Popper <u>07</u> < Bubble (1) State the vertex for the parabola: $y^2 - 4x - 8 = 0 \implies y^2 = 4x + 8 \implies y^2 = 4(x+2)$ $y^2 = 4x$ shifted 2 wits left) A. (0,2) B. (0,-2) C. (-2,0) D. none horizontel 2. State the equation of directrix for this parabola $x^{2} = 8y = 4.2y$ $p=2 \implies y=-2$ A. x=2 B. x=-2 C. y=2 D. y=-2 3. Given $\sum_{36=a^2}^{x^2} + \frac{y^2}{11} = 1$, find major axis $36=a^2$ II coordinates. (A_10) $(-A_10)$ A. (0,6)B. (6,0)C. (3,0)D. (0,3)(0,-6)(-6,0)(-3,0)(0,-3)4. Find the foci points of above ellipse: $C^2 = \alpha^2 - b^2 = 36 - 11 = 25 \implies C = \pm 5$

(A) (5,0) B. (0,5) C. $(\Pi,0)$ D. NOAR, (-5,0) (0,-5) (- $\Pi,0$)

For any fixed point (x, y) on hyperbola above doing the difference of distances of this point to the foci very similarly as we did for ellipse, but here we have $C^2 = a^2 + b^2$,

ve deduce

 $\frac{y^2}{a^2} - \frac{y^2}{b^2} = 1$

<u>Note</u>: The **transverse axis** is the line segment joining the two vertices. The **conjugate axis** is the line segment perpendicular to the transverse axis, passing through the center and extending a distance b on either side of the center. (These terms will make more sense after we do the graphing examples.)

Never forget: Hyperbola curves lie in between two intersecting lines opposite to each other.

The conjugate axis of the hyperbola is the line segment through the center of the hyperbola and perpendicular to the transverse axis with endpoints (0, -b) and (0, b).

"2a

Details about conjugate and transverse axis.

Center: (0,0) Foci: (-c,0) and (c,0), where $c^2 = a^2 + b^2$ Vertices: $V_1(-a,0)$ and $V_2(a,0)$ Transverse Axis: $\overline{V_1V_2}$ Length of Transverse Axis: 2a Conjugate Axis: \overline{AB} Length of Conjugate Axis: 2b

The <u>eccentricity</u> of a hyperbola is given by the formula $e = \frac{c}{a}$.

The lines $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$ are <u>slant asymptotes</u> for the hyperbola since it can be shown that as |x| becomes large, $y \to \pm \frac{b}{a}x$.

Ellipses V	s. Hyperboles
• by definition $d_1 + d_2 = 2a$	· by definition $ d_1 - d_2 = 2a$.
• Foci Equation $c^2 = a^2 - b^2$ (foci are between vertices)	 Foci Equation C² = a²+b² (foci are beyond vertices)
• Horizontal $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ = Nertices (a, 0), (-a, 0)	• Horizontal $\frac{x^2}{A^2} - \frac{y^2}{b^2} = 1$ Hyperbola -Vertices (a,0), (-a,0)
• Vertical $\frac{y^2}{a^2} + \frac{\chi^2}{b^2} = 1$ = Vertices $(0,a), (0, -a)$	• Vertical $y^2 - \frac{x^2}{b^2} = 1$ Hyper-bola $a^2 - \frac{x^2}{b^2} = 1$ - Vertices $(0, a), (0, -a)$
• Major axis = 2a (connects the vertices)	· Transverse axis = 2a (connects the vertices)
· Minor axis = 2b	· Conjugate axis = 26
• No slant asymptotes	• Slant asymptotes $y = \pm \frac{b}{a} \times $ or $y = \pm \frac{a}{b} \times $ Horizontal Vertical
· Ellipse is inside the	· Hyperbola is beyond the rectangle
rectangle	$y = -\frac{b}{a} \times \frac{b}{b} \times \frac{a}{b} \times \frac{b}{b} \times \frac{a}{b} \times \frac{b}{b} \times \frac{a}{b} \times \frac{b}{b} \times$

To be continued on Wednesday, <u>2/17</u>. Graphing hyperbolas: Let's demonstrate by doing example 1. Just know how to begin!!! To graph a hyperbola with center at the origin: • Rearrange into the form $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ or $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$.

