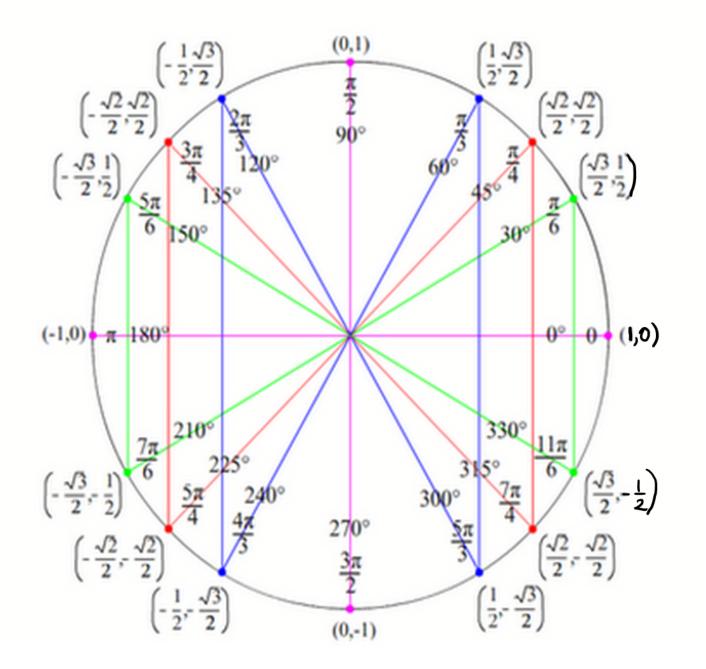
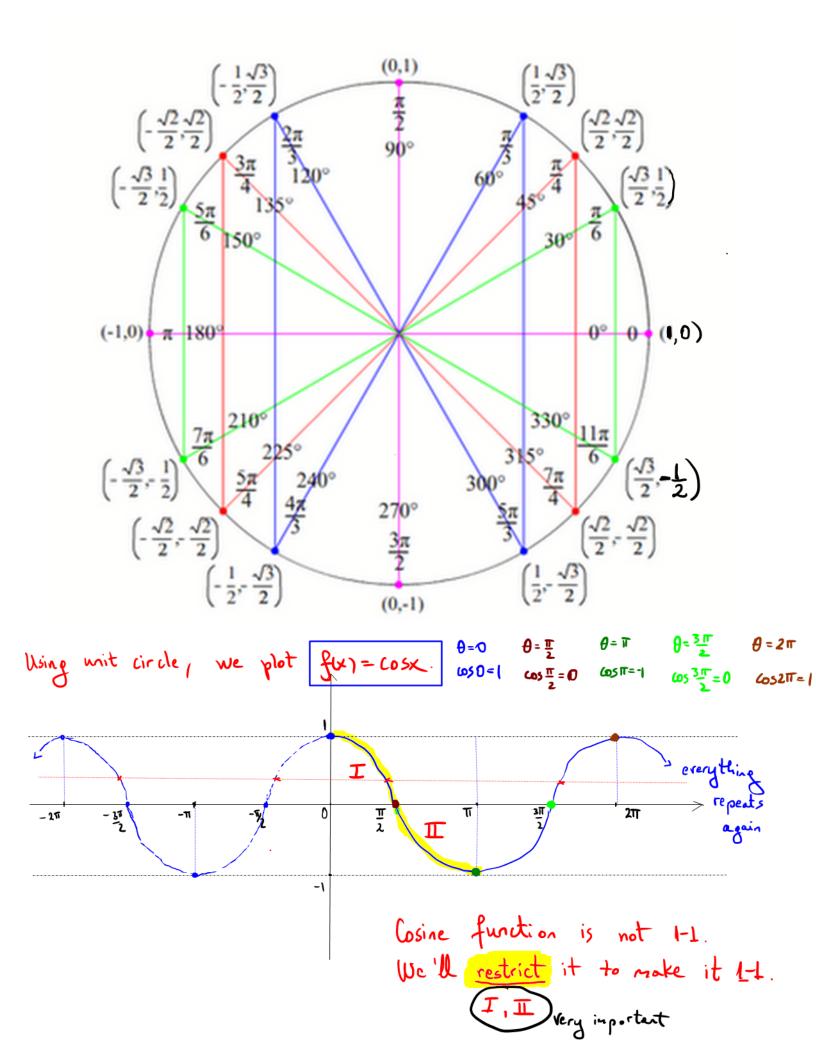
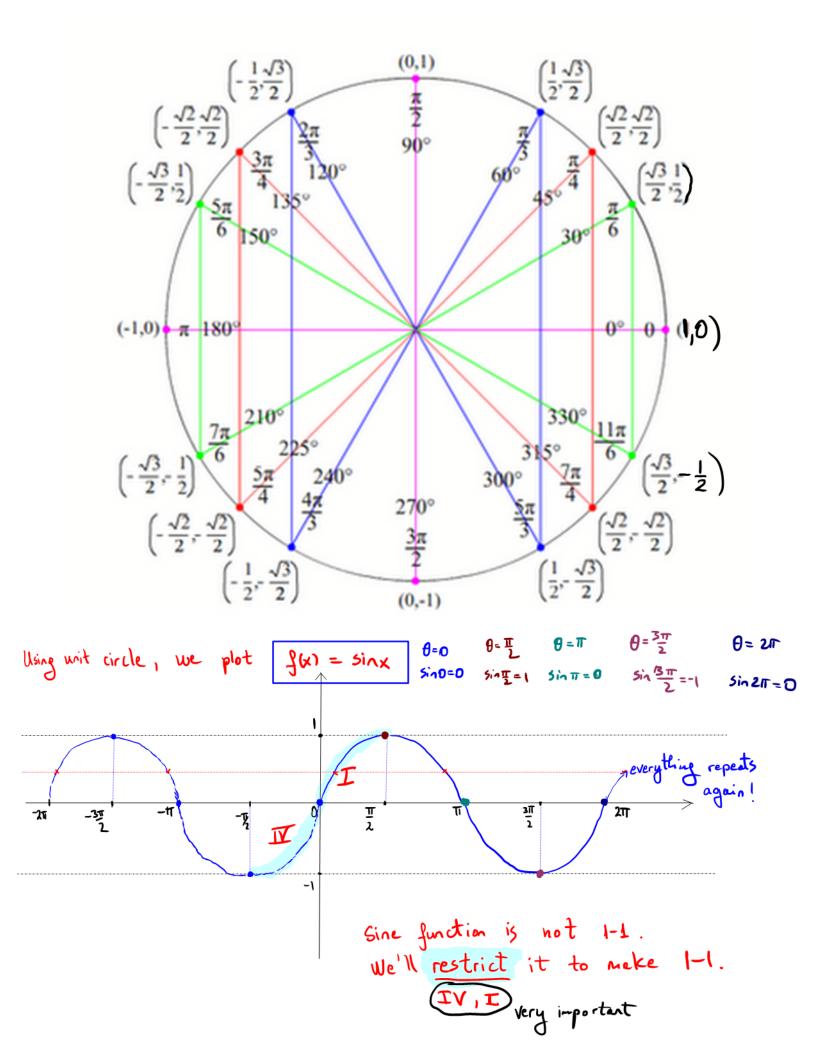
Popper # 16 - 1.A, 2.A, 3.A.
Popper $\# \underline{17} \leftarrow Bubble$ From with circle, $\theta = \frac{1}{5}$, 5π (1) Given $\sin \theta = \frac{1}{2}$ and θ is in QI, find θ .
A. $\frac{T}{6}$ B. $\frac{5\pi}{b}$ C. $\frac{T}{3}$ D. $\frac{2\pi}{3}$ E. none $\theta = \frac{1}{4}$, $\frac{7\pi}{4} = -\frac{\pi}{4}$ (2) Given $\cos \theta = \frac{\sqrt{2}}{2}$ and θ is in QIV , find θ .
A. = B. = C = D. none
$\begin{array}{c} \hline 3 \\ \hline 3 \\ \hline \end{array} & \operatorname{sin}^{1}\left(\frac{-1}{2}\right) = \begin{array}{c} 0 \\ \leftarrow \end{array} \\ \begin{array}{c} \operatorname{Auadrant} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} -\pi \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} -\pi \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} -\pi \\ \hline \end{array} \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \end{array} $ \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} -\pi \\ \end{array} \end{array} \\ \end{array} \\ \end{array}
(4) $\cos^{-1}\left(\frac{12}{2}\right) = \theta \leftarrow \text{quadrant } T \longrightarrow \Theta = \begin{pmatrix} 3 T \\ 4 \end{pmatrix}$ A. T_{4} $B_{-} = \begin{pmatrix} T_{2} \\ T_{4} \end{pmatrix}$ $C_{-} = \begin{pmatrix} 3 T \\ 4 \end{pmatrix}$ $A_{-} = \begin{pmatrix} T_{2} \\ T_{4} \end{pmatrix}$ $C_{-} = \begin{pmatrix} 3 T \\ 4 \end{pmatrix}$ $C_{-} = \begin{pmatrix} 3 T \\ 4 \end{pmatrix}$ $C_{-} = \begin{pmatrix} 3 T \\ 4 \end{pmatrix}$

