MATH 1330 Review for Test \#3

When: April $1^{\text {st }}-$ April 4th Where: CASA Testing Center (222 Garrison Gym) Time: $\mathbf{5 0}$ minutes
Number of questions: 17
14 Multiple Choice Questions (total of 70 points) - each 5 points
3 Free Response Questions (total of 30 points) - each 10 points
What is covered: All sections covered since Test 2 (4.1-4.3, 5.1-5.4)
Do not forget to reserve a seat for Test \#3.
Do not be late for your test. Plan to be at the testing center 10-15 minutes before your scheduled time. If you miss your reserved seat, \log in to your CASA account and try to reschedule; you can do this if there are any available seats.

Remember the make-up policy: NO MAKE-UPS! If you miss your test, you will get a zero. When you take the final, it will replace ONE missed test.
Take Practice Test-3! 10% of your best score will be added to your test grade.
For the free response part, please show your work neatly. Do not skip steps.
When you take the test, you will see a score in your CASA grade sheet right away. That score is for the multiple choice part only. So, it is out of $\mathbf{7 0}$ points. The grade for the Free Response Part will be posted later, after the papers are graded.

Fill in the unit circle! PRACTICE UNTIL YOU KNOW ALL! $(x, y)=(\cos \theta, \sin \theta)$ list quadrant is cough.

$$
x=\cos \theta
$$

$$
y=\sin \theta
$$

How to evaluate:

$$
\sin \left(\frac{\frac{\pi}{7 \pi}}{6}\right)=-\sin \left(30^{\circ}\right)=-\frac{1}{2}
$$

1. Locate the angle $\rightarrow \frac{7 \pi}{6}=210^{\circ}$ QIII
2. Determine the sign \rightarrow sine is negative in QIII
3. Find the corresponding reference angle and evaluate

$$
\rightarrow 210^{\circ}-180^{\circ}=30^{\circ}
$$

Question \#1.
Suppose that θ is an acute angle of a right triangle and that $\tan (\theta)=\frac{3 \sqrt{2}}{5}=\frac{0_{p p}}{\text { Adj }}$
Find $\sin (\theta)$ and $\cos (\theta)$.

Question \#2.
A motorcycle has wheels with a 12 inch radius. If each wheel's rate of turn is 4 revolutions per second, how fast is the car moving in units of inches/sec?

$$
\begin{aligned}
r & =12 \mathrm{in} \\
w & =4 \mathrm{rps} \\
& =4 \times 2 \pi=8 \pi \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& V=r \cdot w \\
& V=12 \cdot 8 \pi=96 \pi \mathrm{in} / \mathrm{sec}
\end{aligned}
$$

Question \#3.
Find the area of the sector if Formula for the area will be given.
a) $r=4, \theta=\frac{\pi}{6}$

$$
A=\pi r^{2} \cdot \frac{\theta}{2 \pi}=\frac{1}{2} r^{2} \cdot \theta=\frac{1}{2} \cdot 4^{2} \cdot \frac{\pi}{6}=\frac{4 \pi}{3}
$$

b) $r=8, \theta=60^{\circ}$

$$
A=\pi r^{2} \cdot \frac{\theta}{360}=\pi \cdot \frac{8^{2} \cdot \frac{66^{\prime}}{360}}{\phi_{3}}=\frac{32 \pi}{3}
$$

Question \#4. \downarrow substitute 180° for π.
(1)
a) Convert $\theta=\frac{5 \pi}{8}$ radians to degrees. (multiply by $\frac{180}{\pi}$)

$$
\theta=\frac{5 \pi}{8} \times \frac{180}{7}=\frac{5.180}{8}=\frac{225^{\circ}}{2}
$$

b) Convert $\theta=275^{\circ}$ to radians. (multiply by $\frac{\pi}{180}$)
(2) $\theta=275^{\circ}-\frac{\pi}{180}=\frac{55 \pi}{36}$
A. $\frac{55}{36}$
(B) $\frac{55 \pi}{36}$
C. $\frac{275}{\pi}$

Question \#5
Find three angles, two positive and one negative, that are coterminal with the given angle
a) $\theta=140^{0}$

$$
\begin{aligned}
& \theta_{1}^{+}=140^{\circ}+360^{\circ}=500^{\circ} \\
& \theta_{2}^{+}=500^{\circ}+360^{\circ}=860^{\circ} \\
& \left(140^{\circ}+2 \times 360^{\circ}=860^{\circ}\right)
\end{aligned}
$$

$$
\theta_{3}^{-}=140^{\circ}-360^{\circ}=-220^{\circ}
$$

b) $\theta=-70^{\circ}$

$$
\theta_{1}^{t}=-70^{\circ}+360^{\circ}=290^{\circ}
$$

$$
\theta_{3}^{-}=-70^{\circ}-360^{\circ}=-430^{\circ}
$$

$$
\theta_{2}^{+}=290^{\circ}+360^{\circ}=650^{\circ}
$$

c) $\theta=\frac{11 \pi}{18}$

$$
\theta_{1}^{+}=\frac{11 \pi}{18}+2 \pi \cdot \frac{18}{18}=\frac{47 \pi}{18}
$$

