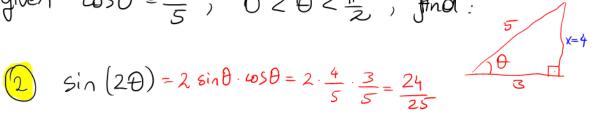
Popper # 28

(Sec
$$\theta$$
 -1) (Sec θ + 1) = $\sec^2 \theta$ -1 = $\tan^2 \theta$

$$\Rightarrow \text{ Given } \cos\theta = \frac{3}{5} \text{ , } 0 < \theta < \frac{\pi}{2} \text{ , } \text{ find : }$$

$$x=4 \qquad \text{ sin } \theta = \frac{4}{5}$$

$$0 < \theta < \frac{\Gamma}{2}$$



$$\cos\theta = \frac{3}{5}$$

$$si_{\lambda}\theta = \frac{4}{5}$$

A.
$$\frac{6}{25}$$
 B. $\frac{4}{25}$ C. $\frac{24}{25}$ D. $\frac{4}{25}$ E. none

$$D_{\cdot \cdot} \frac{4}{25}$$

(3)
$$\cos(2\theta) = 2\cos^2\theta - 1 = 2\left(\frac{3}{5}\right)^2 - 1 = 2\cdot\frac{9}{25} - \frac{25}{25} = \frac{-7}{25}$$

A.
$$\frac{7}{25}$$

A.
$$\frac{7}{25}$$
 C. $\frac{18}{25}$ D. $-\frac{18}{25}$ E. non e

$$\frac{(4)}{4} \tan (20) = \frac{\sin (20)}{\cos (20)} = \frac{24/25}{-7/25} = -24/7$$

A,
$$\frac{24}{7}$$
 B. $\frac{-24}{7}$ C. $\frac{4}{3}$ D. $\frac{16}{9}$ E. none.

(5)
$$\tan (\frac{\theta}{2}) = \frac{\sin \theta}{1 + \cos \theta} = \frac{\frac{4}{5}}{1 + \frac{3}{5}} = \frac{\frac{4}{5}}{8/5} = \frac{4}{8} = \frac{1}{2}$$

How to solve a linear Equation:
$$2x + 3 = 9$$
 Solve!

"Goal is to leave x alone."

 $2x = 6$ $x = 3$

Section 6.3 - Solving Trigonometric Equations

Next, we'll use all of the tools we've covered in our study of trigonometry to solve some equations. An equation that involves a trigonometric function is called a trigonometric equation. Since trigonometric functions are periodic, there may be infinitely solutions to some

trigonometric functions are periodic, there may be infinitely solutions to solute trigonometric equations.

Trigonometric Equation — Which angle(s)

Let's say we want to solve the equation: $\sin(x) = \frac{1}{2}$ Ask yourself: Which angle(s)

have sine = $\frac{1}{2}$ The first angles that come to mind are: $x = \frac{\pi}{6}$ and $x = \frac{5\pi}{6}$. Answer

(convert in radians) in one period

Remember that the period of the sine function is 2π ; sine function repeats itself after each The solutions of unit circle repeat the meetres in every periodic rotation rotation.

Therefore, the solutions of the equation are: $x = \frac{\pi}{6} + 2k\pi$, $x = \frac{5\pi}{6} + 2k\pi$, where k is any integer.

Recall: For sine and cosine functions, the period is 2π . For tangent and cotangent functions, the period is π .

Example 1: a) Solve the equation in the interval $[0,2\pi)$: $2\cos x = -1$

$$2 \cos x = -1$$

$$\cos x = -\frac{1}{2} \qquad \Rightarrow \qquad x = \frac{2\pi}{3} \quad \text{or} \quad x = \frac{4\pi}{3}$$

$$\Rightarrow \quad \chi = \frac{2\pi}{3}$$

b) Find all solutions to the equation: $2\cos x = -1$

From past (a),
$$\cos x = -\frac{1}{2}$$
 \Longrightarrow $x = \frac{2\pi}{3}$ or $\frac{4\pi}{3}$

$$\cos x = -\frac{1}{2}$$

all
$$X = \frac{2\pi}{3} + 2\pi \cdot k$$
 or $X = \frac{4\pi}{3} + 2\pi \cdot k$, k integer