Unit Circle:
$$x^2+y^2=1$$
, any point $(x,y) = (\cos\theta, \sin\theta)$
Never forget: $x = \cos\theta$, $y = \sin\theta$



ex. Find all angles in unit circle for which $\cos \theta = \frac{1}{2}$ \rightarrow From unit circle, we can see $\theta = \frac{\pi}{3}$ Two Answers $\theta = \frac{5\pi}{3} = -\frac{\pi}{3}$ (some position)





Section 5.4 - Inverse Trigonometry

We have not yet studied the graphs of the sine and cosine functions, but we are going to take a quick look at them before we cover inverse trigonometry.

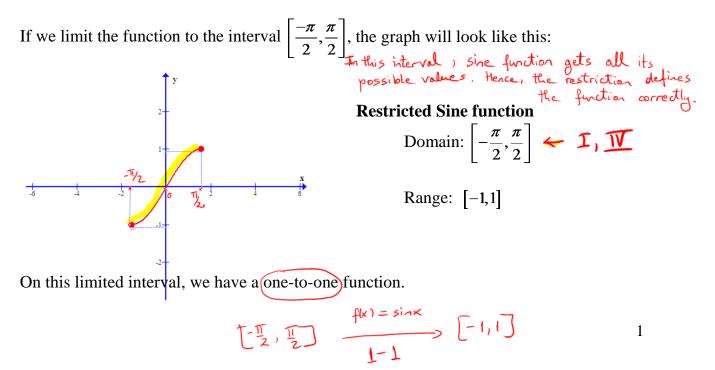
Here's the graph of $f(x) = \sin(x)$.

$$-2\pi$$

The function is a periodic function. That means that the functions repeats its values in regular intervals, which we call the period. The period of since function = 2π .

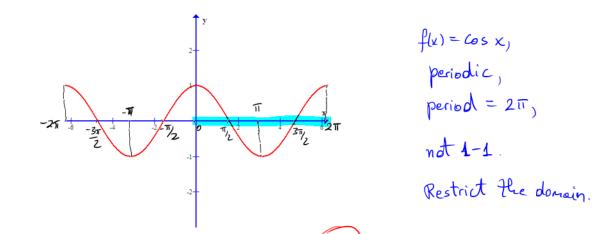
flx)=sinkx) is not one-to-one! We can make it one-to-one. Restrict the domain!!! Is it one to one?

If the function is not one-to-one, we run into problems when we consider the inverse of the function. What we want to do with the sine function is to restrict the values for sine. When we make a careful restriction, we can get something that IS one-to-one.

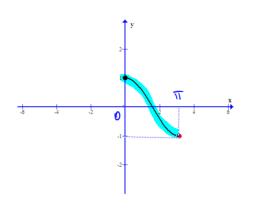


1

Let's do the same thing with $f(x) = \cos(x)$. Here's the graph of $f(x) = \cos(x)$.

