Welcome to Spring Semester 2016
Math. 1330 - PreCalculus

Instructor: Dr. Blerina Xhabli

Email: blerina@math.uh.edu
Feel free to email me anytime, make sure you complete
Suloject: Math. 1330 -MW
Body: Introduce yourself, then write your question \uparrow
Webpage: math.uh.edu/~blerina
Office: 609 PG
this weld page is very important for our class.

Important Information: Read the syllabus.

- CourseWare Accounts (fingerprints)

WWW. casa.uh. ed u \leftarrow ocreate an account

- go to CASA center located at Garrison Gym.
- free access for two weeks.
- Textbook \leftarrow at the and of two weeks, you need II will be available online on your CASA accounts. the course access code. (\$50 bookstore)
- Daily Poppers - Section 12473

Beginning $z^{\text {rd }}$ week of classes, weill have in-class easy quizzes. You need bubbling forms for these poppers (\$ so at bookstore).

- Homework (per section $\underset{F}{ } E M C F$ tab

Homework will be assigned according to the sections. Follows the deadlines.

Submit the solutions to casa account under EMCF tab.

- Online Quizzes

Once you complete course policy quiz, all the quizzes will be available to you. Follour the deadlines. Do not leave for the last day. You have 20 times for each!
-4 Exams and Final Exam
All exams will be taken at CASA center. You have to reserve yourself a seat during exam period. You have two weeks in advance for each.

- Opt-Out option \leftarrow at least 80% average.

Once we are done with all assignments (except final), if your class average is $\geqslant 80.00 \%$ then you'll have a chance to opt-out if you ore satisfied with your grade!

Grades:

Test $1 \quad-10 \%$
Tests 2, 3, 4-15\% each
Final exam -15\%
Homework - 10\%
Online Quizzes - 10\%
Daily Quizzes (In-class Poppers) - 10\%

Note: The percentage grade on the final exam
can be used to replace your lowest test score.
Course Policy Quiz: \leftharpoonup Take it ASAP!
You will need to make a 100 before you can
access any exams, quiz, or homework.

Worm-Up: What is a function?
Answer: A function is a special relation between two sets A and B such that for every element x in A, there exists exactly one y in B.
example:
a) All students

Their people in this class soft ID

PSID is unique for each student.
$\Rightarrow f$ is a function.
b) All students in this class

Their phone numbers in the UH system

Every student does here more then one number on file \Longrightarrow not a function!

How can we recognize functions?

- Graphs - Vertical line Test

Yes, it is a function.

No, it in not a function.
equations $\leftarrow y$ should be wiquely represented
a) $y=2 x+3$

For every input x, the output y is defined uniquely.
\Rightarrow Yes, it is a function.
b) $x=y^{2}-1$

For $x=0$, we get

$$
\begin{aligned}
& \theta=y^{2}-1 \\
\Rightarrow & y^{2}=1 \rightarrow y=1 \text { or }-1 .
\end{aligned}
$$

\Rightarrow Not a function.

Math 1330 Section 1.1 An Introduction to Functions

Note: This section covers prerequisite material. I will only solve some of the problems here. The rest will be exercises for you...

Let A and B be two nonempty sets. A function from A to B is a rule of correspondence that assigns to each element in A exactly one element in B. Here A is called the domain of the function and the set B is called the range of the function.

Domain of a Function (-the set of all possible inputs)
To determine the domain of a function. start with all real numbers and then eliminate anything that results in zero denominators or even roots of negative numbers.
ex $f(x)=\frac{1}{x}, x \neq 0 \quad g(x)=\sqrt{x}, \quad x \geqslant 0$ domain \sim The domain of any polynomial function is $(-\infty, \infty)$, or all real numbers. polynomial \Rightarrow sum of positive integer power of $x, p(x)=3 x^{\frac{3}{2}}-5 x^{2}+2 \cdot x^{2}$ domain \rightarrow The domain of any rational function, where both the numerator and the denominator are polynomials, is all real numbers except the values of x for which the denominator equals 0 .

$$
\xrightarrow{\text { polynomials, is ill real numbers except the vi }}
$$

domain \rightarrow The domain of any radical function with even index is the set of real numbers for which the radicand is greater than or equal to 0 . The domain of any radical function with odd index is
but

$$
q(x)=\frac{1}{x^{2}}+3 x
$$

$$
\underline{N o}=x \stackrel{-2}{n+3 x}
$$

FRIDAY Example: State the domain of the function. Write your answer using interval notation. 1/22
$x-3 \longrightarrow$ rational \Rightarrow denominator $\neq 0$
 $\xrightarrow[\substack{\text { look at } \\ \text { the next page }}]{\substack{\text { exercise }}}$ b) $g(x)=\frac{x^{2}-5 x+4}{x^{2}-16}$ $x+7=0$
$x=-7$$\Longrightarrow$ domain is all x except -7.

c) $h(x)=\sqrt{x+4}$

$$
\Rightarrow \quad x \geqslant-4
$$

d) $h(x)=\sqrt[{\frac{\sqrt[3]{2}}{x^{2}-9}}]{ }$

$$
\Rightarrow \text { Domain } h=[-4, \infty)
$$

even root $\Rightarrow x+4 \geqslant 0$

$$
\text { odd root } \Rightarrow \text { no problem } \Rightarrow \text { Domain }=(-\infty, \infty)
$$

