Popper 06^{5} Bubble
(1) Find the center of circle $x^{2}+(y-2)^{2}-3$ $(x-\underline{\underline{-}})^{2}+(y-\underline{\underline{2}})^{2}=3$
(A.) $(0,2)^{\left.(0,2)^{(}\right) \text {B. }(2,0)}$
c. $(0,0)$
D. $(\sqrt{3}, 0)$
(2) Given parabola $y^{2}=4 x-8$, horizontal parable find the focus point coordinates.
A. $(1,0)$
(13.) $(3,0)$
C) $(1,2)$
D. $(0,1)$
(3) A
(4) A

$$
\begin{aligned}
& 4 p=4 \\
& \Rightarrow p=1 \\
& \text { Focus }(1,0) \xrightarrow{1+2=3}
\end{aligned}
$$

Ellipse - roughly speaking - elongated version of a circle.
Math 1330 - Section 8.2

Ellipses

Definition: An ellipse is the set of all points, the sum of whose distances from two fixed points
 is constant. Each fixed point is called a focus (plural = foci).
Basic ellipses (centered at or
Basic "vertical" ellipse:
Equation: $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1, a>b$
Foci: $(0, \pm c)$, where $c^{2}=a^{2}-b^{2}$
Vertices: $(0, \pm a)$ major $a x i s$
Eccentricity: $e=\frac{c}{a}$

$$
\begin{aligned}
& \begin{array}{l}
d_{1}+d_{2}=\underbrace{\text { fixed }}_{?} \\
d_{1}=a-c \\
d_{2}=a+c \\
\frac{d_{1}+d_{2}}{}=2 \underline{=} \\
a^{n} \text { will give } \\
\text { vertices. } \\
d_{1}=d_{2} \\
d_{1}+d_{2}=2 a \\
d_{1}=d_{2}=a \\
c^{2}+b^{2}=a^{2} \\
\Rightarrow c^{2}=a^{2}-b^{2}
\end{array}
\end{aligned}
$$

Basic "horizontal" ellipse: Vertices mad foci
Equation: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$
Foci: $(\pm c, 0)$, where $c^{2}=a^{2}-b^{2}$
Vertices: $(\pm a, 0)$ major axis
Eccentricity: $e=\frac{c}{a}$ on x-axis

Getting an ellipse: Fix two points on the y-axis,
 say $(0, c)$ and $(0,-c)$.
Then plot all points, the sum of whose distances from the given points is fixed, we call the sum "Ea".
Coll the coordinates on x-axis to be $(b, 0),(-b, 0)$.

Need to find a formula that describes ellipse: Let (x, y) be any point,
then

$$
\begin{gathered}
\underset{\substack{\leftrightarrow \\
(x, y)(0, c)}}{d_{1}+d_{2}}=2 a=\text { fixed } \\
(x, y) \leftrightarrow \mid(0,-c) \\
\sqrt{\dot{d}^{2}+(y-c)^{2}}+\sqrt{x^{2}+(y+c)^{2}}=2 a
\end{gathered}
$$

\rightarrow Square both sides:

$$
x^{2}+(y-c)^{2}+x^{2}+(y+c)^{2}+2 \sqrt{\left(x^{2}+(y-c)^{2}\right)\left(x^{2}+(y+c)^{2}\right)}=4 a^{2}
$$

\rightarrow Simplify, we get

$$
x^{2}+y^{2}+c^{2}-2 a^{2}=-\sqrt{\left(x^{2}+(y-c)^{2}\right)\left(x^{2}+\left(y+c c^{2}\right)\right)}
$$

\Rightarrow Square both sides again:

$$
\left(x^{2}+y^{2}+c^{2}-2 a^{2}\right)^{2}=\left(x^{2}+y^{2}+c^{2}-2 y c\right)\left(x^{2}+y^{2}+c^{2}+2 y c\right)
$$

$\rightarrow \frac{\text { Perform calculations and simplify: }}{}$

$$
\begin{aligned}
& \left(x^{2}+y^{2}+c^{2}\right)^{2}+4 a^{4}-4 a^{2}\left(x^{2}+y^{2}+c^{2}\right)=\left(x^{2}+y^{2}+c^{2}\right)^{2}-4 y^{2} c^{2} \\
& 4 a^{4}-4 a^{2} x^{2}-4 a^{2} y^{2}-4 a^{2} c^{2}=-4 y^{2} c^{2}
\end{aligned}
$$

\rightarrow Substitute $c^{2}=a^{2}-b^{2}$ from construction

$$
\begin{aligned}
& 4 a^{4}-4 a^{2} x^{2}-4 a^{2} y^{2}-4 a^{2}\left(a^{2}-b^{2}\right)=-4 y^{2}(\underbrace{2}-b^{2}) \\
& 4 a^{4}-4 a^{2} x^{2}-4 a^{2} y^{2}-4 a^{4}+4 a^{2} b^{2}=-4 a^{2} y^{2}+4 y^{2} b^{2} \\
& \Rightarrow \\
& \Rightarrow 4 a^{2} x^{2}+4 b^{2} y^{2}=4 a^{2} b^{2}
\end{aligned}
$$

$\Rightarrow \frac{\text { Divide both sides }}{\text { by } 4 a^{2} b^{2}} \Rightarrow \frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$

Graphing ellipses: \rightarrow Bring it in standard form
To graph an ellipse with center at the origin:

- Rearrange into the form $\frac{x^{2}}{\text { number }}+\frac{y^{2}}{\text { number }}=1$.
- Decide if it's a "horizontal" or "vertical" ellipse.

