Popper \# 27
(1)

$$
\begin{aligned}
\frac{2-\cot ^{2} \theta}{1+\cot ^{2} \theta} & +3 \cos ^{2} \theta
\end{aligned}=\frac{\frac{2 \cdot \sin ^{2} \theta-\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \theta=\frac{1}{\sin ^{2} \theta}}{\frac{1}{\sin ^{2} \theta}}+3 \cos ^{2} \theta}{} \begin{aligned}
& =\frac{2 \sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{2} \theta} \cdot \frac{\sin ^{2} \theta}{1}+3 \cos ^{2} \theta \\
& =2 \sin ^{2} \theta+2 \cos ^{2} \theta=2
\end{aligned}
$$

A. 1
B. 2

$$
\text { C. } 2 \cos ^{2} \theta \quad \text { D. } 2 \sin ^{2} \theta
$$

(2)

$$
\begin{aligned}
\frac{1-\tan ^{2} x}{1+\tan ^{2} x}+2 \sin ^{2} x & =\frac{1 \cdot \frac{\cos ^{2} x}{\cos ^{2} x}-\frac{\sin ^{2} x}{\cos ^{2} x}}{\frac{1}{\sec ^{2} x} x}+\frac{1}{\cos ^{2} x} \\
& =\cos ^{2} x-\sin ^{2} x+2 \sin ^{2} x \\
& =\cos ^{2} x+\sin ^{2} x=1
\end{aligned}
$$

A. $2 \sin ^{2} x$ B. 1
C. $2 \cos ^{2} x$
D. 2
(3) A
(4) (B)

Section 6.2 - Double and Half Angle Formulas

Now suppose we are interested in finding $\sin (2 A)$. We can use the sum formula for sine to develop this identity:
$\sin (2 A)=\sin (A+A)$
$=\sin A \cos A+\sin A \cos A$
$\sin 2 A=2 \sin A \cos A$

Similarly, we can develop a formula for $\cos (2 A)$:
$\cos (2 A)=\cos (A+A)$

$$
=\cos A \cos A-\sin A \sin A
$$

$\cos 2 A=\cos ^{2} A-\sin ^{2} A$

We can restate this formula in terms of sine only or in terms of cosine only by using the Pythagorean theorem and making a substitution. So we have:

$$
\begin{aligned}
& \cos (2 A)=\cos A-\sin ^{2} A \\
& \cos (2 A)=1-2 \sin ^{2} A
\end{aligned} \quad \leftarrow \text { Combine If } \cos ^{2} A+\sin ^{2} A=1, \text { then } \quad \begin{aligned}
& \cos ^{2} A=1-\sin ^{2} A \quad \text { or } \sin ^{2} A=1-\cos ^{2} A
\end{aligned}
$$

$\cos (2 A)=2 \cos ^{2} A-1$
We can also develop a formula for $\tan (2 A)$:

$$
\begin{aligned}
\tan (2 A)= & \tan (A+A) \\
& \tan A+\tan A
\end{aligned} \quad \text { Recall } \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}, A=B
$$

$$
\begin{aligned}
& =\frac{\tan A+\tan A}{1-\tan A \tan A} \\
\tan (2 A) & =\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

These three formulas are called the double angle formulas for sine, cosine and tangent.
Besides these formulas, we also have the so-called half-angle formulas for sine, cosine and tangent, which are derived by using the double angle formulas for sine, cosine and tangent, respectively.

Double - Angle Formulas
$\sin (2 A)=2 \sin A \cos A$ $\cos (2 A)=\cos ^{2} A-\sin ^{2} A$ $=2 \cos ^{2} A-1$ $=1-2 \sin ^{2} A$

$$
\tan (2 A)=\frac{2 \tan A}{1-\tan ^{2} A}
$$

Half - Angle Formulas, call $\frac{A}{2}=x$, then $A=2 \cdot \frac{A}{2}=2 x$.
$\sin \left(\frac{A}{2}\right)= \pm \sqrt{\frac{1-\cos A}{2}}$