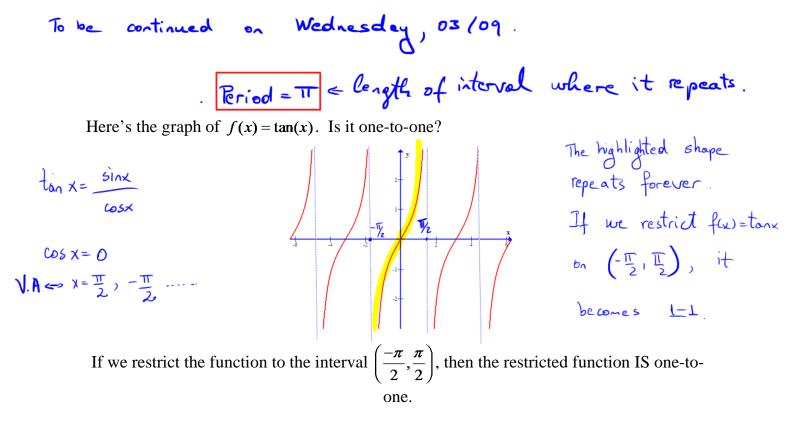


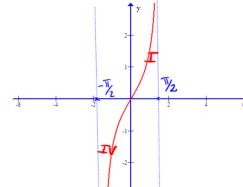
It's also not one-to-one. If we limit the function to the interval $[0,\pi]$ however, the function IS one-to-one.



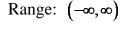
Here's the graph of the restricted cosine function. In this interval, fui = cosx gets all its possible values, hence restriction defines the function correctly. Domain: $[0,\pi] \leftarrow I, \blacksquare$ Range: [-1,1]

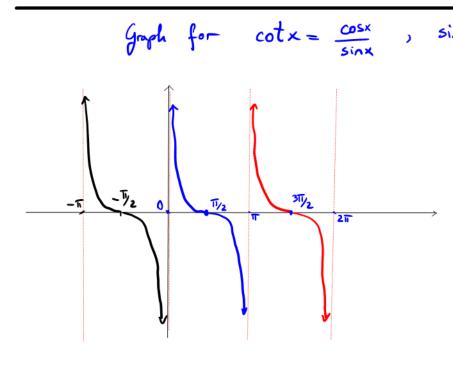
$$\begin{bmatrix} 0, \pi \end{bmatrix} \xrightarrow{f(x) = \cos x} \begin{bmatrix} -1, 1 \end{bmatrix}$$





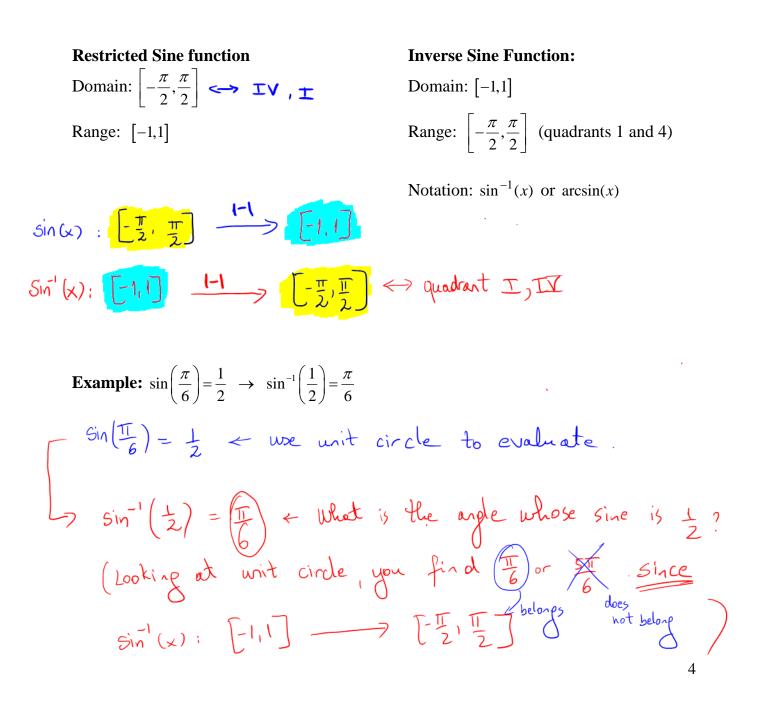
Restricted Tangent function Domain: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \leftarrow \mathbf{T}_{1}\mathbf{\nabla}$





, sinx=0 => $x=0, \pi, 2\pi \iff V.A$. Similar as tanx, cot x gets repeated in every π -interval => period = π . Restrict on $(0,\pi) \iff I, \pi$ then I, π cot x: $(0,\pi) \xrightarrow{I-1} (-\infty,\infty)$ $\cot^{T}(x) = xist s$ We now want to evaluate inverse trig functions. With these problems, instead of giving you the angle and asking you for the value, I'll give you the value and ask you what angle gives you that value.

