Popper $01 \leftarrow$ Bubble OL for popper \#.
(1) Where do you take your tests?
A. in class
(B.) $C A S A$
c. online
(2) How many times can you work on a quiz?
A. once (B) 20 times
C. infinitely many
(3) Bubble (A).

Bubble
(4) Bublole
c. correctly.

Linear function:

$$
f(x)=\prod_{\text {slope }} x+b^{y} \text { y-intercept }
$$

Math 1330 - Section 2.1
Linear and Quadratic Functions
Recall: Equation of a line:

$$
2 x+3 y=4 \Leftrightarrow \frac{3}{3} y=\frac{-2 x}{3}+4 \Rightarrow y=\frac{-2}{3} x+\frac{4}{3}
$$

General form:

$$
a x+b y=c
$$

(slope is: $m=-\frac{a}{b}$)
Slope-intercept form: $y=m x+b \quad$ (m is the slope and b is the y-intercept)
Point-slope form: $\quad y-y_{1}=m\left(x-x_{1}\right)$
slope
If two points on the line are given, then the slope is:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
$$

Vertical lines are of the form: $x=c . \leftarrow$ slope undefined

$$
m_{1}=-\frac{1}{m_{2}}
$$

Definition: A linear function is a function of the form $f(x)=m x+b$, where m is the slope and b is the \boldsymbol{y}-intercept.

Two lines ar parallel if they have the same slope. $m_{1}=m_{2}$
Two lines areparallelif they have the same slope. $m_{1}=m_{2}$
Two lines are perpendicular if their slopes are negative reciprocals of each other.
Horizontal lines are of the form: $y=c . \longleftarrow$ slope $=0$

$$
-\left(x_{2}, y_{2}\right)
$$

$$
x_{1} \quad \overrightarrow{\Delta x}
$$

two

$$
\begin{gathered}
y-5=1(x-2) \\
y=x+3
\end{gathered}
$$

Example 2: Write an equation of the linear function which contains the point (2, -5) and whose

Need two points

Example 3: Write an equation of the linear function which is parallel to the line $2 x-5 y=10$ and which passes through the point $(-1,-4)$.

$$
\left.\begin{array}{l}
\begin{array}{l}
2 x-5 y=10 \text { and which passes through the point }(-1,-4) . \\
\text { gives the slope } \\
\begin{array}{l}
\text { Being parallel } \\
2 x-5 y=10 \\
8 y=\frac{2 x-10}{5} \\
5
\end{array} \\
y=m=\frac{2}{5} \\
\frac{2 x}{5}-\frac{10}{5}
\end{array} \\
\text { • point }(-1,-4)
\end{array}\right\} \Rightarrow y+4=\frac{2}{5}(x+1) .
$$

$$
\begin{aligned}
& f^{\prime}(-1)=6 \Leftrightarrow f(6)=-1 \\
& m=\frac{-5+1}{2-6}=\frac{-4}{-4}=1 \Rightarrow y+5=1 \cdot(x-2)
\end{aligned}
$$

Basic quadratic function:

$$
f(x)=x^{2}
$$

 and 3 up.

A quadratic function is a function of the form $f(x)=a x^{2}+b x+c, a \neq 0$.
The graph of a quadratic function is called a parabola. You should be able to identify the following features of the graph of a quadratic function:

- direction the graph opens (upward or downward)
$-\quad$ whether the function has a maximum or a minimum
- y intercept $(f(0)) \quad y=.f(0)$
- coordinates of the vertex
- equation of the axis of symmetry
- maximum or minimum value

\min

$$
\text { ex } f(x)=-(x+3)^{2}-2
$$

$$
\text { (downward, shift } 3 \text { left, } 2 \text { down) }
$$

$$
\text { vertex is }(-3,-2)
$$

\rightarrow maximum value $f(-3)=-2$

The standard form of a quadratic function:
We like
this form, $f(x)=a(x-h)^{2}+k$ is in the standard form.

$$
\text { vertex }(h, k)
$$

The vertex is (h, k) and the axis of symmetry is the line $x=h$. axis of symmetry
The maximum or minimum value of the function is the number k (the y-coordinate of the vertex). $f(h)=k$.
$\rightarrow_{\text {be c cause we can find vertex, axis of symmetry }}^{x-h}$ ard $\frac{\max / \mathrm{min}}{f(h)=k}$ value of function.