$$
\sin (x)= \pm \sqrt{\frac{1-\cos (2 x)}{2}}
$$

$\cos \left(\frac{A}{2}\right)= \pm \sqrt{\frac{1+\cos A}{2}}$
Rewrite

$$
\tan \left(\frac{A}{2}\right)=\frac{\sin A}{1+\cos A}=\frac{1-\cos A}{\sin A}
$$

$$
\begin{aligned}
& \cos (x)= \pm \sqrt{\frac{1+\cos (2 x)}{2}} \\
& \tan (x)=\frac{\sin (2 x)}{1+\cos (2 x)}=\frac{1-\cos (2 x)}{\sin (2 x)}
\end{aligned}
$$

Note: In the half-angle formulas the \pm symbol is intended to mean either positive or negative but not both, and the sign before the radical is determined by the quadrant in which the angle $\frac{A}{2}$ terminates.

Example 1: Suppose that $\cos \alpha=-\frac{4}{7}$ and $\frac{\pi}{2}<\alpha<\pi$. Find
Quadrant II, $\sin \alpha$ positive
a. $\cos (2 \alpha)=2 \cos ^{2} \alpha-1$

$$
=2\left(-\frac{4}{7}\right)^{2}-1=2 \cdot \frac{16}{49}-1=\frac{32}{49}-\frac{49}{49}=\frac{-17}{49}
$$

b. $\sin (2 \alpha)=2 \sin \alpha \cdot \cos \alpha$

$$
\begin{aligned}
& =2\left(\frac{\sqrt{33}}{7}\right) \cdot\left(\frac{-4}{7}\right) \\
& =\frac{-8 \sqrt{33}}{49}
\end{aligned}
$$

$$
\sin \alpha=\frac{\sqrt{33}}{7}
$$

$$
\tan \alpha=-\frac{\sqrt{33}}{4}
$$

$$
\begin{aligned}
& \tan (2 \alpha)=\frac{\sin (2 \alpha)}{\cos (2 \alpha)}=\frac{2 \tan (2 \alpha)}{1-\tan ^{2} \alpha}=\frac{2\left(-\frac{\sqrt{33}}{4}\right)}{1-\left(-\frac{\sqrt{33}}{4}\right)^{2}}=\frac{-\frac{\sqrt{33}}{2}}{\frac{16 \cdot 1-\frac{33}{16}}{-17 / 49}}=\frac{-\sqrt{33} / 49}{17}=\frac{-\sqrt{33} / 2}{-17 / 16} \\
& =\frac{\sqrt{33}}{7} \cdot \frac{166^{8}}{17}=\frac{8 \sqrt{33}}{17}
\end{aligned}
$$

Example 2: Simplify each:
DOUBLE ANGLE FORMULAS - BACKWARDS
a. $2 \sin 45^{\circ} \cos 45^{\circ}$

$$
=\sin \left(2.45^{\circ}\right)=\sin \left(90^{\circ}\right)=1
$$

b. $\cos ^{2} \frac{\pi}{9}-\sin ^{2} \frac{\pi}{9}=\cos \left(2 \times \frac{\pi}{9}\right)=\cos \left(\frac{2 \pi}{9}\right)$
c.

$$
\text { c. } \begin{aligned}
\frac{2 \tan 15^{\circ}}{1-\tan ^{2} 15^{\circ}} & =\tan \left(2 \times 15^{\circ}\right) \\
& =\tan \left(30^{\circ}\right)=\frac{\sqrt{3}}{3}
\end{aligned}
$$

d. $1-2 \sin ^{2}(\underbrace{6 A}_{a})=\cos (\underbrace{2 * 6 A}_{\pi})=\cos (12 A)$
this is your angle, so you double it