Important: When we covered the unit circle, we saw that there were two angles that had the same value for most of our angles. With inverse trig, we can't have that. We need a unique answer, because of our need for 1-to-1 functions. We'll have one quadrant in which the values are positive and one quadrant where the values are negative. The restricted graphs we looked at can help us know where these values lie. We'll only state the values that lie in these intervals (same as the intervals for our graphs):



• When asked to find all angles in writh circle for which $\sin\theta = \frac{1}{2} \implies \text{Answer}: \theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$

• Evaluate
$$\sin^{-1}\left(\frac{1}{2}\right)$$
:
 \sin^{-1} : $\begin{bmatrix} -1, 1 \end{bmatrix} \longrightarrow \begin{bmatrix} \pi \\ 2 \end{bmatrix} \begin{bmatrix} \pi \\ 2 \end{bmatrix} = 0$ underant $\exists or \exists \forall$
 $\exists \ln k$ $\sin^{-1}\left(\frac{1}{2}\right) = -\theta$ in quadrant $\exists or \exists \forall$
 $\exists 1$
 $\sin \theta = \frac{1}{2} \implies \theta = \begin{pmatrix} \pi \\ 6 \end{pmatrix} = - \begin{pmatrix} \pi \\ 6 \end{pmatrix} = \begin{bmatrix} \pi \\ 6 \end{bmatrix}$
 $\exists 1$
 $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$

Short cut:
 Evaluate sin⁻¹(x) -> • if x positive => GI
 if x negative => GIV
 -1 ≤ x ≤ 1.

Restricted Cosine function

Inverse Cosine Function:

Domain: $[0, \pi] \iff \mathcal{I}, \mathcal{I}$ Domain: [-1, 1]Range: [-1, 1]Range: $[0, \pi]$ (quadrants 1 and 2)

Notation: $\cos^{-1}(x)$ or $\arccos(x)$

$$CO5X : [0, T] \xrightarrow{H} [-1, T]$$

$$CO5X : [-1, T] \xrightarrow{H} [-1, T] \iff \text{quadrant } T, T$$

Example:
$$\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \rightarrow \cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$

 $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \ll \log k$ at unit circle
 $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \ll \log k$ at unit circle
 $\cos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \ll What is the argle whose cosine is $\frac{\sqrt{2}}{2}$?
(boking at unit circle, you find $\frac{\pi}{4}$ and $\frac{\pi}{4}$ does
not belong
 $\cos^{-1}(\kappa) : [-1, 1] \rightarrow [0, \pi]$$

• When asked find all angles in with circle for which $\cos \theta = \frac{\sqrt{2}}{2} \implies \text{Answer: } \theta = \frac{\pi}{4} \text{ or } \frac{7\pi}{4} = -\frac{\pi}{4}$

Evaluate cos' (1/2) Cost: [-1,1] ~ [0, TT] = quadrant I or I $\cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = 0$ in quadrant I or I. Think Ţ $\cos\theta = \frac{\sqrt{2}}{2} \longrightarrow \theta = \left(\frac{11}{4}\right) = \frac{\sqrt{1}}{\sqrt{1}}$ \Longrightarrow $(05^{-1}(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}$

Shortcut:
 Evaluate cos⁻¹(×) → of × is positive → QI
 if × is negative → QI
 -1≤×≤1

To be continued on Wednesday,

03/09

Restricted Tangent function

Inverse Tangent Function:

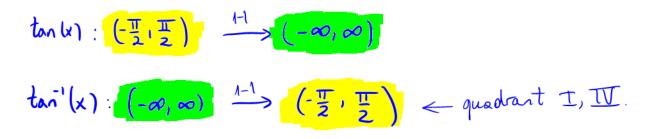
Domain:
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Domain:
$$(-\infty,\infty)$$