0 if the bigger number is under x^{2}, it's horizontal (longer in x-direction).
0 if the bigger number is under y^{2}, it's vertical (longer in y-direction).

- Use the square root of the number under x^{2} to determine how far to measure in x direction.
- Use the square root of the number under y^{2} to determine how far to measure in y direction.
- Draw the ellipse with these measurements. Be sure it is smooth with no sharp corners
- $c^{2}=a^{2}-b^{2}$ where a^{2} and b^{2} are the denominators. So $c=\sqrt{\text { big denom - small denom }}$
- The foci are located c units from the center on the long axis.

To graph an ellipse with center not at the origin: Shifted Ellipsc (next time)

- Rearrange (complete the square if necessary) to look like $\frac{(x-h)^{2}}{\text { number }}+\frac{(y-k)^{2}}{\text { number }}=1$.
- Start at the center (h, k) and then graph it as before.

When graphing, you will need to find the orientation, center, values for a , b and c , vertices, foci, lengths of the major and minor axes and eccentricity.

To be continued on Monday, 02/15.

Example 1: Find all relevant information and graph $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1 . \longleftrightarrow$ horizontal $a^{2}=16 \Rightarrow a=4$
$b^{2}=1 \Rightarrow b=3$
Orientation: horizontal
Center: $(0,0)$
Vertices: $(4,0),(-4,0)$
Foci: $c^{2}=a^{2}-10^{2}=16-9=7 \Rightarrow C= \pm \sqrt{7}$

$$
(\sqrt{7}, 0),(-\sqrt{7}, 0)
$$

Length of major axis:

$$
2 \cdot a=2 \cdot 4=8
$$

Length of minor axis:

$$
2 \cdot b=2 \cdot 3=6
$$

Coordinates of the major axis:

$$
(4,0),(-4,0)
$$

Coordinates of the minor axis: $(0,3),(0,-3)$

Eccentricity: $e=\frac{c}{a}=\frac{\sqrt{7}}{4} \cong 0.66$

Example 2: Find all relevant information and graph $\frac{(x-1)^{2}}{9}+\frac{(y+2)^{2}}{25}=1$. Vertical
$(x-1)^{2}$

$$
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1 \Rightarrow \frac{(x-1)^{2}}{9}+\frac{(y+2)^{2}}{25}=1
$$

Vertical Orientation: Vertical $\left\lvert\, \begin{array}{r}\text { shift } 1 \text { right, } \\ 2 \text { down }\end{array}\right.$
$(0,0)$ Center: $(1,-2)$
$(0,5),(0,-5)$ Vertices: $(1,3), \sim(1,-7) \sim$
$(0,4),(0,-4)$ Foci: $(1,2) /,(1,-6)$
$2 \cdot 5=10 \quad$ Length of major axis: $\quad 2 \cdot 5=10$
$2 \cdot 3=6$ Length of minor axis: $2 \cdot 3=6$
$e=\frac{c}{a}=\frac{3}{5}$ Eccentricity: $\quad e=\frac{4}{5}=0.8$

Example 3: Write the equation in standard form. Find all relevant information and graph: $4 x^{2}-8 x+9 y^{2}-54 y=-49$.
\rightarrow Group xterm together, y terms together

$$
\left(4 x^{2}-8 x\right)+\left(9 y^{2}-54 y\right)=-49
$$

\Rightarrow Factor coefficients in front of squares

$$
\begin{gathered}
4\left(x^{2}-2 x+1^{2}\right)+9\left(y^{2}-6 y+9\right)=-49+4 \cdot 1+9.9 \\
\left(\frac{2}{2}=1\right)^{2} \\
\left(\frac{6}{2}-3\right)^{2}
\end{gathered}
$$

\Rightarrow Complete the square:

$$
4(x-1)^{2}+9(y-3)^{2}=36
$$

\Rightarrow Divide both sides by $36 \Rightarrow \frac{(x-1)^{2}}{9}+\frac{(y-3)^{2}}{4}=1$
Graph is easy now!

Example 4: Find the equation for the ellipse satisfying the given conditions.

$$
\left.\begin{array}{l}
\begin{array}{l}
\text { Foci }(\pm 3,0) \text {, vertices }(\pm 5,0) \\
c=3 \text { over } x \text {-axis } \\
a=5
\end{array} \\
c^{2}=a^{2}-b^{2} \\
3^{2}=5^{2}-b^{2} \Rightarrow b^{2}=16
\end{array} \rightarrow \begin{array}{c}
a^{2}=25 \\
b^{2}=16
\end{array}\right\} \quad \Rightarrow \quad \begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
& \Rightarrow \frac{x^{2}}{25}+\frac{y^{2}}{16}=1
\end{aligned}
$$

Example 5: Write an equation of the ellipse with vertices $(5,9)$ and $(5,1)$ if one of the foci is
(5, 7).