$$
\theta_{2}^{+}=\frac{47 \pi}{18}+2 \pi \cdot \frac{18}{18}=\frac{83 \pi}{18}
$$

$$
\theta_{3}^{-}=\frac{11 \pi}{18}-2 \pi \cdot \frac{18}{18}=\frac{-25 \pi}{18}
$$

d) $\theta=-\frac{5 \pi}{9}$
(3)

$$
\begin{aligned}
& \theta_{1}^{+}=-\frac{5 \pi}{9}+2 \pi \cdot \frac{9}{9}=\frac{13 \pi}{9} \\
& \theta_{2}^{+}=\frac{13 \pi}{q}+2 \pi \cdot \frac{9}{9}=\frac{31 \pi}{9}
\end{aligned}
$$

$$
\theta_{3}^{-}=-\frac{5 \pi}{9}-2 \pi \cdot \frac{9}{9}=\frac{-23 \pi}{9}
$$

A. $\frac{-13 \pi}{9}$
(B.) $\frac{-23 \pi}{9}<\frac{-7 \pi}{9}$

1. Find the quadrant where θ belongs
2. Determine the sign.

Questions \#6, \#7, \#8, \#9 --- EVALUATIONS
3. Evaluate at reference angle. Evaluate the followings. A completed unit circle might be useful.
a) $\tan \left(\frac{5 \pi}{3}\right)=\tan \left(300^{\circ}\right)=-\tan \left(60^{\circ}\right)$
b) $\begin{aligned} \cot \left(\frac{5 \pi}{6}\right)=\cot \left(\begin{array}{l}\left.150^{\circ}\right)= \\ Q I I \\ \end{array}=-\cot \left(30^{\circ}\right)\right.\end{aligned}$
c) $\cos \left(\frac{2 \pi}{3}\right)=\cos \left(120^{\circ}\right)=-\cos \left(60^{\circ}\right)$
d) $\sin \left(-\frac{5 \pi}{3}\right)=\sin \left(-300^{\circ}\right)=\sin \left(60^{\circ}\right)$

Q II $=-1 / 2$
QI $=\sqrt{3} / 2$
e) $\csc \left(\frac{4 \pi}{3}\right)=\frac{1}{\sin \left(240^{\circ}\right)}=-\frac{1}{\sin \left(60^{\circ}\right)}=\frac{-2 \sqrt{3}}{3}$ f) $\sec \left(\frac{7 \pi}{6}\right)=\frac{1}{\cos (\underbrace{\left.210^{\circ}\right)}_{Q \text { III }}}=-\frac{1}{\cos \left(30^{\circ}\right)}=\frac{-\frac{2 \sqrt{3}}{3}}{}$
g) $\sin \left(\frac{11 \pi}{6}\right)=\sin (\underbrace{330^{\circ}})=-\sin \left(30^{\circ}\right)$
h) $\cot \left(\frac{3 \pi}{4}\right)=\cot (\underbrace{135^{\circ}})=-\cot \left(45^{\circ}\right)$

Q IV $=-\frac{1}{2}$
i) $\begin{aligned} \tan \left(\frac{5 \pi}{4}\right)=\tan \left({\underset{Q}{2 I I I}}_{225^{\circ}}\right) & =\tan \left(45^{\circ}\right) \\ & =1\end{aligned}$
j) $\cos \left(-\frac{7 \pi}{4}\right)=\cos (\underbrace{-315^{\circ}}_{Q I})=$
k) $\frac{\tan \left(\frac{135^{\circ}}{Q 1 I}\right)}{}=-\tan \left(45^{\circ}\right)$

1) $\cos \left(360^{\circ}\right)=\cos 0^{\circ}=\underline{1}$
m) $\begin{aligned} \tan (\underbrace{-45^{\circ}}_{\text {Q IV }}) & =-\tan \left(45^{\circ}\right) \\ & =-1\end{aligned}$
n) $\frac{\cot \left(-225^{\circ}\right)}{\text { WII }}=-\cot \left(45^{\circ}\right)=-1$
o) $\tan \left(\underset{Q I}{-315^{\circ}}\right)=\tan \left(45^{\circ}\right)=1$
p) $\sin (\underbrace{-\frac{1 V}{2}}_{\left.Q I 5^{\circ}\right)}=-\sin \left(45^{\circ}\right)=-\frac{\sqrt{2}}{2}$
q) $\cos (\underbrace{60^{\circ}}_{\text {QUID }})=\cos \left(60^{\circ}\right)=\frac{1}{2}$
r) $\cos (\underbrace{}_{Q \frac{00^{\circ}}{\underline{I V}}}=\cos \left(60^{\circ}\right)=\frac{1}{2}$
s) $\sin \left(240^{\circ}\right)=-\sin \left(60^{\circ}\right)$
t) $\sin \left(210^{\circ}\right)=-\sin \left(30^{\circ}\right)$