Range:
$$(-\infty,\infty)$$

Range:
$$\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$$
 (quadrants 1 and 4)

Notation: $\tan^{-1}(x)$ or $\arctan(x)$



Example:
$$\tan\left(\frac{\pi}{4}\right) = 1 \rightarrow \tan^{-1}(1) = \frac{\pi}{4}$$

 $\tan\left(\frac{\pi}{4}\right) = 1 \leftarrow use \quad unit circle .$
 $\tan^{-1}(1) = \frac{\pi}{4} \leftarrow What is the argle whose tangent is $1 ?$
By unit circle , you find $\left(\frac{\pi}{4}\right)^{or} = \frac{5\pi}{4}$, and
 $\tan^{-1}(x) : (-\infty, +\infty) \longrightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$
below $p!$$

Example 1: Compute each of the following:

$$I_{1}\overline{Y}$$
a) $\sin^{-1}\left(\frac{1}{2}\right) = \theta$

$$\Rightarrow \sin \theta = \frac{1}{2}$$
b) $\tan^{-1}\left(\sqrt{3}\right) = \theta$

$$\Rightarrow \tan \theta = \sqrt{3}$$

$$\Rightarrow \theta = \frac{1}{2}$$

$$\Rightarrow \theta = \frac{1}{6}$$

$$f_{\text{II}} = \theta \iff \cos \theta = 0 \iff \theta = \frac{T}{2} \text{ or } \frac{T}{2} \implies \theta = \frac{T}{2}$$

$$\mathbf{I}_{n} \mathbf{U}$$

$$\mathbf{e}) \sin^{-1} \left(-\frac{1}{2}\right) = \mathbf{\theta} \iff \sin \mathbf{\theta} = -\frac{1}{2} \iff \mathbf{\theta} = \frac{\mathbf{T}_{n}}{\mathbf{\theta}} \quad \mathbf{e} = -\frac{\mathbf{T}}{\mathbf{\theta}} \qquad \mathbf{$$

g)
$$\arctan(-1)$$
. = $\theta \Leftrightarrow \tan \theta = -1 \Leftrightarrow \theta = \frac{\pi}{4}$ or $\frac{\pi}{4} = -\frac{\pi}{4} \Rightarrow \theta = -\frac{\pi}{4}$

$$T_{i} \square$$

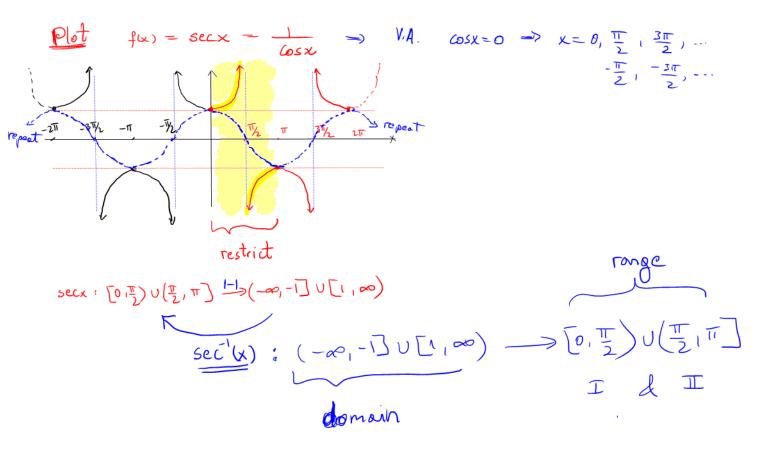
$$h) \sec^{-1}(2) = \theta \iff \sec \theta = 2 \qquad T_{i} \square$$

