Popper 09.
(1)

Circle with $r=1$
and center $(1,2)$

$$
(x-1)^{2}+(y-2)^{2}=1^{2}
$$

(2)

$$
\frac{(x-3)^{2}}{16}-\frac{y^{2}}{9}=1
$$

Horizontal hyperbole shifted 3 right.

$$
\begin{aligned}
& a^{2}=16 \Rightarrow a=4 \\
& b^{2}=9 \Rightarrow b=3
\end{aligned}
$$

A. $(x-1)^{2}+y^{2}=4$
B. $(x-1)^{2}+\left(y_{2}\right)^{2}=4$
(c.) $(x-1)^{2}+(y-2)^{2}=1$
D. hone

Slant Asymptotes
(A.) $y= \pm \frac{3}{4}(x-3)$
B. $y= \pm \frac{4}{3}(x-3)$

$$
y= \pm \frac{3}{4} \times \xrightarrow{\text { shifted }} y= \pm \frac{3}{4}(x-3)
$$

c. $y-3= \pm \frac{3}{4} x$
D. none
(3)
(A)
(4) (B)
(5) C.

Math 1330 - Chapter 8
Systems: Identify Equations, Point of Intersection of Equations
Classification of Second Degree Equations - Well look ot the general equation When you write a conic section in its general form, you have an equation of the form
$\rightarrow A x^{2}+B x y+C y^{2}+D x+E y+F=0$. (All of the equations we have seen so far have a value for B that is 0 .)

We graphed the following examples in the past sections: No by showed up in our examples.
$B=0 . ~ W h a t ~ i f ~$
B 0 ?
$5 x^{2}+5 y^{2}-20 x+10 y=20$ (a circle) \leftrightarrow both positivesquove terms, and same coefficients.
$y^{2}-6 y=8 x+7$
(a parabola) \longleftrightarrow just ore square term
$4 x^{2}-8 x+9 y^{2}-54 y=-49$
(an ellipse $\langle\rightarrow$ both positive square terms, different coefficients
$9 x^{2}-16 y^{2}-18 x+96 y=279 \quad$ (a hyperbola) \longleftrightarrow square terms of opposite signs.
With only minimal work, you can determine if an equation in this form is a circle, an ellipse, a parabola or a hyperbola.

Identify each conic section from its equation:
a) $12 x=y^{2}$
parabola - horizontal
c) $\frac{(x+4)^{2}}{4}+\frac{(y-1)^{2}}{9}=1$
ellipse - vertical
b) $\frac{(x-2)^{2}}{9} \bigcirc \frac{(y+2)^{2}}{16}=1$
hyperbola - horizontal
d) $\frac{(x+4)^{2}}{4}+\frac{(y-1)^{2}}{4}=1 \quad$ same - circle

- General Equation for a Conic Section is

$$
A x^{2}+\underline{B} x y+C y^{2}+D x+E y+F=0
$$

- Up to now, we have dealt with conic sections for which $B=0$. According to their definitions we built them.

If $B \neq 0$, then the conic sections get "rotated" in the plane. What does that mean?

$$
B=0
$$

$$
B \neq 0
$$

still ellipse

- Therefore the values A, B, C are crucial into eletermining the type of the conic section you are working with.
\Rightarrow It is proved that, no matter hour you rotate the graph, a $\frac{\text { valid }}{\uparrow}$ conic section con be identified by values of A, B, C.

The general equation stands for one of the conic section we have learned.
If not, it's collied degenerate conic section.
ex. $(x-1)^{2}+(y+2)^{2}=3:(x-1)^{2}+(y+2)^{2}=0$
VALID
Degenerate.

Classification of Second Degree Equations
When you write a conic section in its general form, you have an equation of the form $\Rightarrow A x^{2}+B x y+C y^{2}+D x+E y+F=0$:

If A, B and C are not all 0 , and if the graph is not degenerate, then:

Remember, if there is no "xy" term, then $B=0$.