$$X = \frac{4\pi}{3} + 2\pi \cdot k$$

one period

Example 2: a) Solve the equation in the interval $[0, \pi)$: $\tan x = -1$

$$tan \times = -1$$

only
$$X = \frac{3\pi}{4}$$
 in Quadrant II , gives $\tan(\frac{3\pi}{4}) = -1$

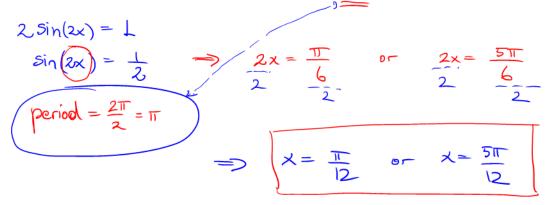
$$tan\left(\frac{3\pi}{24}\right) = -1$$

b) Find all solutions to the equation: $\tan x = -1$

$$= \frac{3\pi}{4} + \pi \cdot k_i$$
 k integer

one period

Example 3: Solve the equation in the interval $[0, \pi)$: $2\sin(2x) = 1$



Example 4: Solve the equation in the interval $[0,2\pi)$: $\csc^2 x = 4$

$$CSC^{2}X = 4 \iff CSCX = +2$$

$$CSCX = +2$$

$$CSCX = +2$$

$$Sin_{X} = 2$$

$$Sin_{X} = -1$$

Example 5: Find all solutions to the equation: cos(2x) = 0

$$2x = \frac{\pi}{2} \quad \text{or} \quad 2x = \frac{3\pi}{2}$$

$$period = \frac{2\pi}{2} = \pi$$

$$x = \frac{\pi}{4} \quad \text{or} \quad x = \frac{3\pi}{4}$$

All solutions:
$$X = \frac{\pi}{4} + \pi \cdot k$$
, k integer. $X = \frac{3\pi}{4} + \pi \cdot k$

oneperiod

Example 6: Solve the equation in the interval $[0,2\pi)$: $2\sin^2 x - 5\sin x - 3 = 0$

$$2\sin^2 x - 5\sin x - 3 = 0$$

$$(\sin x - 3)(2\sin x + 1) = 0$$

$$\sin x - 3 = 0 \quad \text{or} \quad 2\sin x + 1 = 0$$

$$\sin x = 3 \qquad 2\sin x = -1$$

$$\sin x = 3 \qquad \sin x = -\frac{1}{2}$$

$$(\text{an't happen} \qquad \sin x = -\frac{1}{2}$$

Example 7: Solve the equation in the interval $[0,2\pi)$: $\cos^2 x - 3\sin x - 3 = 0$

$$\frac{\cos^2 x - 3\sin x - 3 = 0}{1 - \sin^2 x - 3\sin x - 3 = 0}$$

$$-\sin^2 x - 3\sin x - 2 = 0$$

$$\sin^2 x - 3\sin x - 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x + 2 = 0$$

$$\sin^2 x + 3\sin x$$

Example 8: Solve the equation in the interval $[0,2\pi)$: $\cos(2x) = 5\sin^2 x - \cos^2 x$

$$\cos(2x) = 5\sin^2 x - \cos^2 x$$
 (Always, keep just one trig. expression.)
 $2\cos^2 x - 1$ (We'll do everything with $\cos x$)

$$2\cos^{2}x - 1 = 5(1 - \cos^{2}x) - \cos^{2}x$$

$$2\cos^{2}x - 1 = 5 - 5\cos^{2}x - \cos^{2}x = 5 - 6\cos^{2}x$$

$$+ 6\cos^{2}x + 1$$

$$8\cos^{2}x = 6$$

$$\cos^{2}x = \frac{6}{8} \Leftrightarrow \cos^{2}x = \frac{3}{4}$$

$$\cos^{2}x = \frac{1}{4} \implies \cos^{2}x = \frac{1}{4}$$

$$\cos^{2}x = \frac{1}{4} \implies \cos^{2}x = \frac{3}{4}$$

$$\cos^{2}x = \frac{1}{4} \implies \cos^{2}x = \frac{3}{4}$$

$$\cos^{2}x = \frac{1}{4} \implies \cos^{2}x = \frac{3}{4}$$

$$\cos^{2}x = \frac{3}{4} \implies \cos^{2}x = \frac{3}{4}$$

$$\cos^{2}x = \frac{1}{4} \implies \cos^{2}x = \frac{1}{4} \implies \cos^{2}x = \frac{1}{4}$$