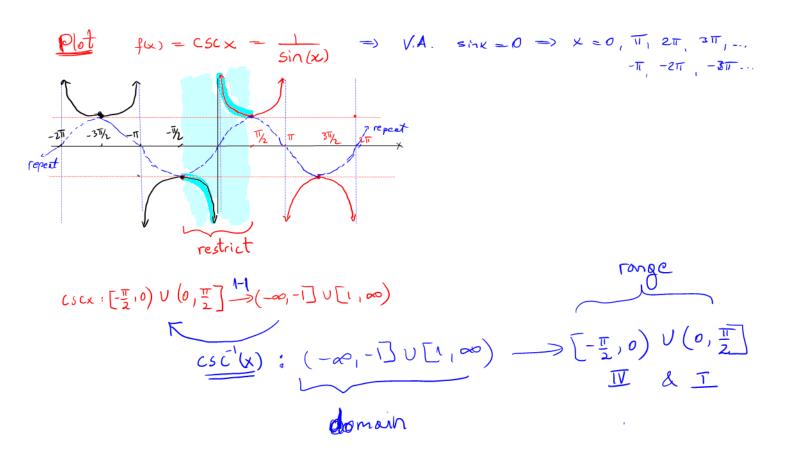
$$\sec \theta = \frac{1}{\cos \theta} = 2 \iff \cos \theta = \frac{1}{2} \iff \theta = \frac{1}{3} \text{ or } \frac{3}{3}$$

$$\Rightarrow \theta = \frac{1}{3}$$

i)
$$\csc^{-1}(0) = 0$$
 \iff $\csc \theta = 0$
Undefined! $1 = 0$ \iff there is no angle for which
 $\sin \theta$ $1 = 0$ \iff there is no angle for which
 $\sin \theta$ $1 = 0$ \iff $1 = 0$ (
 $1 = 1$

NOTE: Domains of inverse trig functions: DO NOT FORGET! $f(x) = \sin^{-1}(x); \quad [-1,1] \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} = \operatorname{quadrant} I \& IV$ $f(x) = \cos^{-1}(x); \quad [-1,1] \longrightarrow \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} = \operatorname{quadrant} I \& IV$ $f(x) = \tan^{-1}(x); \quad (-\infty, \infty) \longrightarrow (-\pi \\ 2 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \& IV$ $f(x) = \cot^{-1}(x); \quad (-\infty, \infty) \longrightarrow (0, \pi) = \operatorname{range} - \operatorname{quadrant} I \& IT$ $\operatorname{lock} \operatorname{at} \int f(x) = \sec^{-1}(x); \quad (-\infty, 1] \cup [1, \infty) \longrightarrow \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix}) \cup \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \& IT$ $\operatorname{lock} \operatorname{at} \int f(x) = \sec^{-1}(x); \quad (-\infty, 1] \cup [1, \infty) \longrightarrow \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix}) \cup \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \downarrow, IT$ $\operatorname{lock} \operatorname{at} \int f(x) = \csc^{-1}(x); \quad (-\infty, 1] \cup [1, \infty) \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, 0 \cup \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \downarrow, IT$ $\operatorname{lock} \operatorname{randt} \int f(x) = \csc^{-1}(x); \quad (-\infty, 1] \cup [1, \infty) \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, 0 \cup \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \downarrow, IT$ $\operatorname{lock} \operatorname{randt} \int f(x) = \operatorname{csc}^{-1}(x); \quad (-\infty, 1] \cup [1, \infty) \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, 0 \cup \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \downarrow, IT$ $\operatorname{lock} \operatorname{randt} \int f(x) = \operatorname{csc}^{-1}(x); \quad (-\infty, 1] \cup [1, \infty] \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, 0 \cup \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \downarrow, IT$ $\operatorname{lock} \operatorname{randt} \int f(x) = \operatorname{csc}^{-1}(x); \quad (-\infty, 1] \cup [1, \infty] \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, 0 \cup \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \downarrow, IT$ $\operatorname{lock} \operatorname{randt} \int f(x) = \operatorname{csc}^{-1}(x); \quad (-\infty, 1] \cup [1, \infty] \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, 0 \cup \begin{bmatrix} 0 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix} = \operatorname{range} - \operatorname{quadrant} I \downarrow, IT$ $\operatorname{lock} \operatorname{randt} \int f(x) = \operatorname{csc}^{-1}(x); \quad (-\infty, 1] \cup [1, \infty] \longrightarrow \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, 0 \cup \begin{bmatrix} \pi \\$