- Decide if it's a "horizontal" or "vertical" hyperbola.
 - O if x^2 comes first, it's horizontal (vertices are on x-axis).
 - If y^2 comes first, it's vertical (vertices are on y-axis).
- Use the square root of the number under x^2 to determine how far to measure in *x*-direction.
- Use the square root of the number under y^2 to determine how far to measure in *y*-direction.
- Draw a box with these measurements.
- Draw diagonals through the box. These are the asymptotes. Use the dimensions of the box to determine the slope and write the equations of the asymptotes.
- Put the vertices at the edge of the box on the correct axis. Then draw a hyperbola, making sure it approaches the asymptotes smoothly.
- $c^2 = a^2 + b^2$ where a^2 and b^2 are the denominators.
- The foci are located c units from the center, on the same axis as the vertices.

When graphing hyperbolas, you will need to find the orientation, center, values for a, b and c, lengths of transverse and converse axes, vertices, foci, equations of the asymptotes, and eccentricity.

- let's begin:

Transverse Axis:= The segment joinining vertices

Length of transverse axis:

 $2 \cdot 0 = 2 \cdot 6 = 12$

Conjugate axist = The segment joining the " points.

Length of conjugate axis:

 $2b = 2 \cdot 2 = 4$

Slant Asymptotes:
$$y = \frac{b}{a} \times = \frac{2}{6} \times = \frac{1}{3} \times y = -\frac{b}{a} \times = -\frac{1}{3} \times y = -\frac{b}{a} \times = -\frac{1}{3} \times y$$

Example 2: Find all relevant information and graph

$$a^{2}=4 \Rightarrow a = \pm 2$$
 (vertices)
 $b^{2}=a \Rightarrow b = \pm 3$
 $c^{2}=a^{2}+b^{2}=4+1=13$
 $=7c=\pm\sqrt{13}$

Vertices: (0, 2), (0, -2)Foci: $(0, \sqrt{13}), (0, -\sqrt{13})$ Eccentricity: $\frac{c}{N} = \frac{\sqrt{13}}{2}$ Transverse Axis: the segment joining vertices Length of transverse axis: $2N = 2 \cdot 2 = 4$

Conjugate axis: the segment joining "b" Length of conjugate axis: $2b = 2 \cdot 3 = 6$

Slant Asymptotes:
$$\bigcup_{b=\pm\frac{a}{b}} = \pm \frac{2}{3} \times = \pm \frac{2}{3} \times \frac{2$$

The equation of a hyperbola with center not at the origin: Center: (h, k)

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

To graph a hyperbola with center not at the origin:

• Rearrange (complete the square if necessary) to look like

$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \text{ or } \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1.$$

- Start at the center (h,k) and then graph it as before.
- To write down the equations of the asymptotes, start with the equations of the asymptotes for the similar hyperbola with center at the origin. Then replace x with x-h and replace y with y-k.

The following list reflects the changes in translating the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ to the

hyperbola
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
:

Center: The point (0,0) changes to the point (h,k). Foci: The foci change from the points (-c, 0) and (c, 0) to the points (-c+h,k)and (c+h,k), where $c^2 = a^2 + b^2$. Vertices: The vertices change from the points (-a, 0) and (a, 0) to the points (-a+h,k) and (a+h,k). Transverse Axis: $\overline{V_1V_2}$ Length of Transverse Axis: 2aConjugate Axis: \overline{AB} Length of Conjugate Axis: 2bEquations of the Asymptotes: The lines $y = \frac{b}{a}x$ and $y = -\frac{b}{a}x$ change to the lines

$$y-k = \frac{b}{a}(x-h)$$
 and $y-k = -\frac{b}{a}(x-h)$.