$$\cos^{2}x = \frac{1}{4} \implies \cos^{2}x = \frac{1}{4} \implies$$

- Transform into an expression with only one trigonometric function if possible. - Wo'll do everything with (sink) $\cos(2x) = 5\sin^2 x - \cos^2 x$ $1-2\sin^2 x = 5\sin^2 x - (1-\sin^2 x)$ $1 - 2\sin^2 x = 5\sin^2 x - 1 + \sin^2 x$ + $1 + 2\sin^2 x$ + $1 + 2\sin^2 x$ $2 = 8 \sin^2 x$ $\Rightarrow sin^2x = \frac{2}{x} = \frac{1}{4} \Rightarrow sin x = \pm \frac{1}{2}$ $\sin x = \frac{1}{2}$ or $\sin x = -\frac{1}{2}$ $x = \frac{\pi}{6}$, $\frac{5\pi}{6}$ or $x = \frac{7\pi}{6}$, $\frac{11\pi}{6}$

To be continued on Friday, 04/15

Example 9: Find all solutions to the equation: $\sin^2 x \cos x = \cos x$ (there is a common factor, bring in one side)

$$5in^2x \cdot cosx = -cosx$$

$$\sin^2 x \cos x - \cos x = 0$$

$$\cos x \left(\sin^2 x - 1 \right) = 0$$

$$X = \frac{\pi}{2}, \frac{3\pi}{2}$$
 or $X = \frac{\pi}{2}, \frac{3\pi}{2}$

All Solutions:

$$X = \frac{\pi}{2} + 2\pi \cdot k$$

$$X=\frac{3\pi}{2}+2\pi\cdot k$$

(use sec2x = 1+ tan2x) Example 10: Find all solutions: $\sec^2 x + 2 \tan x = 0$

$$3ec^2x + 2tanx = 0$$

$$ton^2$$
 $tonx = 0$ \Leftrightarrow $(tonx)$

$$\frac{1}{\tan^2 x + 1 + 2 \tan x = 0} \iff (\tan x + 1)(\tan x + 1) = 0$$

$$tan x = -1$$
 \longrightarrow $X = \frac{3\pi}{4}$ in one period = π

$$\Rightarrow$$
 $\times = \frac{3\pi}{4} + \pi \cdot k$, k integer.

Another
$$\Rightarrow$$
 tanx = -1 \Rightarrow $x = -\frac{\pi}{4}$ \Rightarrow solution

Note that
$$-\frac{\pi}{4} = \frac{3\pi}{4} + \pi \cdot (-1)$$

$$\Rightarrow$$
 $X = -\frac{\pi}{4} + \pi \cdot k$, kinteger

there are two periodical intervals

Example 11: Solve the equation in the **interval** [0,2): $\cot(\pi x) = -1$

$$\cot \left(\pi x \right) = -1$$

$$period = \frac{\pi}{\|} = 1$$

$$\frac{\pi x}{x} = \frac{3\pi}{4}$$
 over one period
$$x = \frac{3}{4}$$
 $\Rightarrow x = \frac{3}{4} + 1 = \frac{7}{4}$

$$X = \frac{3}{4}$$
 \Rightarrow $X = \frac{3}{4} + 1 = \frac{7}{4}$

next period

Example 12: Find all solutions of the equation in the interval $[0,4\pi)$: $2\sin\left(\frac{x}{2}\right) = 1$

2
$$\sin\left(\frac{x}{2}\right) = 1$$

$$\Rightarrow$$
 $\sin\left(\frac{x}{2}\right) - \frac{1}{2}$

- Think, in one full votation,

$$period = \frac{2\pi}{1/2} - 4\pi$$

$$2 \times \frac{x}{2} = 6 \times 2 \quad \text{or} \quad 2 \times \frac{x}{2} = 6 \times 2$$

$$\chi = \frac{2\pi}{6} = \frac{\pi}{3}$$
, $\chi = \frac{5\pi}{63} = \frac{5\pi}{3}$

Solve
$$\sin\left(\frac{x}{2}\right) = \frac{1}{2}$$
 in $[0,8\pi]$.