QIII

$$
=-\frac{\sqrt{3}}{2}
$$

$$
\text { QI } \quad=-\frac{1}{2}
$$

5

Question \#10
Find the exact value of the following expression:
a) $\sin ^{-1}\left(-\frac{1}{2}\right)=\theta$ in $(\underline{1 V}$

$$
\sin \theta=-\frac{1}{2} \Rightarrow \theta=-\frac{\pi}{6}
$$

$$
\cos \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=\frac{5 \pi}{6}
$$

c) $\arcsin \left(\frac{\sqrt{2}}{2}\right)^{-----------------1}$
d) $\arccos \left(-\frac{\sqrt{2}}{2}\right)^{--}=\theta$ in Q II

$$
\sin \theta=\frac{\sqrt{2}}{2} \Rightarrow \theta=\frac{\pi}{4}
$$

b) $\cos ^{-1}\left(-\frac{1}{2} \sqrt{3}\right)=\theta$ in $Q \mathbb{I}$

$$
\begin{aligned}
& \cos \theta=\frac{-\sqrt{2}}{2} \Rightarrow \theta=\frac{3 \pi}{4} \\
& \arctan (-1)=\theta \Rightarrow \theta=-\frac{\pi}{4} \\
& \tan \theta=-1 \Rightarrow \frac{\pi}{4} \\
& A=-\frac{7 \pi}{4}
\end{aligned}
$$

Question \#11
Find the exact value of the following expression:
a) $\sec (\underbrace{\sin ^{-1}\left(\frac{2}{5}\right)}_{\theta})=\sec \theta$

$$
x^{2}+2^{2}=5^{2}
$$

$$
\sin ^{-1}\left(\frac{2}{5}\right)=\theta \Leftrightarrow \sin \theta=\frac{2}{5}
$$

$$
\Rightarrow \sec \theta=\frac{5}{\sqrt{21}}=\frac{5 \sqrt{21}}{21}
$$

(5)
b) $\cos \left(\tan ^{-1}\left(\frac{5}{4}\right)\right)^{--}=\cos \theta$

Question \#12
Find the phase shift (horizontal shift) of the following functions. PhaSe Shift $=\frac{C}{B}$
a) $f(t)=12 \cos \left(\frac{1}{5} t+\frac{\pi}{4}\right) \Rightarrow A=12, B=\frac{1}{5}, C=-\frac{\pi}{4}$

$$
\text { phase shift }=\frac{c}{B}=\frac{-\pi / 4}{1 / 5}=-\frac{5 \pi}{4} \text { i.e. } \frac{5 \pi}{4} \text { to the left }
$$

b) $f(t)=12 \sin \left(6 t-\frac{\pi}{5}\right) \Rightarrow A=12, B=6, C=\frac{\pi}{5}$

$$
\text { phase shift }=\frac{C}{B}=\frac{\pi / 5}{6}=\frac{\pi}{30} \text { ic. } \frac{\pi}{30} \text { to the right }
$$

c) $f(x)=10 \tan \left(5 x-\frac{\pi}{20}\right)^{\cdots} \Rightarrow A=10 \quad, B=5, C=\frac{\pi}{20}$

$$
\text { phase shift }=\frac{c}{B}=\frac{\pi / 20}{5}=\frac{\pi}{100} \text { i.e. } \frac{\pi}{100} \text { to the vipht }
$$

Question \#13
Write a sine function with amplitude 10 , horizontal shift 5 to the left, vertical shift 2 down, and period 5.

$$
\begin{aligned}
f(x) & =10 \cdot \sin \left(\frac{2 \pi}{5}(x+5)\right)-2 \\
& \Rightarrow f(x)=10 \sin \left(\frac{2 \pi}{5} x+2 \pi\right)-2
\end{aligned}
$$

$$
\begin{aligned}
\text { period } & =5 \\
\frac{2 \pi}{B} & =5 \\
\Rightarrow B & =\frac{2 \pi}{5}
\end{aligned}
$$

Question \#14

$$
\Rightarrow A=284
$$

What are the amplitude and period of $V(t)$? A
amplitude $=284$

$$
B=140 \pi
$$

$$
\text { period }=\frac{2 \pi}{140 t}=\frac{1}{70}
$$

Question \#15 - Free Response \#1
In the right triangle ABC with right angle $\mathrm{C}, A B=10$ and $A C=9$.
Find the six trigonometric functions of angle A.

$$
\begin{aligned}
& x^{2}+9^{2}=10^{2} \\
& x^{2}+81=100 \\
& x^{2}=19 \Rightarrow x=\sqrt{19}
\end{aligned}
$$

Question \#16 - Free Response \#2
Find an equation for the sine function passing through $(0,0)$ given that the first maximum point on the right of the origin is $\left(\frac{\pi}{4}, 5\right)$.

Question \#17 - Free Response \#3
Given $f(x)=5 \sin (6 x)$:

What is the domain of this function? $\quad(-\infty, \infty)$
What is the range of this function? $[-5,5]$

Graph the function over one period.
Label the intercepts, minimum/ maximum values) with an ordered pair.

Exercise: $f(x)=6 \cos (2 x)$

What is the domain of this function? $\quad(-\infty, \infty)$

What is the range of this function? $[-6,6]$

Graph the function over one period.
Label the intercepts, minimum/ maximum values) with an ordered pair.

- amplitude $=6$