(look at the next page how to bring in standard form: Example 3: Write the equation in standard form, find all relevant information and graph

Strady
Strady

$$y_{1}^{2} - 16y^{2} - 18x + 96y = 279.$$

For $y_{1}^{2} - (y_{1}^{2}-3)^{2} = 1$
 $y_{1}^{2} - (y_{1}^{2}-3)^{2} = 1$
 $y_{1}^{2} - (y_{1}^{2}-3)^{2} = 1$
 $y_{1}^{2} - (y_{1}^{2}-3)^{2} = 1$
Horizontal Horizontal hyperbola
 $y_{1}^{2} - (y_{1}^{2}-3)^{2} - (y_{1}^{2$

$$9x^{2} - 16y^{2} - 18x + 96y = 279$$

[1) kely terns

($\frac{9}{2}x^{2} - 18x$) + (-16 y² + 96y) = 279

Factor coefficients and complete square

 $9(x^{2} - 2x + 1) - 16(y^{2} - 6y + 4) = 279 + 91 - 16.9$

($\frac{2}{2} = 1$)²

($\frac{6}{2} = 3$)²

Rewrite

 $9(x-1)^{2} - 16(y-3)^{2} = 144$

Divide by 144 both sides

 $\frac{9(x-1)^{2}}{16} - \frac{16}{194}(y-3)^{2} = 144$

 5 implify

($\frac{(x-1)^{2}}{16} - \frac{(y-3)^{2}}{9} = 1$) Standard form.

This is the hyperbole $\frac{x^{2}}{16} - \frac{y^{2}}{9} = 1$

keep in mind : Center, Vertices. Foci are on the some line, always. **Example 4:** Write an equation of the hyperbola with center a (-2, 3) one vertex is a $(-2, -2)^{4}$ Center gives the shiftment of hyperbola and eccentricity is 2. A quick sketch · By picture, it's a vertical hyperbole centered @ (-2,3) of problem: . Vertices are symmetric wrt. center, hence a=5 $V_2(-2,8)$, and $\underline{A=5}$. \Rightarrow $\underline{A^2=25}$ • Need b, $e = \frac{c}{n} = 2 \cdot 5 = 10$ $C^2 = a^2 + b^2 \implies b^2 = c^2 - a^2 = 10^2 - 5^2 = 75$ \rightarrow $(x+2)^2$ **Example 5:** Write an equation of the hyperbola if the vertices are (4, 0) and (4, 8) and the asymptotes have slopes ± 1 . Exercise Vertices lined vertically => Vertical hyperbola. Center is the midpoint of trans verseaxis. C= (4,4) shifts of hyperbola. a = half of transverse length = 3/2 = 4. a²=16 • Being vertical, slant asymptotes are $y = \pm \frac{a}{b}x$ $\implies \frac{a}{b} = 1 \implies a = b \implies b^2 = 16$ (x-<mark>4)</mark>-(y - 4) -10

Popper 08 ---- Bubble correctly!

Identify the following:

C) Parabola D) Hyperbola A) Circle **B)** Ellipse E) None

Question #1 : $\frac{(x+4)^2}{4} - \frac{(y-1)^2}{9} = 1 \implies$ hyperbola shifted 4 mits left, 1 mit up.

B Question #2
$$:x^2 + 2y^2 - 4x + y = 9 \implies$$
 ellipse, both square terns are positive
 $(x-2)^3 + 2(y-05)^2 = 13.5$ with different coefficients
 $\implies \frac{(x-2)^3}{13.5} + \frac{(y-0.5)^2}{6.75} = 1$
D Question #3 $:x^2 - 4x - y^2 + 6y = 10 \implies$ hyperbola, because square terns have apposite
 $(x-2)^2 - (y-3)^2 = 23$
 $\frac{(y-2)^3}{23} - \frac{(y-3)^4}{23} = 1$
C Question #4 $:x^2 - 4x + 12y = 9 \implies$ parabola, just one square tern showing

Question #4

$$(x^{2} + 9y^{2} - 4x + 18y = 9 =) cirde, both positive square terms and same coefficient 9(x^{2} + y^{2} - 4x + 2y) = 9 x^{2} - 4x + y^{2} + 2y = 1 (x - \frac{2}{4})^{2} + (y + 1)^{2} = 1 + \frac{4}{81} + 1 = \frac{166}{81}$$