$
- D. $\frac{5\sqrt{119}}{119}$; $\frac{7}{25}$
- E. None of the above

Problem 5.4.52 4.

A.
$$\sqrt{17}$$
; $\frac{4\sqrt{33}}{33}$

B.
$$\sqrt{17}$$
; $\frac{\sqrt{33}}{4}$

C.
$$\sqrt{15}$$
; $\frac{7}{4}$

D.
$$\frac{\sqrt{17}}{4}$$
; $\frac{\sqrt{33}}{7}$

E. None of the above

Problem 5.4.54 5.

A.
$$-\frac{5\sqrt{2}}{7}$$
; $-\frac{3\sqrt{10}}{20}$

B.
$$\frac{\sqrt{2}}{10}$$
; $-\frac{2\sqrt{10}}{3}$

C.
$$\frac{7\sqrt{2}}{10}$$
; $-\frac{2\sqrt{10}}{3}$

D.
$$-\frac{7\sqrt{2}}{10}$$
; $-\frac{3\sqrt{10}}{20}$

E. None of the above

6. Problem 5.4.64: Which of the following points lies on the graph of the function that is given?

A.
$$\left(\frac{\pi}{4},0\right)$$

B.
$$\left(0, \frac{\pi}{4}\right)$$

C.
$$\left(-2, \frac{\pi}{4}\right)$$

A.
$$\left(\frac{\pi}{4},0\right)$$
 B. $\left(0,\frac{\pi}{4}\right)$ C. $\left(-2,\frac{\pi}{4}\right)$ D. $\left(\frac{\pi}{4},-2\right)$ E. $\left(-2,\frac{3\pi}{4}\right)$

E.
$$\left(-2, \frac{3\pi}{4}\right)$$

7. Determine the equation of the sine function which has amplitude 2 and period 4.

A.
$$y = 4 \sin\left(\frac{\pi}{4}x\right)$$

B.
$$y = 2\sin(4x)$$

C.
$$y = 4\sin(2x)$$

D.
$$y = 2 \sin\left(\frac{\pi}{2}x\right)$$

8. Determine the period of the given graph.

E.
$$\frac{2\pi}{3}$$

9. Given the following, determine the maximum, minimum, and x-intercepts in the interval $[-2\pi, 2\pi]$.

$$y = 3\cos\frac{x}{2}$$

A. Maximum: 3 Minimum:
$$-3$$
 x-intercepts: $(\pm \pi, 0)$

B. Maximum:
$$3/2$$
 Minimum: $-3/2$ x-intercepts: $\left(\pm \frac{\pi}{2}, 0\right)$, $\left(\pm \frac{3\pi}{2}, 0\right)$

C. Maximum: 3 Minimum:
$$-3$$
 x-intercepts: $\left(0, \pm \frac{\pi}{2}\right)$, $\left(0, \pm \frac{3\pi}{2}\right)$

D. Maximum: 3 Minimum:
$$-3$$
 x-intercepts: $\left(\pm \frac{\pi}{2}, 0\right)$, $\left(\pm \frac{3\pi}{2}, 0\right)$

10. The voltage V produced by an alternating current generator is $V(t) = 229 \sin(120\pi t)$. What are the amplitude and period of V(t)?

A. amplitude: 114.5 period: 1/60

B. amplitude: 229 period: 1/60

C. amplitude: 229 period: 120π

D. amplitude: 229 period: 60

E. amplitude: 458 period: 1/60

11. Determine an equation of the form $y = A \cos B(x - C) + D$ for the following graph:

A.
$$y = -5\cos\frac{\pi}{15}(x+10)-2$$

B.
$$y = -5\cos\frac{\pi}{30}(x-10)-2$$

C.
$$y = -5\cos\frac{\pi}{15}(x-10)-2$$

D.
$$y = 5\cos\frac{\pi}{15}(x-10)-2$$

E.
$$y = -5\cos 15\pi (x-10) - 2$$

12. Assume that you are aboard a research submarine doing submerged training exercises in the Pacific Ocean. At time t=0 you start porpoising (alternately deeper and then shallower). At time t=4 min you are at your deepest, y=-800 m. At time t=9 min you next reach your shallowest, y=-200 m. Assume that y varies sinusoidally with time. Find an equation expressing y as a function of t.

A.
$$y(t) = -500 \cos \frac{\pi}{5} (t-4) - 300$$

B.
$$y(t) = -300 \cos \frac{\pi}{15} (t-9) - 500$$

C.
$$y(t) = -300 \cos \frac{\pi}{5} (t-4) - 500$$

D.
$$y(t) = -500 \cos \frac{\pi}{15} (t-9) - 300$$

E. None of the above (not the right answer)

- The Pressure, P (in lbs/ft^2), in a pipe varies over time. Five times an hour, the pressure oscillates from a low of 90 to a high of 230 and then back to a low of 90. The pressure at t = 0 is 90. What is the period of this function in minutes?
 - A. 60 minutes

B. 15 minutes

C. 12 minutes

D. 10 minutes

- E. 5 minutes
- 14. Write a sine function with a positive vertical dilation, given the amplitude is 6, the phase shift is 5 to the left, the vertical shift is 4 down, and the period is 3.

A.
$$y(t) = 6 \sin \frac{2\pi}{3} (x+5) - 4$$

B.
$$y(t) = 5 \sin \frac{2\pi}{3} (x+6) - 4$$

C.
$$y(t) = 6\sin\frac{2\pi}{3}(x-5)-4$$

D.
$$y(t) = 6 \sin 3(x+5) - 4$$

E.
$$y(t) = 6 \sin 3(x-5) - 4$$

15. A signal buoy in the Gulf of Mexico bobs up and down with the height h of its transmitter (in feet) above sea level modeled by $h(t) = a \sin(bt) + 5$, where t represents seconds. During a small squall its height varies from 1 ft to 9 ft and there are 3 seconds from one 9-ft height to the next. What are the values of the constants a and b?

A.
$$a = 4$$
; $b = 3$

B.
$$a = 4$$
; $b = \frac{\pi}{3}$

C.
$$a = 9; b = \frac{2\pi}{3}$$

D.
$$a = 4$$
; $b = \frac{2\pi}{3}$

E.
$$a = 1; b = \frac{2\pi}{3}$$