MATH 1330 Review for Test -4

Monday, May 2 Friday, April 29 Time: 50 minutes

Number of questions: 11 Multiple Choice Questions (total: 100 pts)

What is covered: 5.1, 4.4, Chapters 6 and 7.

Do not forget to reserve a seat for Test - 4!

Take practice Test – 4! 10% of your best score will be added to your test grade.

Remember the make-up policy: No make-ups!

The following formulas will be provided. It is your responsibility to locate the formula sheet before you start your test. If you can't find it, ask proctors for help.

Handy Formulas \longrightarrow Only these formulas will be provided to You. $\sin (s + t) = \sin s \cos t + \cos s \sin t$ $\sin (s - t) = \sin s \cos t - \cos s \sin t$ $\cos (s + t) = \cos s \cos t - \sin s \sin t$ $\cos (s - t) = \cos s \cos t + \sin s \sin t$ $\tan (s + t) = \frac{\tan s + \tan t}{1 - \tan s \tan t}$

$$\tan(s-t) = \frac{\tan s - \tan t}{1 + \tan s \tan t}$$

sin(2t) = 2sin t cos t

$$\cos(2t) = \cos^2 t - \sin^2 t$$

$$\sin\frac{s}{2} = \pm \sqrt{\frac{1-\cos s}{2}} \qquad \qquad \cos\frac{s}{2} = \pm \sqrt{\frac{1+\cos s}{2}} \qquad \qquad \tan\frac{s}{2} = \frac{\sin s}{1+\cos s}$$

1) Simplify:
$$-\frac{\cos(-x)}{\cot(-x)} - \frac{\cos x}{-\cot x} = \frac{\cos x}{\frac{\cos x}{\sin x}} = \frac{\cos x}{1 - \cos x} = \frac{\sin x}{\cos x}$$

Question #1
2) Simplify:
$$3\cos^2(x) + \frac{2 - \cot^2(x)}{1 + \cot^2(x)} = 3 \cos^2 x + \frac{2 - \sin^2 x}{1 + \cot^2(x)} = \frac{2 - \sin^2 x}{1 + \cot^2 x} + \frac{2 - \cos^2 x}{1 + \cot^2 x} + \frac{2 - \cot^2 x}{1 + \cot^$$

$$= 3\cos^{2} x + \left(\frac{2\sin^{2} x - \cos^{2} x}{\sin^{2} x}\right) \cdot \frac{\sin^{2} x}{1} = 3\cos^{2} x + 2\sin^{2} x - \cos^{2} x = 2\cos^{2} x + 2\sin^{2} x$$
$$= 2\left(\cos^{2} x + \sin^{2} x\right) = 2$$
$$= 1$$

Question #2
3) Simplify:
$$\tan(x) - \frac{\cos(x)}{1 - \sin(x)} = \frac{\sin x}{\cos x} \cdot \frac{(1 - \sin x)}{\cos x} = \frac{\cos x}{(1 - \sin x)} = \frac{-1}{\cos x} \cdot \frac{\cos x}{\cos x}$$

$$= \frac{\sin x - \sin^{2} x - \cos^{2} x}{\cos x (1 - \sin x)} = \frac{\sin x - (\sin^{2} x + \cos^{2} x)}{\cos x (1 - \sin x)} = \frac{-1}{\cos x} \cdot \frac{-1}{\cos x}$$

$$= -\frac{1}{\cos x} = \frac{-1}{\cos x} = \frac{-1}{\cos x} \cdot \frac{-1}{\cos x}$$
Another version: $\frac{1}{1 - \cos(x)} + \frac{1}{1 + \cos(x)}$ correst despension of $\frac{1}{\cos x} - \frac{2}{\sin^{2} x}$

$$= \frac{(1 + \cos x)}{(1 - \cos x)(1 + \cos x)} = \frac{2}{1 - \cos^{2} x} = \frac{2}{\sin^{2} x}$$

$$= \frac{2 - \csc^{2} x}{2 - \cos^{2} x}$$

Question #3
4) Given
$$\sin(x) = \frac{1}{4}$$
, $90^{\circ} < x < 180^{\circ}$, and $\sin(y) = -\frac{2}{5}$, $180^{\circ} < y < 270^{\circ}$, find:
 $\sin(x) = \frac{1}{4}$, $\sin(x) = \frac{1}{4}$, $\sin(x) = -\frac{2}{5}$, $\sin(y) = -\frac{1}{5}$, $\sin(y) = -\frac{2}{5}$, $\sin(y) = -\frac{1}{5}$, $\sin(y) = -$

