Popper $07<$ Bubble
(1) State the vertex for the parabola:

Standard Form

$$
y^{2}-4 x-8=0 \quad \Rightarrow \quad y^{2}=4 x+8 \Rightarrow y^{2}=4(x+2)
$$

$y^{2}=4 x$ shifted 2 wits left 9
A. $(0,2)$
B. $(0,-2) \uparrow$
C. $(-2,0)$
D. none
horizontal
(2.) State the equation of directrix for this parabola

$$
x^{2}=8 y=4 \cdot y \quad p=2 \Rightarrow y=-2
$$

A. $x=2$
B. $x=-2$
C. $y=2$
(D.) $y=-2$
(3.) Given $\longrightarrow x^{2} \xrightarrow{\text { horizontal }}$
(3.) Given $\left[\frac{x^{2}}{36=a^{2}}+\frac{y^{2}}{11}=1\right.$, find major axis coordinates. $\left(\begin{array}{l}(a, 0) \\ (-a, 0)\end{array}\right.$
A. $(0,6)$ B. $(6,0)$
C. $(3,0)$
D. $(0,3)$
$(0,-6)$
$(-6,0)$
$(-3,0)$
$(0,-3)$
(4.) Find the foci points of above ellipse:

$$
c^{2}=a^{2}-b^{2}=36-11=25 \Rightarrow c= \pm 5
$$

(A.) $(5,0)$ B. $(0,5)$
C. $(\sqrt{11}, 0)$
D.nore,
$(-5,0)$
$(0,-5) \quad(-\sqrt{11}, 0)$

Think of $f(x)=\frac{1}{x}$

Definition: A hyperbola is the set of all points, the difference of whose distances from two fixed points is constant. Each fixed point is called a focus (plural = loci).

The focal axis is the line passing through the foci.
Visualize how it is built!
Cross-section

\Rightarrow By using similes stately as in in erachalas orellipess, we get $c^{2}-a^{2}+b^{2}$

The beauty of hyperbolas is that the foci and the corners of the rectangle are in a circle. This occurs because $c^{2}=a^{2}+b^{2}$

For any fixed point (x, y) on hyperbola above doing the difference of distances of this point to the foci very similarly as we did for ellipse, but here we here $c^{2}=a^{2}+b^{2}$, We deduce

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1
$$

Standard form: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \quad$ or $\quad \frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$
\longrightarrow begins with $\left[\frac{y^{2}}{a^{2}}\right.$
Basic "vertical" hyperbola:
Equation: $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b_{\boldsymbol{R}}^{2}}=1$
Asymptotes: $y= \pm \frac{a}{b} x$
always
Foci: $(0, \pm c)$, where $c^{2}=a^{2}+b^{2}$
Vertices: $(0, \pm a)$

Eccentricity: $\frac{c}{a} \quad(>1)$

$$
=2 d
$$

\rightarrow begins with $\frac{x^{2}}{a^{2}}$.
Basic "horizontal" hyperbola:

Equation: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Asymptotes: $y= \pm \frac{b}{a} x$
Foci: $(\pm c, 0)$, where $c^{2}=a^{2}+b^{2}$
Vertices: $(\pm a, 0)$

Eccentricity: $\frac{c}{a} \quad(>1)$

Note: The transverse axis is the line segment joining the two vertices. The conjugate axis is the line segment perpendicular to the transverse axis, passing through the center and extending a distance b on either side of the center. (These terms will make more sense after we do the graphing examples.)
Never forget: Hyperbola caves lie in between two intersecting lines opposite to each other.