Example: Identify each conic. (Note, none of these are degenerates conics.)
a. $\underbrace{6 x^{2}}-4 x y+\underline{3 y}^{2}+5 x-7 y+3=0$

- The graph is a parabola if $B^{2}-4 A C=0$.
- The graph is a hyperbola if $B^{2}-4 A C>0$. $6 \neq 3 \Rightarrow$ ellipse -rotated $(B=-4)$

$$
A \neq C, B^{2}-4 A C=(-4)^{2}-4 \cdot 6 \cdot 3<0
$$

b. $2 x^{2}-8 y^{2}-6 x-16 y-25=0$

$$
\begin{aligned}
& \text { hyperbola - horizontal } B^{2}-4 A C=0-4 \cdot 2(-8)=64>0 \\
& \qquad(B=0)
\end{aligned}
$$

c. $\underbrace{-3 x^{2}}+5 x-12 y-7=0$
one square, parabola -vertical
$B^{2}-4 A C=0^{2}-0=0 \quad(B=0)$
d. $4 x^{2}+4 y^{2}-24 x-16 y-72=0$
match

$$
\begin{array}{ll}
\text { circle } & B^{2}-4 A C=0^{2}-4 \cdot 4 \cdot 4=-64 \\
(B=0) & A=C .
\end{array}
$$

Some degenerate conic sections

Sometimes equations that look like they should be conic sections do not behave very well.
\longrightarrow Example 1: Graph $(x-3)^{2}+(y+1)^{2}=0$
(just a point)
looks like a circle but radius =0???

$$
\underbrace{()^{2}+()^{2}}_{\text {never negative }}=0
$$

$$
\begin{array}{cc}
\Rightarrow x-3=0, & y+1=0 \\
x=3, & y=-1
\end{array}
$$

Example 2: Graph $\underbrace{9 x^{2}-4 y^{2}}=\underbrace{\downarrow}_{0} \uparrow$?
(2 lines)
looks like a hyperbola, but it shouldn't be "o'

$$
\begin{aligned}
& 9 x^{2}-4 y \\
&+4 / y^{2}=0
\end{aligned}
$$

$$
\begin{aligned}
& 9 x^{2}=4 y^{2} \\
\Rightarrow & y^{2}=\frac{9}{4} x^{2} \\
\Rightarrow & y= \pm \sqrt{\frac{9}{4} x^{2}}= \pm \frac{3}{2} x
\end{aligned}
$$

Example 3: Graph $2 y+(x+2)^{2}=2 y$
looks like a parabola

Example 4: Graph $2 x^{2}+3 y^{2}=-1$ looks like an ellipse,

$$
\begin{gathered}
\text { but } \\
\underbrace{2 x^{2}+3 y^{2}}_{\text {never negative }}=-1 \\
\text { No Solution }
\end{gathered}
$$

These are all examples of degenerate conic sections. Instead of getting the graphs you expect, you have a point (Example 1), two lines (Example 2) and a single line (Example 3) and no graph at all (Example 4). You will not see these very often, but you should be aware of them.
extended example 3
a)

$$
\frac{2 x y+(x+2)^{2}=2 y+9,{\underset{-2}{2}}_{-2 y}^{\substack{\text { at } \\ \text { parabola }}}}{(x-2)^{2}}=\frac{9}{\text { ph }}
$$

$$
\Rightarrow x+2=3 \text { or } x+2=-3
$$

$$
x=1 \text { or } x=-5
$$

2 vertical lines
b)

$$
\begin{aligned}
2 y+(x+2)^{2}= & 2 y-4 \begin{array}{c}
n_{0} t \\
-2 y \\
\\
\\
\\
\\
\text { a } \\
\text { praboole }
\end{array} \\
(x+2)^{2}= & -4
\end{aligned}
$$

impossible, No Graph.