Solution:
$$\int \sin\left(\frac{x}{2}\right) = \frac{1}{2}$$

$$\left(\text{period} = \frac{2\pi}{V_2} = 4\pi\right)$$

$$\frac{x}{2} = \frac{\pi}{6} + 2 \quad \text{or} \quad \frac{x}{2} = \frac{5\pi}{6} + 2$$

$$\frac{x}{2} = \frac{\pi}{6} + 2$$

i.e.
$$X=\frac{\pi}{3}$$
, $\frac{5\pi}{3}$ in one period

Lo extend to next period:

Pay Attention to the Enterval.

Always, use identities (if possible) to simplify!

Example 13: Find all solutions of the equation in the interval $[0,2\pi)$: $\sec(\underline{x} + 2\pi) = 2$

Hence,
$$sec(x+2\pi) = sec(x)$$

Thus,
$$\sec(x) = 2$$

$$\frac{1}{\cos x} = 2$$

$$Cosx = \frac{1}{2} \Longrightarrow \left[x = \frac{\pi}{3}, \frac{5\pi}{3} \right]$$

$$X = \frac{\pi}{3} , \frac{5\pi}{3}$$

Example 14: Find all solutions of the equation in the interval $[0,\pi)$: $2\sin\left(2x-\frac{3\pi}{2}\right)=\sqrt{2}$ oneperiod

$$\Rightarrow 2 \sin\left(2x - \frac{3\pi}{2}\right) = 2$$

$$\sin\left(2x - \frac{3\pi}{2}\right) = \frac{\sqrt{2}}{2}$$

 $\sin\left(2x - \frac{3\pi}{2}\right) = \frac{\sqrt{2}}{2}$ (there is no identity to apply, hence go

In one full rotation, this expression

$$2x - \frac{311}{2} = (\frac{11}{4})$$
 or $2x - \frac{311}{2} = (\frac{311}{4})$

$$2x = \frac{\pi}{4} + \frac{3\pi}{2} \cdot \frac{2}{2}$$

$$\frac{2x = \frac{7\pi}{4}}{2}$$

$$X = \frac{7\pi}{8}$$
 Answer.

$$2x - \frac{3\pi}{2} = \left(\frac{3\pi}{4}\right)$$

$$2x = \frac{3\pi}{4} + \frac{3\pi}{2} \cdot \frac{2}{2}$$

$$2x = 4\pi$$

$$2x = 4\pi$$

$$x = \frac{4\pi}{8} \quad \text{not in } \boxed{0} \cdot \pi$$

Make sur you recognize formulas:

$$\sin^2\left(\frac{3\pi}{7}\right) + \cos^2\left(\frac{3\pi}{7}\right) = 1$$
 = No Hesitation

$$\cos^2\left(\frac{\pi}{8}\right) - \sin^2\left(\frac{\pi}{8}\right) = \cos\left(2 \times \frac{\pi}{8}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

B. L C. $\frac{1}{2}$ D. $\frac{\sqrt{2}}{2}$ E. none

Given
$$\sin(x) = \frac{3}{5}$$

$$\cos x = \frac{4}{5}$$

Given
$$\sin(x) = \frac{3}{5}$$
, $\cos(y) = \frac{12}{13}$, $0 \le x < 90^{\circ}$, $270^{\circ} < y < 360^{\circ}$. $\sin(y) = -\frac{5}{13}$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y = \frac{3}{5} \cdot \frac{12}{13} + \frac{4}{5} \cdot \left(-\frac{5}{13}\right) = \frac{16}{65}$$

A.
$$\frac{36}{65}$$
 B. $\frac{16}{65}$ C. $\frac{-16}{65}$ D. $\frac{-20}{65}$

$$C. -16$$

D.
$$\frac{-20}{65}$$

$$\frac{3}{\sin \left(\frac{y}{2}\right)} = \frac{1 - \cos y}{\sin y} = \frac{1 - \frac{12}{13}}{\frac{-5}{13}} = \frac{1}{\frac{-5}{13}} = -\frac{1}{5}$$

(4) (as
$$(2x) = \cos^2 x - \sin^2 x = \left(\frac{4}{5}\right)^2 - \left(\frac{3}{5}\right)^2 = \frac{7}{25}$$

$$A.\frac{7}{25}$$

$$A.\frac{7}{25}$$
 B. $\frac{18}{25}$ C. $\frac{-7}{25}$ D. none