Details about conjugate and transverse axis.
 $=2 b$

The conjugate axis of the hyperbola is the line segment through the center of the hyperbola and perpendicular to the transverse axis with endpoints $(0,-b)$ and $(0, b)$.
$"_{2 a}$

Center: $(0,0)$
Foci: $(-c, 0)$ and $(c, 0)$, where $c^{2}=a^{2}+b^{2}$
Vertices: $V_{1}(-a, 0)$ and $V_{2}(a, 0)$
Transverse Axis: $\overline{V_{1} V_{2}}$ Length of Transverse Axis: $2 a$
Conjugate Axis: $\overline{A B} \quad$ Length of Conjugate Axis: $2 b$

The eccentricity of a hyperbola is given by the formula $e=\frac{c}{a}$.

The lines $y=\frac{b}{a} x$ and $y=-\frac{b}{a} x$ are slant asymptotes for the hyperbola since it can be shown that as $|x|$ becomes large, $y \rightarrow \pm \frac{b}{a} x$.

Just knows how

- Rearrange into the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ or $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
- Decide if it's a "horizontal" or "vertical" hyperbola.

0 if x^{2} comes first, it's horizontal (vertices are on x-axis).
0 If y^{2} comes first, it's vertical (vertices are on y-axis).

- Use the square root of the number under x^{2} to determine how far to measure in x direction.
- Use the square root of the number under y^{2} to determine how far to measure in y direction.
- Draw a box with these measurements.
- Draw diagonals through the box. These are the asymptotes. Use the dimensions of the box to determine the slope and write the equations of the asymptotes.
- Put the vertices at the edge of the box on the correct axis. Then draw a hyperbola, making sure it approaches the asymptotes smoothly.
- $c^{2}=a^{2}+b^{2}$ where a^{2} and b^{2} are the denominators.
- The foci are located c units from the center, on the same axis as the vertices.

When graphing hyperbolas, you will need to find the orientation, center, values for a, b and c , lengths of transverse and converse axes, vertices, foci, equations of the asymptotes, and eccentricity.

$$
\rightarrow \text { let's begin: }
$$

\rightarrow horizontal
Example 1: Find all relevant information and graph $\frac{x^{2}}{36}-\frac{y^{2}}{4}=1$.

$$
\begin{aligned}
& a^{2}=36 \Rightarrow a=6 \\
& b^{2}=4 \Rightarrow b=2 \\
& c^{2}=a^{2}+b^{2}=40 \Rightarrow c=\sqrt{40}=2 \sqrt{10}
\end{aligned}
$$

Vertices: $(6,0),(-6,0)$
Foci: $(2 \sqrt{10}, 0),(-2 \sqrt{10}, 0)$
Eccentricity: $\frac{c}{a}=\frac{2 \sqrt{10}}{6}=$
$a^{2} \rightarrow{ }^{4} b^{2}$

Transverse Axis:= The segment joinining vert ices
Length of transverse axis:

$$
2 \cdot a=2 \cdot 6=12
$$

Conjugate axis: = The segment joinining the "b" points.
Length of conjugate axis:

$$
2 \cdot b=2 \cdot 2=4
$$

Slant Asymptotes:

$$
\begin{aligned}
& y=\frac{b}{a} x=\frac{2}{6} x=\frac{1}{3} x \\
& y=-\frac{b}{a} x=-\frac{1}{3} x
\end{aligned}
$$

\rightarrow Vertical hyperbola with center (0,0)
Example 2: Find all relevant information and graph $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$.

$$
\begin{aligned}
a^{2} & =4 \Rightarrow a= \pm 2 \text { (vertices) } \\
b^{2} & =9 \Rightarrow b= \pm 3 \\
c^{2} & =a^{2}+b^{2}=4+9=13 \\
& \Rightarrow c= \pm \sqrt{13}
\end{aligned}
$$

Vertices: $(0,2),(0,-2)$

Foci: $(0, \sqrt{13}),(0,-\sqrt{13})$
Eccentricity: $\quad \frac{c}{a}=\frac{\sqrt{13}}{2}$
Transverse Axis: the segment joining vertices
Length of transverse axis: $2 a=2 \cdot 2=4$

Conjugate axis: the segment joining " b "
Length of conjugate axis: $2 b=2 \cdot 3=6$

