Section 5.3a - Graphs of Secant and Cosecant Functions

Using the identity $\csc (x)=\frac{1}{\sin (x)}$, you can conclude that the graph of g will have a vertical asymptote whenever $\sin (x)=0$. This means that the graph of g will have vertical asymptotes at $x=0, \pm \pi, \pm 2 \pi, \ldots$. The easiest way to draw a graph of $g(x)=\csc (x)$ is to draw the graph of $f(x)=\sin (x)$, sketch asymptotes at each of the zeros of $f(x)=\sin (x)$, then sketch in the cosecant graph.

$$
g(x)=\csc (x)=\frac{1}{\sin (x)} ; \quad \text { if } \sin (x)=0 \text {, then } g(x) \text { has a vertical asymptote. }
$$

Here's the graph of $f(x)=\sin (x)$ on the interval $\left(-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right)$.

$$
\begin{aligned}
& f(x)=\underbrace{\csc x}_{\text {an be zero }} \\
&=\frac{1}{\underbrace{\sin x}} \\
& \begin{aligned}
& \sin x=0 \\
& x=0, \pi, 2 \pi, 3 \pi \ldots \\
&-\pi,-2 \pi,-3 \pi \\
& \operatorname{Ver}(x)=0 .
\end{aligned} \\
& \operatorname{in}(x)
\end{aligned}
$$

Next, we'll include the asymptotes for the cosecant graph at each point where $\sin (x)=0$.
$f(x)=\csc x$
period $=2 \pi$
VIA. $x=k \pi$

Now we'll include the graph of the cosecant function.

Period: 2π

y-intercept: None
Domain: $x \neq k \pi, k$ is an integer
Range: $(-\infty,-1] \cup[1, \infty)$

Typically, you'll just graph over one period $(0,2 \pi)$.
one period is alurays enough

To graph $y=A \csc (B x-C)+D$, first graph, THE HELPER GRAPH: $y=A \sin (B x-C)+D$.
ex

$$
\begin{array}{r}
y=2 \csc (2 x-\pi)+1 \xrightarrow{\text { Always }} \text { Graph } y=2 \sin (2 x-\pi)+1 \\
\text { then put "the parabola" } \\
\text { shapes on top of sine function. } \\
\text { Do not forget V.A. }
\end{array}
$$

You'll also be able to take advantage of what you know about the graph of $f(x)=\cos (x)$ to help you graph $g(x)=\sec (x)$. Using the identity $\sec (x)=\frac{1}{\cos (x)}$, you can conclude that the graph of g will have a vertical asymptote whenever $\cos (x)=0$.
This means that the graph of g will have vertical asymptotes at $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \ldots$. The easiest way to draw a graph of $g(x)=\sec (x)$ is to draw the graph of $f(x)=\cos (x)$, sketch asymptotes at each of the zeros of $f(x)=\cos (x)$, then sketch in the secant graph.

$$
g(x)=\sec (x)=\frac{1}{\cos (x)} ; \quad \text { if } \cos (x)=0 \text {, then } g(x) \text { has a vertical asymptote. }
$$

Here's the graph of $f(x)=\cos (x)$ on the interval $\left(-\frac{5 \pi}{2}, \frac{5 \pi}{2}\right)$.

Next, we'll include the asymptotes for the secant graph.

There are V.A
for $f(x)=\sec x$

$$
\begin{aligned}
& x=\frac{\pi}{2}, \frac{3 \pi}{2} \quad \text { VA } \\
& -\frac{\pi}{2},-\frac{3 \pi}{2}
\end{aligned}
$$

Now we'll include the graph of the secant function.

Period: 2π
Vertical Asymptote:
$x=k \pi / 2$ is an odd integer, k is odd graph $\left\{\begin{array}{l}x \text {-intercepts: None } \\ y \text {-intercept: }(0,1) \\ \text { Domain: } x \neq k \pi / 2, k \text { is } \\ \text { Range: }(-\infty,-1] \cup[1, \infty)\end{array}\right.$

Typically, you'll just graph over one period $(0,2 \pi)$.

To graph $y=A \sec (B x-C)+D$, first graph, THE HELPER GRAPH: $y=A \cos (B x-C)+D$.

$$
y=A \sec (B x-C)+D \xrightarrow{\text { Always }} \operatorname{gach}^{2} y=A \cos (B x-C)+D
$$

ad then pit "pratoble"
shapes on top of cosine! Do not forge $\xlongequal{\text { VA. }}$.

Example 1:
er graph:

$$
\begin{gathered}
y=4 \cos \left(\frac{x}{2}\right) \\
V_{\text {vertical }} \prod_{B=\frac{1}{2}}^{\text {Stretch }}
\end{gathered}
$$

Horizontal Strech

$$
\text { period }=\frac{2 \pi}{1 / 2}=4 \pi
$$

Note $f(x)=4 \sec \left(\frac{x}{2}\right)$ has V.A at

$$
\begin{aligned}
x= & \pi, 3 \pi, 5 \pi \ldots \\
& -\pi,-3 \pi,-5 \pi
\end{aligned}
$$

because $\cos \left(\frac{x}{2}\right)=0$ at those points !!!