What if it is not in standard form?
example:

$$
f(x)=2 x^{2}+4 x-5
$$

- upward
- what is vertex ???

$$
\begin{aligned}
f(x) & =\left(2 x^{2}+4 x\right)-5 \\
& \text { factor } 2 \\
& =2 \cdot\left(x^{2}+2 x\right)-5 \\
& =2(x^{2}+\underbrace{2} x+1^{2})-5-2 \cdot 1^{2}
\end{aligned}
$$

find $a=\frac{2}{2}=1$
$f(x)=2(x+1)^{2}-7 \quad \Rightarrow$ easy to visualize:

- upurard stretched out
- vertex $(-1,-7)$ (shift 1 left, 7 doorn).

Recall: $\quad(x+a)^{2}=x^{2}+\underset{ }{(2 a) x+a^{2}}$ half gives "a".

$$
(x-a)^{2}=x^{2}-20 x+a^{2}
$$

Example 4: Given the function $f(x)=-2 x^{2}-20 x+6$.
Find the standard form: $f(x)=-2 x^{2}-12 x+6=-2\left(x^{2}+6 x+\underline{\underline{3}}^{2}\right)+6+2 \cdot 3^{2}$

Find the vertex: $(-3,24)$

$$
f(x)=-2(x+3)^{2}+24
$$

Find the axis of symmetry: $x=-3$

State the maximin value: Since olownuard, f has a maximum value at vertex, $\quad f(-3)=24$

To be continued on Wednesday
02/03 NOTE: If you are not asked to write the function in standard form, you can find the vertex using a different method. The coordinates of the vertex of the graph of the function
$f(x)=a x^{2}+b x+c, a \neq 0 \quad$ is the ordered pair $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)$.
You don't have to use
Vertex formula: $x=-\frac{b}{2 a}, y=f(x)$. "complete the square method" all the time.
If you are given the vertex of the graph of a function and another point, you can find the \rightarrow quadratic function equation.t page for an application.
Example 5: Write the equation of the quadratic function which passes through the point $(0,7)$ and whose vertex is $(-2,10)$.
\rightarrow Quadratic function
vertex $(-2,10)$

Standard form

$$
f(x)=a(x-\underline{\underline{h}})^{2}+\underline{k}
$$

$$
\Rightarrow f(x)=\underbrace{a}_{?}(x+2)^{2}+10 \leftarrow \text { find } \underline{" a}^{\prime} \text {. }
$$

The function posses $\Rightarrow f(0)=a(0+2)^{2}+10=7$ through $(0,7) \quad 4 a+10=7 \Rightarrow 4 a=-3$

$$
a=-\frac{3}{4}
$$

Let's apply vertex formula: (example 4)

$$
\begin{aligned}
f(x) & =-2 x^{2}-12 x+6 \\
& \Rightarrow a=-2, b=-12, c=6
\end{aligned}
$$

Vertex: x-coordinate $=h$
$(-3,24)$

$$
x=\frac{-b}{2 a}=\frac{-(-12)}{2(-2)}=\frac{12}{-4}=-3
$$

$\Rightarrow x=-3$ exactly same as we found by the other method.

- y-coordinate $=k=f(h)$

$$
\begin{aligned}
y & =f(-3) \leftarrow \text { substitute" }-3^{n} \text { in } f . \\
& =-2(-3)^{2}-12 \cdot(-3)+6 \\
& =-18+36+6=24
\end{aligned}
$$

$y=24 \quad$ exactly same.
standard form $\rightarrow f(x)=a(x-h)^{2}+k$

Example 6: Find the quadratic function that satisfies:
(1) The axis of symmetry is: $x=-4 \Rightarrow f(x)=a(x+4)^{2}+k$ using (1)
(2) The y-intercept is:
(0.80)
(3) There is only one x-intercept. No vertical shift $\Rightarrow k=0 \Rightarrow f(x)=a(x+4)^{2}$

$$
\begin{align*}
(0,80) \Rightarrow f(0) & =a(0+4)^{2}=80 \Rightarrow a=5 \tag{2}\\
& \Rightarrow f(x)=5(x+4)^{2}
\end{align*}
$$

Example 7: A rocket is fired directly upwards with a velocity of $80 \mathrm{ft} / \mathrm{sec}$. The equation for its
exercise height, H, as a function of time, t, is given by the function $H(t)=-16 t^{2}+80 t$.
parabola, downurard
a. Find the time at which the rocket reaches its maximum height.
\Rightarrow reaches maximum at vertex x-coordinate:
b. Find the maximum height of the rocket.

$$
t=\frac{-b}{2 a}=\frac{-80}{2(-16)}=2.5 \text { seconds }
$$

maximum height:

$$
\begin{aligned}
H((2.5) & =-16 \cdot(2.5)^{2}+80 \cdot(2.5) \\
& =100 \mathrm{ft}
\end{aligned}
$$