Now we'll look at the kinds of problems we can solve using half-angle formulas.
Recall
©

$$
\frac{\cos (2 A)=2 \cos ^{2}(A)-\frac{1}{+1}}{\cos (2 A)+1=2 \cos ^{2} A}
$$

or $2 \cos ^{2}(A)=\cos (2 A)+1 \leqslant$ Divide by 2

$$
\begin{aligned}
& \cos ^{2}(A)=\frac{\cos (2 A)+1}{2}<\text { Take } \sqrt{\text {. }} \\
& \cos (A)= \pm \sqrt{\frac{1+\cos (2 A)}{2}} \\
& \cos (2 A)=1-2 \sin ^{2}(A) \in \text { Solve for } \sin (A) \\
& +2 \sin ^{2}(A)+2 \sin ^{2}(A) \\
& -\cos (2 A) \quad-\cos (2 A) \\
& 2 \sin ^{2}(A)=1-\cos (2 A) \leftarrow \text { Divide by } 2 \\
& \sin ^{2}(A)=\frac{1-\cos (2 A)}{2} \leftarrow \text { Take } \sqrt{\text {. }} \\
& \sin (A)= \pm \sqrt{\frac{1-\cos (2 A)}{2}} \\
& \tan (A)=\sqrt{\sin (A)} \quad \text { suppose } A \\
& \text { is in Quadrant I. } \\
& =\sqrt{\frac{1-\cos (2 A)}{1+\cos (2 A)} \cdot \frac{(1-\cos (2 A))}{(1-\cos (2 A))}}=\sqrt{\frac{(1-\cos (2 A))^{2}}{1-\cos ^{2}(2 A)}} \\
& =\frac{\sqrt{(1-\cos (2 A))^{2}}}{\sqrt{\sin ^{2}(2 A)}}=\frac{1-\cos (2 A)}{\sin (2 A)} \\
& \text { similarly } \\
& \text { for the } \\
& \text { other form. }
\end{aligned}
$$

$$
\sin (x)= \pm \sqrt{\frac{1-\cos (2 x)}{2}}, \quad \cos (x)= \pm \sqrt{\frac{1+\cos (2 x)}{2}}, \tan (x)=\frac{\sin (2 x)}{1+\cos (2 x)}=\frac{1-\cos (2 x)}{\sin (2 x)}
$$

Example 3: Use a half-angle formula to find the exact value of each.
a. $\sin 15^{\circ}=$ positive

$$
\begin{aligned}
& =\sqrt{\frac{1-\cos \left(2 \cdot 15^{\circ}\right)}{2}}=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}=\sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2}} \\
& =\sqrt{\frac{2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{\sqrt{4}}=\frac{\sqrt{2-\sqrt{3}}}{2}
\end{aligned}
$$

quadrant II
Think b. $\cos \left(\frac{5 \pi}{8}\right)=\cos \left(\frac{225^{\circ}}{2}\right)=$ negative

$$
\begin{aligned}
\frac{5 \pi}{8}=\frac{5 \pi}{8} \cdot \frac{450}{4}=\frac{225}{2} & =-\sqrt{\frac{1+\cos \left(2 \times \frac{225^{\circ}}{2}\right)}{2}}=-\sqrt{\frac{1+\cos \left(225^{\circ}\right)}{2}} \\
& =-\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{2}}=-\sqrt{\frac{\frac{2-\sqrt{2}}{2}}{2}}=-\sqrt{\frac{2-\sqrt{2}}{4}}=-\frac{\sqrt{2-\sqrt{2}}}{2}
\end{aligned}
$$

Think

$$
\text { c. } \tan \left(\frac{\frac{\pi}{7 \pi}}{12}\right)=\tan \left(105^{\circ}\right)
$$

$$
\begin{aligned}
& \frac{\frac{7 \pi}{12}=\frac{7 \pi}{x 2} \cdot \frac{150}{71}=105^{\circ}}{\tan x=\frac{\sin (2 x)}{1+\cos (2 x)}}=\frac{\sin \left(2 * 105^{\circ}\right)}{1+\cos \left(2 * 105^{\circ}\right)}=\frac{\sin \left(210^{\circ}\right)}{1+\cos \left(210^{\circ}\right)}=\frac{-1 / 2}{1-\sqrt{3} / 2} \\
&
\end{aligned} \begin{aligned}
\frac{-\frac{1}{2}}{\not 2} & =-\frac{1}{2} \cdot \frac{2}{2-\sqrt{3}}=\frac{-1}{2-\sqrt{3}} \cdot \frac{(2+\sqrt{3})}{(2+\sqrt{3})} \\
& =\frac{-(2+\sqrt{3})}{2^{2}-(\sqrt{3})^{2}}=\frac{-(2+\sqrt{3})}{4-3}=-2-\sqrt{3}
\end{aligned}
$$

