Thick of function
$$h(x) = \sqrt{x^2} + \frac{1}{x-5}$$
. To understand it,
we look at its pieces'
Math 1330 - Section 1.4
Combining Functions - A new function
We can combine functions in any of five ways. Four of these are the familiar anithmetic
operations: addition, subtraction multiplication and division, and are very intuitive. The fifth
type of combining functions is called composition of functions. In all cases, we'll be interested
in combining the functions, $f(x)$ with domain A and $g(x)$ with domain R
Suppose we have two functions, $f(x)$ with domain A and $g(x)$ with domain R
 $f(x) = \sqrt{x} + \frac{1}{x-5}$, $(x \ge 0, x \pm 5)$
dom $(f + g)(x) = f(x) - g(x)$
 $= \sqrt{x} + \frac{1}{x-5}$, $(x \ge 0, x \pm 5)$
dom $(f + g)(x) = f(x) - g(x)$
 $= \sqrt{x} + \frac{1}{x-5}$, $(x \ge 0, x \pm 5)$
dom $(f - g) = [D, 5) \cup (5, \infty)$
Product: $(fg)(x) = f(x)g(x)$
 $= \sqrt{x} + \frac{1}{x-5} = \frac{\sqrt{x}}{x-5}$, $(x \ge 0, x \pm 5)$
 $dom (f - g) = [D, 5) \cup (5, \infty)$
Quotient: $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}$, $(\frac{1}{g(x)}) = \sqrt{\frac{1}{x-5}}$, $dam (f - g) = [D, 5) \cup (5, \infty)$
 $f(x) = \frac{1}{x-5}$, $(\frac{1}{x-5})$, $dam (f - g) = [D, 5) \cup (5, \infty)$
The final way of combining functions is called composition of functions.
 $(f \circ g)(x) - f(g(x)) = \sqrt{\frac{1}{g(x)}} = \sqrt{\frac{1}{x-5}} = \frac{1}{x-5} = \frac{1}{$

For
$$f(x) = \sqrt{x}$$
, $don f = [0, \infty)$, $x \neq 0$
 $g(x) = \frac{1}{x-s}$, $don g = (-\infty, 5) \cup (5, \infty)$
 $x \neq 5$
 $(g \circ f)(x) = g(f(x)) = \frac{1}{f(x) - 5} = \frac{1}{\sqrt{x} - 5}$
Domain $T \circ f(0) = \sqrt{x} = 1$
 $\sqrt{x^{7} - 5} = 0$
 $\sqrt{x^{7} - 5} = 0$
 $\sqrt{x} = 25$ by result,
 $T \circ ond \sqrt{x} = f \text{ inter}$
 $(x \neq 25) = \sqrt{x} \neq 25$
 $x \neq 25$
dom g of $x = x \neq 25$, $x \neq 0$
 $= [0, 25] \cup (25, \infty)$.

Ø

Example 1: Suppose $f(x) = 2x + 3$ and $g(x) = 4$. Find $f + g$, $f - g$, fg , $\frac{f}{g}$, $f \circ g$ and $g \circ f$.	$dom f = (\infty, \infty)$ $dom g = (-\infty, \infty)$
• $(f+g)(x) = (2x+3) + (4x-8)$ = $6x-5$	 don(ftg) = (-~, ~)
	don $(f-g) = (-\infty, \infty)$
	$don(f \cdot g) = (-\infty, \infty)$
(0) $2\times +3$	dom $\left(\frac{f}{g}\right) = (-\infty, 2) \cup (2, \infty)$
	×=2

•
$$(f \circ g)(x) = f(g(x))$$

= 2 · g(x) + 3 $\longrightarrow dom(f \circ g) = (-\infty, \infty)$
= 2 · (4x-8) + 3
= 8 × -13

•
$$(g_0 f)(x) = g(f(x))$$

 $= 4 \cdot f(x) - 8$
 $= 4(2x+3) - 8 \implies dorn(g_0 f) = (-\infty, \infty)$
 $= 8 \times + 4$

Example 2: Suppose $f(x) = \frac{2}{x-1}$ and $g(x) = \frac{x}{2x+4}$. Find:

Find:
a)
$$(f \circ g)(2) = \oint (g(z)) = f(\frac{1}{2})$$

 $= \frac{2}{4} - i \cdot \frac{4}{4} = \frac{2}{-\frac{2}{4}} = -\frac{8}{3}$
b) $g(f(3))$
 $= \oint (1) = \frac{1}{2 \cdot 1 + 4} = -\frac{1}{6}$
c) $(f \circ g)(x)$
 $= \int (g(x_1)) = \frac{2}{\frac{9}{2}(x) - 1} = \frac{2}{\frac{2}{2x + 4}} = -\frac{2}{\frac{1}{2}} = \frac{2}{\frac{1}{2}} = \frac{1}{2}$
 $= \frac{2}{\frac{9}{2}(x) - 1} = \frac{2}{\frac{2}{2x + 4}} = -\frac{1}{\frac{1}{2}} = \frac{2}{\frac{1}{2}} = \frac{2}{\frac{1}{2}} = \frac{1}{2}$
d) Domain of $(f \circ g)(x)$: T. result $= -\frac{4x + 8}{-x - 4} = -\frac{4x + 8}{-(x + 4)} = -\frac{4x + 8}{-(x + 4)}$
d) Domain of $(f \circ g)(x)$: T. result $= -\frac{4x + 8}{-x + 4}$, $x + 4 \neq 0 \Rightarrow x + -4$
T. dom of $\frac{1}{9}$: $\frac{x}{2x + 4}$, $2x + 4 \neq 0 \Rightarrow x + -4$
 $\frac{1}{x} = -2$
 $\frac{1}{2x} = \frac{1}{2}$
dom $(f \circ g) = (-\infty, -4)U(-4, -2)U(-2, \infty)$
 $(g \circ f)(x)$:
 $(g \circ f)(x) = - \frac{1}{2x} \Rightarrow T \cdot x + 0 (result)$
 $) (g(x)0)$
 $= f(0) \cdot g(0) = (\frac{2}{9(-1)}) \cdot (\frac{0}{2(2 + 4)}) = 0$.

Note: (fg)(x) and f(g(x)) have different meanings!!!! Be careful about the notation.