Slant Asymptotes: $y= \pm \frac{a}{b} x= \pm \frac{2}{3} x$

The equation of a hyperbola with center not at the origin: Center: (h, k)

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \text { or } \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

To graph a hyperbola with center not at the origin:

- Rearrange (complete the square if necessary) to look like

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1 \text { or } \frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

- Start at the center (h, k) and then graph it as before.
- To write down the equations of the asymptotes, start with the equations of the asymptotes for the similar hyperbola with center at the origin. Then replace x with $x-h$ and replace y with $y-k$.

$$
\Rightarrow \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \xrightarrow[\text { shift } k \text { wits vertically }]{\rightarrow} \frac{\text { Shift hunits horizontally }}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

center, $(0,0)$

The following list reflects the changes in translating the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ to the hyperbola $\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$:

Center: The point $(0,0)$ changes to the point (h, k).
Foci: The foci change from the points $(-c, 0)$ and $(c, 0)$ to the points $(-c+h, k)$ and $(c+h, k)$, where $c^{2}=a^{2}+b^{2}$.
Vertices: The vertices change from the points $(-a, 0)$ and $(a, 0)$ to the points $(-a+h, k)$ and $(a+h, k)$.
Transverse Axis: $\overline{V_{1} V_{2}} \quad$ Length of Transverse Axis: $2 a$
Conjugate Axis: $\overline{A B} \quad$ Length of Conjugate Axis: $2 b$
Equations of the Asymptotes: The lines $y=\frac{b}{a} x$ and $y=-\frac{b}{a} x$ change to the lines $y-k=\frac{b}{a}(x-h)$ and $y-k=-\frac{b}{a}(x-h)$.

(look at the next page how to bring in standard form:
Example 3: Write the equation in standard form, find all relevant information and graph
Standard $9 x^{2}-16 y^{2}-18 x+96 y=279$.
form $\rightarrow \frac{(x-1)^{2}}{16}-\frac{(y-3)^{2}}{9}=1$
Horizontal Horizontal hyperbola hyperbola shifted I right, 3 up
with center $(0,0)$: center $(1,3) \checkmark$
$a^{2}=16 \Rightarrow a=4$. Vertices shifted
$(-4,0),(4,0)(-3,3)^{\checkmark},(5,3)$

$2 a=2 \cdot 4=8$. Transverse $a \times i S=2 a=8$.
$c^{2}=a^{2}+b^{2}=25$ Foci Coordinates shifted
$c=5$
$(-5,0),(5,0) \quad(-4,3)^{V},(6,3)^{\sqrt{2}}$
$b^{2}=9 \Rightarrow b=3$
$2 b=2.3=6$ Conjugate axis $=2 b=6$
$\begin{array}{c:c}2 b=2 \cdot 3=6 & \text { shifted }(1,0)^{V},(1,6)^{V}\end{array}$
$y=\frac{b}{a} x=\frac{3}{4} x$ Slant Asymptotes shifted Then draw diagonals of rectangle and extend. Diagonals $y=-\frac{b}{4} x=\frac{3}{4} x, \quad y-3=\frac{3}{4}(x-1), \quad y-3=-\frac{3}{4}(x-1) \Leftarrow$ we the slant asymptotes.
$e=\frac{c}{a} \quad$ Eccentricity

$$
c=\frac{c}{a}=\frac{5}{4}=1.25
$$

$$
9 x^{2}-16 y^{2}-18 x+96 y=279
$$

Likely terms

$$
\left(9 x^{2}-18 x\right)+\left(-16 y^{2}+96 y\right)=279
$$

\rightarrow Factor coefficients and complete square

$$
\begin{gathered}
9\left(x^{2}-2 x+1\right)-16\left(y^{2}-\frac{6}{2} y+9\right)=279+9 \cdot 1-16 \cdot 9 \\
\left(\frac{2}{2}=1\right)^{2} \\
\left(\frac{6}{2}=3\right)^{2}
\end{gathered}
$$