(C)

$$
\begin{aligned}
\tan \left(\frac{7 \pi}{12}\right) & =\tan \left(105^{\circ}\right) \quad \tan x=\frac{1-\cos (2 x)}{\sin (2 x)} \\
& =\frac{1-\cos \left(2 \cdot 105^{\circ}\right)}{\sin \left(2+105^{\circ}\right)} \\
& =\frac{1-\cos \left(210^{\circ}\right)^{2}}{\sin \left(210^{\circ}\right)}=\frac{\frac{2}{2} 1+\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=\frac{\frac{2+\sqrt{3}}{2}}{-\frac{1}{2}} \\
& =-(2+\sqrt{3})=-2-\sqrt{3}
\end{aligned}
$$

To be continued on Monday, 04/11
Quadrant IV
Example 4: Answer these questions for $\cos \theta=\frac{4}{9}, \frac{3 \pi}{2}<\theta<2 \pi$
a. In which quadrant does the terminal side of the angle lie? Divide by 2 .
b. Complete the following: $\frac{3 \pi}{4}<\frac{\theta}{2}<\pi \quad \frac{\frac{3 \pi}{2}<\theta}{2}<\frac{2 \pi}{2}$

$$
\frac{\frac{3 \pi}{2}}{2}<\frac{\theta}{2}<\frac{2 \pi}{2}
$$

Half of the angle θ should be in Q.II.
c. In which quadrant does the terminal side of $\frac{\theta}{2}$ lie? Quadrant II.
d. Determine the sign of $\sin \left(\frac{\theta}{2}\right)=$ positive
e. Determine the sign of $\cos \left(\frac{\theta}{2}\right)=$ negative
f. Find the exact value of $\sin \left(\frac{\theta}{2}\right)=\sqrt{\frac{1-\cos \theta}{2}}=\sqrt{\frac{\frac{9}{9} 1-\frac{4}{9}}{2}}=\sqrt{\frac{\frac{5}{9}}{2}}=\sqrt{\frac{5}{18}}$

$$
=\frac{\sqrt{5}}{\sqrt{18}}=\frac{\sqrt{5}}{\sqrt{9} \cdot \sqrt{2}}=\frac{\sqrt{5}}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{10}}{6}
$$

g. Find the exact value of $\cos \left(\frac{\theta}{2}\right)=-\sqrt{\frac{1+\cos \theta}{2}}=-\sqrt{\frac{9.1+\frac{4}{9}}{2}}=-\sqrt{\frac{\frac{13}{9}}{2}}=-\sqrt{\frac{13}{18}}$

$$
=\frac{-\sqrt{13}}{\sqrt{18}}=\frac{-\sqrt{13}}{\sqrt{9} \sqrt{2}}=\frac{-\sqrt{13}}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=-\frac{\sqrt{26}}{6}
$$

h. Find the exact value of $\tan \left(\frac{\theta}{2}\right)=\frac{\sin (\theta / 2)}{\cos (\theta / 2)}=\frac{\sqrt{10} / 6}{-\sqrt{26} / 6}=-\sqrt{\frac{16}{26}}=-\sqrt{\frac{5}{13}}=-\frac{\sqrt{65}}{13}$

$$
\begin{aligned}
& \quad \frac{\text { or }}{\tan \frac{\theta}{2}=\frac{1-\cos \theta^{2}}{\sin \theta}=} \\
& \text { Quads ant }^{2}=\sqrt{1-\left(\frac{4}{9}\right)^{2}}=-\frac{\sqrt{65}}{9}
\end{aligned}
$$