From college Algobra, we have seen a linear system to be
$*\left\{\begin{array}{l}2 x+y=3 \\ y-4 x=5\end{array}\right.$
There are three possible
(1)

lines intersect one solution

lines parallel no solution
 infinitely many solutions

Here, we'll see interactions among conic sections, lines and other graphs.
example

No Solution solution exist.

Systems of Second Degree Equations

When we graph two conic sections or a conic section and a line on the same coordinate plane, their graphs may contain points of intersection. The graph below shows a hyperbola and a line and contains two points of intersection.

We want to be able to find the points of intersection. To do this, we will solve a system of equations, but now one or both of the equations will be second degree equations. Determining the points of intersection graphically is difficult, so we will do these algebraically.

Example 5: Determine the number of points of intersection for the system.
$\frac{x^{2}}{9}-\frac{y^{2}}{9}=1 \quad$ For questions like this, let's put graph:
$y^{2}=4 x$ horizontal hyperbola, $a=3$ horizontal parabola, $p=1$

5
\rightarrow How to find these intersection points:
(1) $\left\{\frac{x^{2}}{1}-\frac{y^{2}}{9}=1\right.$

$$
\Leftrightarrow\left[\begin{array}{r}
\longrightarrow x^{2}-y^{2}=9 \\
y^{2}=4 x \tag{2}
\end{array}\right.
$$

(2) $y^{2}=4 x$

Substitute \downarrow
(1)

$$
\begin{array}{ll}
& x^{2}-4 x=9 \\
& x^{2}-4 x-9=0 \quad \text { quadratic formula } \\
\Rightarrow & x=\frac{4 \pm \sqrt{16-4 \cdot 1 \cdot(-9)}}{2 \cdot 1} \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{4 \pm \sqrt{52}}{2}=\frac{4}{2} \pm \frac{2 \sqrt{13}}{2}=2 \pm \sqrt{13} \\
x=2+\sqrt{13} \quad \text { or } \quad x=2-\sqrt{13}
\end{array}
$$

Use these values in equation (2):

- $x=2+\sqrt{13}$ positive

$$
\text { - } x=2-\sqrt{13} \text { negative }
$$

(2)

$$
\begin{aligned}
& y^{2}=4 \cdot x=4(2+\sqrt{13}) \\
& \Rightarrow y= \pm \sqrt{4 \cdot(2+\sqrt{13})}
\end{aligned}
$$

ie. $y=2 \sqrt{2+\sqrt{13}}, y=-2 \sqrt{2+\sqrt{13}}$

$$
y_{\text {positive }}^{y^{2}}=4 \cdot x=\underbrace{4(2-\sqrt{13})}_{\text {negative }}
$$

No Solution.

Graphs intersect only at two points

$$
(2+\sqrt{13}, 2 \sqrt{2+\sqrt{13}}) \text { and }(2+\sqrt{13},-2 \sqrt{2+\sqrt{13}})
$$

Example 6: Solve the system of equations: Find the points!

+ (1) $\left\{x^{2}+y^{2}=4 \rightarrow\right.$ circle
(2) $\left\{\begin{array}{ll}x^{2}-y^{2}=1\end{array} \rightarrow\right.$ hyperbole

$$
x^{2}=1 \Rightarrow x= \pm 1
$$

Now pick $x^{2}+y^{2}=4$.
2points $\left\{\begin{array}{l}x=1 \\ x^{2}+y^{2}=4 \Rightarrow 1^{2}+y^{2}=4 \Rightarrow y^{2}=3 \Rightarrow y= \pm \sqrt{3}\end{array}\right.$

2 pints $\left\{\begin{array}{l}x=-1 \\ x^{2}+y^{2}=4 \Rightarrow(-1)^{2}+y^{2}=4 \Rightarrow y^{2}=3 \Rightarrow y= \pm \sqrt{3}\end{array}\right.$

$$
\Rightarrow
$$

Work on your own through the rest of exercises.
exercise
Example 7: Solve the system of equations:
$f(x)=x^{2}-4 x+11 \leftarrow$ quadratic function, upward vertical parabode
$g(x)=5 x-3$ $g(x)=5 x-3 \leftarrow$ linear function, increasing line
Some guessing:
Case I