\rightarrow Rewrite

$$
9(x-1)^{2}-16(y-3)^{2}=144
$$

\rightarrow Divide by 144 both sides

$$
\begin{aligned}
& \frac{9(x-1)^{2}}{14416}-\frac{16}{144}(y-3)^{2}=\frac{144}{144} \\
& \rightarrow \operatorname{simplify} \\
& \frac{(x-1)^{2}}{16}-\frac{(y-3)^{2}}{9}=1 \\
& \text { Standard } \\
& \text { form. }
\end{aligned}
$$

This is the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ shifted 1 unit right, 3 units up.
keep in mind: Center, Vertices. Foci are on the same line, always.
Example 4: Write an equation of the hyperbola with center a $(-2,3)$ one vertex is a (-2,-2) and eccentricity is 2.

A quick sketch
Center gives the shiftment of hyperbole
of problem:

- By picture, it's a vertical hyperbola centered @($-2,3$)
- Vertices are symmetric wert. center, hence $V_{2}(-2,8)$, and $a=5 . \Rightarrow a^{2}=25$
- Need $b, e=\frac{c}{a} \Rightarrow c=e \cdot a=2 \cdot 5=10$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \Rightarrow a b^{2}=c^{2}-a^{2}=10^{2}-5^{2}=75 \\
\Rightarrow & \frac{(y-3)^{2}}{25}-\frac{(x+2)^{2}}{75}=1
\end{aligned}
$$

- Vertices lined vertically \Rightarrow Vertical hypertool. center is the midpoint of transverseaxis.

$$
\Rightarrow c=\underbrace{(4,4)}
$$

- $a=$ half of transverse length $=8 / 2=4$. $a^{2}=16$.
- Being vertical, slant asymptotes are $y= \pm \frac{a}{b} x$

$$
\Rightarrow \frac{(y-4)^{2}}{16}-\frac{(x-4)^{2}}{16}=1
$$

$$
\begin{aligned}
& \Rightarrow \frac{a}{b}=1 \Rightarrow a=b \Rightarrow b^{2}=16 \\
& -\frac{(x-4)^{2}}{16}=1
\end{aligned}
$$

Popper 08 --- Bubble correctly!

Identify the following:
A) Circle
B) Ellipse
C) Parabola
D) Hyperbola
E) None
(D) Question \#1 : $\frac{(x+4)^{2}}{4}-\frac{(y-1)^{2}}{9}=1 \Rightarrow$ hyperbola shifted 4 wits left, I unit up.
(B) Question \#2 : $x^{2}+2 y^{2}-4 x+y=9 \Rightarrow$ ellipse, both square terms are positive $(x-2)^{2}+2(y-0.5)^{2}=13.5$

$$
\Rightarrow \frac{(x-2)^{2}}{13.5}+\frac{(y-0.5)^{2}}{6.75}=1
$$ with different coefficients

(D) Question \#3
$: x^{2}-4 x-y^{2}+6 y=10 \Rightarrow$ hyperbola, because square terms have opposite
$(x-2)^{2}-(y-3)^{2}=23$

$$
(x-2)^{2}-(y-3)^{2}=23
$$

$$
\frac{(x-2)^{2}}{23}-\frac{(y-3)^{2}}{23}=1
$$

(C) Question \#4 : $x^{2}-4 x+12 y=9 \Rightarrow$ parabola, just one square tern showing
(A)

Question \#5 : $9 x^{2}+9 y^{2}-4 x+18 y=9 \Rightarrow$ circle, both positive square terms and

$$
\begin{aligned}
& 9\left(x^{2}+y^{2}-\frac{4}{9} x+2 y\right)=9 \\
& x^{2}-\frac{4}{9} x+y^{2}+2 y=1 \\
& \left(x-\frac{2}{9}\right)^{2}+(y+1)^{2}=1+\frac{4}{81}+1=\frac{166}{81}
\end{aligned}
$$ same coefficient

