

By H-1 functions have inverses []]
If a function is one-to-one then there is an associated function called "the inverse" =
$$\int_{1}^{1} = \int_{1}^{1} e^{-\frac{1}{2}} e^{-\frac{1}{2}}$$

Note: The inverse function reverses what the function did. Therefore, the domain of f is the range of f^{-1} and the range of f is the domain of f^{-1} .

Example 5: If
$$f(-1) = 2$$
, $f^{-1}(-1) = 0$ and $f(2) = 5$, find $f(0)$ and $f^{-1}(5)$.
 $\int_{-1}^{-1} (-1) = 0 \implies \int_{-1}^{-1} (0) = 1$.
 $\int_{-1}^{-1} (2) = 5 \implies \int_{-1}^{-1} (5) = 2$.
(x₁y₁) $(x_{21}y_2)$
 $f^{-1}(4) = 0 \implies f(0) = 4 \implies (0, 4)$
 $f^{-1}(2) = 1 \implies f(1) = 2 \implies (1, 2)$
 $f^{-1}(2) = 1 \implies f(1) = 2 \implies (1, 2)$
 $m = \frac{4-2}{0-1} \implies (2-2) = 1$
 $y = -2 \times +4$

You need to be able to find the inverse of a function. Follow this procedure to find an inverse function:

overcise

(Extra) Example 10: Find the inverse of the function $f(x) = 5 + \sqrt{4x+1}$.

Find inverse:
(1)
$$y = 5 + \sqrt{4} + 1 = 0$$
(2) $x = 5 + \sqrt{4} + 1$
(3) Solve for y :
(4) $y = (x-5)^2 - 1$
(4) $y = (x-5)^2 - \frac{1}{4}$, $[5_1 \infty)$