Example 2: Sketch $f(x)=-2 \csc \left(\frac{\pi x}{2}-\frac{\pi}{2}\right)$
Helper graph:

$$
y=-2^{A} \sin \left(\frac{\pi}{2} x-\frac{\pi}{2}\right)=-2 \sin \left(\frac{\pi}{2}(x-1)\right)
$$

- $A=-2 \rightarrow$ Vertical stretching and reflection
- $B=\frac{\pi}{2} \rightarrow$ horizontal Shrinking

$$
\text { period }=\frac{2 \pi}{\pi / 2}=4
$$

- $C=\frac{\pi}{2} \rightarrow$ horizontal shift by $\frac{C}{B}=\frac{\pi / 2}{\pi / 2}=1$ mit right.
\Rightarrow Then put $y=-2 \csc \left(\frac{\pi}{2} x-\frac{\pi}{2}\right)$.
Note $f(x)=-2 \csc \left(\frac{\pi}{2} x-\frac{\pi}{2}\right)$ hos V.A.
ot

$$
\begin{aligned}
& x=1,3,5,7 \ldots \\
& \quad-1,-3,-5,-7 \ldots
\end{aligned}
$$

because $\sin \left(\frac{\pi}{2} x-\frac{\pi}{2}\right)=0$ at these values.

To be continued on Friday. 03/25

Example 3: Give an equation of the form $y=A \csc (B x-C)+D$ and $y=A \sec (B x-C)+D$ that could describe the following graph.
Complete the helper graph! Let's find helper:

$$
y=A \sin (B x-C)+D
$$

$$
\text { - } A=\frac{6}{2}=3 \Rightarrow A=3
$$

$$
f(x)=3 \csc (x)-1
$$

- $B=1$ since period $=2 \pi$.
- $C=0$ since no shift
- $D=-1$, 1 unit down $D=\frac{-4+2}{2}=-1$

Exercise: Give an equation of the form $y=A \csc (B x-C)+D$ and $y=A \sec (B x-C)+D$ that could describe the following graph.
Viewing as a secant function:

- amplitude $=\frac{7-(-1)}{2}=\frac{8}{2}=4 \Rightarrow A=4$
- period $=8=\frac{2 \pi}{B} \Rightarrow B=\frac{\pi}{4}$

$$
\begin{aligned}
y & =4 \cos \left(\frac{\pi}{4}(x-1)\right)+3 \\
& =4 \cos \left(\frac{\pi x}{4}-\frac{\pi}{4}\right)+3
\end{aligned}
$$

- Shift 1 to right, $\frac{C}{B}=1 \Rightarrow C=B=\frac{\pi}{4}$
- Vertical shift $=\frac{(-1)+7}{2}=3 \rightarrow D=3$
$\Rightarrow y=4 \sec \left(\frac{\pi}{4} x-\frac{\pi}{4}\right)+3$

Example 3: Give an equation of the form $y=A \csc (B x-C)+D$ and $y=A \sec (B x-C)+D$ that could describe the following graph.

Exercise: Give an equation of the form $y=A \csc (B x-C)+D$ and $y=A \sec (B x-C)+D$ that could describe the following graph.

$$
f(x)=4 \sin \left(\frac{\pi}{4} x+\frac{\pi}{4}\right)+3
$$

$\Rightarrow f(x)=4 \csc \left(\frac{\pi}{4} x+\frac{\pi}{4}\right)+3$

Let's find helper:

$$
y=A \sin (B x-C)+D
$$

- amplitude $=\frac{8}{2}=4$ $A=4$

$$
\begin{array}{r}
\text { period }=3-(-5)=8 \\
\frac{2 \pi}{13}=8 \Rightarrow B=\frac{\pi}{4}
\end{array}
$$

- shifted 1 unit left

$$
\begin{aligned}
& \frac{C}{B}=-1 \Rightarrow C=-\frac{\pi}{4} \\
& D=3 \text { wits up! }
\end{aligned}
$$

Exercise: Find the vertical asymptotes of:
a) $f(x)=2 \sec \left(\frac{x}{2}-\pi\right)=2 \cdot \frac{1}{\cos \left(\frac{x}{2}-\pi\right)}$

Vertical Asymptotes:

$$
\cos \left(\frac{x}{2}-\pi\right)=0 \Rightarrow
$$

$$
\Rightarrow x=k \pi, k \text { oold }
$$

$$
\begin{aligned}
& \frac{x}{2}-\pi=\frac{\pi}{2} \Rightarrow \frac{x}{2}=\frac{3 \pi}{2} \Rightarrow x=3 \pi \\
& \frac{x}{2}-\pi=\frac{3 \pi}{2} \Rightarrow \frac{x}{2}=\frac{5 \pi}{2} \Rightarrow x=5 \pi \\
& \frac{x}{2}-\pi=-\frac{\pi}{2} \Rightarrow \frac{x}{2}=\frac{\pi}{2} \Rightarrow x=\pi \\
& \frac{x}{2}-\pi=-\frac{3 \pi}{2} \Rightarrow \frac{x}{2}=\frac{-\pi}{2} \Rightarrow x=-\pi
\end{aligned}
$$

b) $f(x)=2 \csc \left(x-\frac{\pi}{4}\right)$

$$
=2 \cdot \frac{1}{\sin \left(x-\frac{\pi}{4}\right)}
$$

Vertical asymptotes: $\sin \left(x-\frac{\pi}{4}\right)=0$

$$
\begin{array}{ll}
x-\frac{\pi}{4}=0 \Rightarrow x=\frac{\pi}{4} & x-\frac{\pi}{4}=-\pi \Rightarrow x=\frac{-3 \pi}{4} \\
x-\frac{\pi}{4}=\pi \Rightarrow x=\frac{5 \pi}{4} & x-\frac{\pi}{4}=-2 \pi \Rightarrow x=\frac{-7 \pi}{4} \\
x-\frac{\pi}{4}=2 \pi \Rightarrow x=\frac{9 \pi}{4} & h \\
x=\frac{k \pi}{4}, k=\ldots-7,-3,1,5,9, \ldots
\end{array}
$$

or $\quad x=\frac{\pi}{4}+k \pi, k$ integer.

