

Section 7.2 -Area of a Triangle
In this section, we'll use a familiar formula and a new formula to find the area of a triangle.
You have probably used the formula $K=\frac{1}{2} b h$ to find the area of a triangle, where b is the length of the base of the triangle and h is the height of the triangle. We'll use this formula in some of the examples here, but we may have to find either the base or the height using trig functions before proceeding.

Here's another approach to finding area of a triangle. Consider this triangle:

$$
\text { Area }=\frac{1}{2} c * h
$$

$$
\sin A=\frac{h}{b}
$$

What if we do not know the height, but only 2 sides and angle in between?

$$
\Rightarrow h=b * \sin (A)
$$

A

The area of the triangle ABC is: $K=\frac{1}{2} b c \sin (A)$

It is helpful to think of this as Area $=1 / 2 *$ side ${ }^{*}$ side ${ }^{*}$ sine of the included angle.

Example 1: Find the area of the triangle.

14
Check: side, side, angle in between

$$
\begin{aligned}
& A=\frac{1}{2} \times 6^{3} \times 14 \cdot \sin \left(45^{\circ}\right) \\
& A=42 * \frac{\sqrt{2}}{2}=21 \sqrt{2} \text { unit }^{2} \\
& A \cong 29.7 \text { unit }^{2} \\
& \text { calculator }
\end{aligned}
$$

Example 2: Find the area of the triangle. Check: side angle side

Note: Consider

$$
\begin{aligned}
& A=\frac{1}{x} * x^{6} * 20 * \sin \left(120^{\circ}\right) \\
& A=120 \cdot \frac{\sqrt{3}}{2}=60 \sqrt{3} \text { e exact }
\end{aligned}
$$

the triangle with sides 12,20 and angle 60°.
Area $=103.92$ same as abode triangle
Example 3: Find the area of an isosceles triangle with legs measuring 12 inches and base angles measuring 52 degrees each. Round to the nearest hundredth.

$$
\begin{gathered}
\theta=180^{\circ}-52^{\circ}-52^{\circ}=76^{\circ} \Rightarrow \text { check: side angle side } \\
A=\frac{1}{2} \times 12^{6} \times 12 * \sin \left(76^{\circ}\right)=72 \sin \left(76^{\circ}\right) \\
A \cong 69.86 \mathrm{in}^{2}
\end{gathered}
$$

Example 4: In triangle ABC ; $a=12, b=20$ and $\sin (C)=0.42$. Find the area of the triangle.

Check: side angle side

$$
\begin{aligned}
& A=\frac{1}{2} \times 12^{6} \times 20+\sin (C) \\
& A-120 \times 0.42
\end{aligned}
$$

$$
A=50.4 \text { unit }^{2}
$$

Example 5: In triangle KLM, $\mathrm{k}=10$ and $\mathrm{m}=8$. Find all possible measures of the angle L

$$
\begin{aligned}
A & =\frac{1}{2} * k \times m * \sin (L) \\
20 & =\frac{1}{2} \times 10 \times 8 \times \sin (L) \\
& \Rightarrow \sin (L)=\frac{20}{40}=\frac{1}{2}
\end{aligned}
$$

$$
\Rightarrow L=30^{\circ} \text { or } L=150^{\circ}
$$

$$
\begin{aligned}
& A=\frac{1}{2} * k * m * \sin (L) \\
& 25=\frac{1}{2} * 10 \times 8 * \sin (L) \Leftrightarrow \sin (L)=\frac{25}{40}=\frac{5}{8} \Rightarrow L=\sin ^{-1}\left(\frac{5}{8}\right) \approx 39^{\circ} \\
& \text { c) the area of the triangle is } 80 \text { unit squares. } \\
& A=\frac{1}{2} * h * m * \sin (L) \quad \begin{array}{l}
\text { or } \\
\text { never } \\
\text { forget }
\end{array} \\
& 80=\frac{1}{2} * 180^{\circ}-39^{\circ}=141^{\circ}
\end{aligned}
$$

IMPossibLE notriangle
d) the area of triangle is 20 unit squares

$$
\begin{aligned}
A & =\frac{1}{2} \cdot h \cdot m \cdot \sin (L) \\
40 & =\frac{1}{2} \cdot 10 \cdot 8 \cdot \sin (L) \quad \\
& \Rightarrow L=40^{\circ}
\end{aligned}
$$

just one triangle

To be continued on Friday, 04/22

Formula for Area of a Regular Polygon Given a Side Length
$A=\frac{S^{2} N}{4 \tan \left(\frac{\pi}{N}\right)}$, where $\mathrm{S}=$ length of a side, $\mathrm{N}=$ number of sides.
\qquad proof of formula.

$$
N=6
$$

Example 6: A regular hexagon is inscribed in a circle of radius 12. Find the area of the hexagon. $r=12$

- Divide into 6 equal triangles. Each central angle $=\frac{360^{\circ}}{6}=60^{\circ}$
- Look at one triangle It is equilateral $\Rightarrow \delta=12$

$$
\Rightarrow \text { Area }=\frac{S^{2} \cdot N}{4 \tan \left(\frac{\pi}{N}\right)}=\frac{12^{2} \cdot 6}{4 \cdot \tan \left(30^{\circ}\right)}=\frac{216}{\frac{1}{\sqrt{3}}}=216 \sqrt{3}
$$

For reference, a pentagon has 5 sides, a hexagon has 6 sides, a heptagon has 7 sides, an octagon has 8 sides, a nonagon has 9 sides and a decagon has 10 sides.

- Think of a regular polygon with N sides, each side S lang.
- Connect the vertices with the center of polygon.

Area $_{\text {polygor }}=N$. Area triangle. You divided the polygon into

N equal triangles.

- Each central angle is $\frac{2 \pi}{N}$.

$$
\begin{aligned}
& \text { Area }_{\text {triangle }}=\frac{1}{2} \cdot s \cdot h=\uparrow \frac{1}{2} \cdot s \cdot \frac{s}{2 \tan \left(\frac{\pi}{N}\right)}=\frac{s^{2}}{4 \tan \left(\frac{\pi}{N}\right)} \\
& \tan \left(\frac{\pi}{N}\right)=\frac{s / 2}{h}=\frac{s}{2 h} \\
& \Rightarrow h=\frac{S}{2 \tan \left(\frac{\pi}{N}\right)} \\
& \Rightarrow A=\frac{N s^{2}}{4 \tan \left(\frac{\pi}{N}\right)} \\
& A \text { Area polygon }
\end{aligned}
$$

Area of a segment of a circle
You can also find the area of a segment of a circle. The shaded area of the picture is an example of a segment of a circle.

To find the area of a segment, find the area of the sector with central angle θ and radius $O A$. Then find the area of $\triangle O A B$. Then subtract the area of the triangle from the area of the sector.

Area of segment $=$ Area of sector AOB - Area of $\triangle A O B$

$$
=\frac{1}{2} r^{2} \theta-\frac{1}{2} r^{2} \sin (\theta)
$$

exercise Example 7: Find the area of the segment of the circle with radius 8 inches and central angle measuring $\frac{\pi}{4}$.
Solution:

$$
\text { Area }_{A A O B}=\frac{1}{2} \cdot 8 \cdot 8 \cdot \sin \frac{\pi}{4}=32 \cdot \frac{\sqrt{2}}{2}=16 \sqrt{2}
$$