Never forget the range of inverse trigonometric functions.
Example 2: Find the exact value:
$$\sin^{-1}\left[\sin\left(\frac{7\pi}{6}\right)\right] = \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \leftarrow \text{quadrant IV}$$

 $\sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}$

Example 3: Find the exact value:
$$\cos^{-1}\left[\cos\left(\frac{4\pi}{3}\right)\right]$$
; $\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3} \ll \operatorname{quadran} \mp \Pi$
 $\operatorname{I}_{1}\Pi$
 $\operatorname{I}_{0}\left(\frac{4\pi}{3}\right) = -\frac{1}{2}$
Note: $\cos^{-1}\left(\cos\left(\frac{2\pi}{3}\right)\right) = \frac{2\pi}{3}$ but $\cos^{-1}\left(\cos\left(\frac{4\pi}{3}\right)\right) \mp \frac{4\pi}{3}$
Example 4: Find the exact value: $\tan^{-1}\left[\tan\left(\frac{3\pi}{4}\right)\right] \mp \tan^{-1}\left(-1\right) = -\frac{\pi}{4} \leftarrow \operatorname{quadran} \mp \Pi$
 $\operatorname{I}_{0}\Pi$
 $\operatorname{I}_{0}\Pi$
 $\operatorname{I}_{0}\Pi$
 $\operatorname{I}_{0}\Pi$
 $\operatorname{I}_{1}\Pi$
 I_{1}

Note: If a trigonometric function and its inverse are composed, then we have a shortcut. However, we need to be careful about giving an answer that is in the range of the inverse trig function.

$$\begin{cases}
\cos^{-1}[\cos(\theta)] = \theta & \text{if } \theta \in [0, \pi] \\
\sin^{-1}[\sin(\theta)] = \theta & \text{if } \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\tan^{-1}[\tan(\theta)] = \theta & \text{if } \theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{cases}$$

Examples:

$$\sin^{-1}\left[\sin\left(\frac{\pi}{8}\right)\right] = \frac{\pi}{8} \quad \text{but} \quad \sin^{-1}\left[\sin\left(\frac{7\pi}{8}\right)\right] \neq \frac{7\pi}{8} \quad \text{should be } \frac{\pi}{8}$$

$$\cos^{-1}\left[\cos\left(\frac{\pi}{8}\right)\right] = \frac{\pi}{8} \quad \text{but} \quad \cos^{-1}\left[\cos\left(\frac{9\pi}{8}\right)\right] \neq \frac{9\pi}{8} \quad \text{should be } -\frac{\pi}{8}$$

$$\tan^{-1}\left[\tan\left(\frac{\pi}{8}\right)\right] = \frac{\pi}{8} \quad \text{but} \quad \tan^{-1}\left[\tan\left(\frac{7\pi}{8}\right)\right] \neq \frac{7\pi}{8} \quad \text{should be } -\frac{\pi}{8}$$

10

Example 5: Find the exact value: $\cos\left[\cos^{-1}\left(\frac{1}{6}\right)\right] = \frac{1}{6}$ Well-defined

If the inverse trig function is the inner function, then our job is easier.

 $\cos[\cos^{-1}(x)] = x \text{ for any number } x \text{ such that } -1 \le x \le 1.$ $\sin[\sin^{-1}(x)] = x \text{ for any number } x \text{ such that } -1 \le x \le 1.$ $\tan[\tan^{-1}(x)] = x \text{ for any number } x.$ As long as it is usell-defined. Examples: $\sin\left[\sin^{-1}\left(\frac{1}{5}\right)\right] = \frac{1}{5}$ $\cos\left[\cos^{-1}\left(-\frac{2}{7}\right)\right] = -\frac{2}{7}$ $\exp\left[-\frac{2}{7}\right] = -\frac{2}{7}$ $\tan[\tan^{-1}\left(\frac{1}{4}\right)] = \frac{1}{4}$ $\tan[\tan^{-1}\left(\frac{1}{4}\right)] = \frac{1}{4}$ $\exp\left[-\frac{2}{5}\right] = \frac{1}{5}$ $\sin\left(\sin^{-1}\left(\frac{2}{5}\right)\right) = \text{ undefined.}$

 $\tan[\tan^{-1}(5)] = 5$.