Note: Review Interval Notation.
b) $g(x)=\frac{x^{2}-5 x+4}{x^{2}-16}$

Rational function \Rightarrow denominator $\neq 0$

$$
\begin{aligned}
x^{2}-16 & =0 \\
x^{2} & =16 \\
x & =4, x=-4
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& x \neq 4 \\
& x \neq-4
\end{aligned}
$$

$$
\operatorname{Domg}=(-\infty,-4) \cup(-4,4) \cup(4, \infty)
$$

Range of a Function (the set of all possible outputs) $=a l l$ possible y-values of the graph.
To determine the range of a function, determine what outputs are possible. This is not always easy. Sometimes it helps to graph the function. The graph tells everything about a function.
You should know some of these from college algebra. For example:
(1) The range of $f(x)=x^{2} \mathrm{~s}[0, \infty)$.
(2) The range of $g(x)=\sqrt{x}$ is $[0, \infty)$.
(3) The range of $h(x)=|x|$ is $[0, \infty)$.

$$
\text { domain } g=[0, \infty)
$$

$$
\text { range } g=[0, \infty)
$$

You also need to be able to evaluate a function at a given value of x or at an expression.
EVALUATION: process of substituting the given value of x in the
Example: If $g(x)=\frac{x}{2 x-4}$, find $g(1), g(-5), g(2 x-1), g(t+1)$

$$
\begin{array}{ll}
g(1)=\frac{1}{2 \cdot 1-4}=\frac{1}{-2} & g(2 x-1)=\frac{2 x-1}{2(2 x-1)-4}=\frac{2 x-1}{4 x-6} \\
g(-5)=\frac{-5}{2 \cdot(-5)-4}=\frac{-5}{-14}=\frac{5}{14} & g(t+1)=\frac{t+1}{2(t+1)-4}=\frac{t+1}{2 t-2}
\end{array}
$$

Piecewise Functions
extra:
Example: If $f(x)=\left\{\begin{array}{lr}2 x+4, & x<-1 \\ x^{2}+2 x, & -1 \leq x \leq 5 \\ -6 x, & x>5\end{array}\right.$, find $f(0), f(4), f(5)$, and $f(-3)$.

$$
\begin{aligned}
& f(6)=-6 \cdot 6=-36 \\
& f(-1)=(-1)^{2}+2(-1)=-1
\end{aligned}
$$

- $f(0)=0^{2}+20=0$

Check $-1 \leq 0 \leq 5$

- $f(5)=5^{2}+2 \cdot 5=35$

Check $-1 \leq 5 \leq 5$

- $f(4)=4^{2}+2 \cdot 4=24$
- $f(-3)=2(-3)+4=-2$

Check $-1 \leq 4 \leq 5$

Recall: Slope of a line blur two points

$$
\rightarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f(x+h)-f(x)}{\substack{\text { in our } \\ \text { case }}}=\frac{f(x+h)-f(x)}{h}
$$

Average Rate of Change (Difference Quotient) (you will need this in Calculus!) $\frac{\text { change in } y}{\text { change in } x}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h}=$ slope of a secant line
Just Calculate To find a difference quotient you will compute $\frac{f(x+h)-f(x)}{h}$, assuming that $h \neq 0$. You can becomes do this in three steps: a tangent line at x, whose

1. Compute $f(x+h)$.
2. Then compute $f(x+h)-f(x)$.

3. Then compute $\frac{f(x+h)-f(x)}{h}$ Calculate/simplify

3 steps
Example: Find the difference quotient of: $f(x)=x^{2}+2 x$,

1. $f(x+h)=(x+h)^{2}+2(x+h)=(x+\underbrace{(h)(x}_{\text {FOIL }}+h)+2 x+2 h=x^{2}+2 x h+h^{2}+2 x+2 h$
2. $f(x+h)-f(x)=x^{2}+2 x h+h^{2}+2 x+2 h-\left(x^{2}+2 x\right)=x^{x}+2 x h+h^{2}+2 x+2 h-x^{2}-2 x$

$$
=2 \times h+h^{2}+2 h
$$

3. $\frac{f(x+h)-f(x)}{h}=\frac{2 x h+h^{2}+2 h^{f a c t o r ~}}{h}=\frac{h \cdot(2 x+h+2)}{h}=2 x+h+2$

4. $f(x+h)=\frac{1}{(x+h)+1}=\frac{1}{x+h+1}$ Common denominator
5. $f(x+h)-f(x)=\frac{1}{(x+h+1)} \cdot \frac{x+1}{x+1}-\frac{1}{(x+1)} \cdot \frac{x+h+1}{x+h+1} \cdot \frac{x+1-(x+h+1)}{(x+h+1) \cdot(x+1)}=\frac{-h}{(x+1)(x+h+1)}$
6. $\frac{f(x+h)-f(x)}{h}=\frac{\frac{-h}{(x+h+1)(x+1)}}{h}=\frac{-h}{(x+1)(x+h+1)} \cdot \frac{1}{h}=\frac{-1}{(x+1)(x+h+1)}$
difference quotient
Evaluate at $x=2 \Rightarrow \frac{-1}{(2+1)(2+h+1)}=\frac{-1}{3(3+h)}$.