Case III

$$
\left\{\begin{array}{l}
y=x^{2}-4 x+11 \\
y_{2}=5 x-3
\end{array}\right.
$$

\Leftrightarrow They have common solutions if $y_{1}=y_{2}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x^{2}-4 x+11 \\
-5 x \\
x^{2}-9 x+14= \\
+5 x-3 \\
(x-2)(x-7) \\
\\
\Rightarrow x=2 \text { or } x=7
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x=2 \\
y=5 x-3=5 \cdot 2-3=7
\end{array} \quad \Rightarrow \quad(2,7)\right.} \\
& {\left[\begin{array}{l}
x=7 \\
y=5 x-3=5 \cdot 7-3=32
\end{array}\right.}
\end{aligned}
$$

Solution Points $(2,7),(7,32)$
Case I
exercise
Example 8: Solve the system of equations:
$x^{2}+y^{2}=9 \leftarrow$ circle at origin, radius $=3$
$(x+y)^{2}=9 \leftarrow$ two lines, $x+y=3$ or $x+y=-3$
A correct graph of the given equations
give the solutions.

Without graph:
(1) $\left\{\begin{array}{l}x^{2}+y^{2}=9 \\ (x+y)^{2}=9\end{array}\right.$

$$
\begin{aligned}
\Rightarrow \quad x^{2}+y^{2} & =(x+y)^{2} \\
x^{2}+y^{2} & =x^{2}+2 x y+y^{2} \\
y & \text { FOIL } \\
\Rightarrow 2 x y & =0 \\
x=0 & \text { or } y=0
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=0 \\
x^{2}+y^{2}=9 \Rightarrow 0^{2}+y^{2}=9 \Rightarrow y= \pm \sqrt{9}= \pm 3
\end{array}\right. \\
& \left\{\begin{array}{l}
y=0 \\
x^{2}+y^{2}=9 \Rightarrow x^{2}+0^{2}=9 \Rightarrow x= \pm \sqrt{9}= \pm 3
\end{array}\right.
\end{aligned}
$$

Thus, we got four solutions

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
x=0 \\
y= \pm 3
\end{array}\right. \\
\text { or } \quad\left\{\begin{array}{l}
y=0 \\
x= \pm 3
\end{array}\right.
\end{array}\right\}
$$

These are same as from the graph.
They should match, always!!!
exercise
Example 9: Graph each and determine the number of points of intersection.

$$
*\left\{\begin{array}{l}
x^{2}+y^{2}=16 \leftarrow \text { circle, } r=4 \\
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1 \leftarrow \text { ellipse, horizontal } \\
a=3, b=2
\end{array}\right.
$$

Graphically,
it is seen easily they don't intersect.
No intersection points mean no solution
 to the system (*).
Without graph:

$$
\left\{\begin{array} { l c }
{ x ^ { 2 } + y ^ { 2 } = 1 6 } & { \text { Rewrite } } \tag{1}\\
{ \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 4 } = 1 } & { \underset { \text { (with no fraction) } } { } }
\end{array} \left\{\begin{array}{l}
x^{2}+y^{2}=16 \\
4 x^{2}+9 y^{2}=36
\end{array}\right.\right.
$$

Γ (1) $x^{2}+y^{2}=16 \Rightarrow x^{2}=16-y^{2}$

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}=36 \Longrightarrow 4 \cdot\left(16-y^{2}\right)+9 y^{2}=36 \\
& 64-4 y^{2}+9 y^{2}=36 \Rightarrow 5 y^{2} \neq \underbrace{-28}_{\text {positive }}
\end{aligned}
$$

No Solution.