Question #4
5) Given
$$\tan(x) = -\frac{1}{5}$$
, $90^0 < x < 180^0$,

 $= \cos^2 x - \sin^2 x$

a) $\sin(2x) = 25$ in x C = 5x

=

b) $\cos(2x)$

$$= 2 \cdot \frac{1}{\sqrt{26}} \cdot \frac{-5}{\sqrt{26}}$$

$$= \frac{-10}{26} = \frac{-5}{13}$$

$$= \left(\frac{-5}{\sqrt{26}}\right)^{2} - \left(\frac{1}{\sqrt{26}}\right)^{2}$$
$$= \frac{25}{26} - \frac{1}{26} = \frac{24}{26} = \left(\frac{12}{13}\right)^{2}$$

6) Given
$$\sin(x) = \frac{3}{5}$$
, where x is an acute angle, find $\sin\left(\frac{x}{2}\right)$. $= +\sqrt{\frac{1-\cos x}{2}} = \sqrt{\frac{1-\frac{4}{5}}{2}} = \sqrt{\frac{\frac{1}{5}}{2}}$
 $= \sqrt{\frac{1}{10}} = \sqrt{\frac{10}{10}}$

7) Find the following using the sum or difference formulas:

a)
$$\cos(75^{\circ}) = \cos(30^{\circ} + 45^{\circ}) = \cdots$$

b)
$$\sin(105^{\circ}) = \sin\left(60^{\circ} + 45^{\circ}\right) = \cdots$$

Question #6 9) Solve the following equation on the interval $[0,2\pi)$:

Factor

$$4\sin^{2}(x)+9\sin(x)+5=0$$

$$(4\sin x + 5)(\sin x + 1) = 0$$

$$4\sin x + 5 = 0 \text{ rsin } x + 1 = 0$$

$$4\sin x = -5 \quad \sin x = -1 = 2 \text{ rsin } x = \frac{3\pi}{2}$$

$$\sin x = -\frac{5}{4}$$

Question #7 12) The angle of elevation from a point that is 120 ft away from a building to the top of the building is 25° . Find the height of the building.

ton (25°) =
$$\frac{x}{120}$$
 => $x = 120 \tan(25°)$
Note: If the argle is 30,45,60°,
make sure you evaluate!

Question #8
10) Find the area of triangle ABC if
$$\angle B = 30^{\circ}$$
, $c = 10$ and $a = 12$.
Check: S.A.S
 $A = 12$
 $A = 12$

Question #10 – Law of Cosine

13) Two boats leave the dock at the same time and they travel with an angle of 150° between them. What is the distance between them after they each travel 50 meters and 70 meters respectively?

$$d^{2} = 50^{2} + 70^{2} - 2 \cdot 50 \cdot 70 \cdot \cos(150^{\circ})$$

$$d^{2} = 2500 + 4400 - 7000 \cdot (-\sqrt{3})$$

$$d^{2} = 7400 + 3500 \sqrt{3}$$

$$d^{2} = 100 (74 + 35 \sqrt{3}) = d = \sqrt{100(74 + 35 \sqrt{3})}$$

$$d^{2} = 10 \sqrt{74 + 35 \sqrt{3}}$$

Question #11 – Law of Sines 14) Given a triangle ABC, $A = 45^{\circ}$, $B = 30^{\circ}$, BC = 60 cm, find AC.

$$\frac{\sin(30^\circ)}{\mathbf{x}} = \frac{\sin(45^\circ)}{60}$$

$$\times \cdot \frac{\sin(45^\circ)}{5in(45^\circ)} = \frac{60 \times \sin(30^\circ)}{5in(45^\circ)}$$

=)
$$X = \frac{60 \cdot \sin(30^{\circ})}{\sin(45^{\circ})} = \frac{60 \cdot \frac{1}{2}}{\frac{\sqrt{2}}{2}} = \frac{30 \cdot \frac{2}{2}}{\sqrt{2}}$$

$$X = \frac{60}{\sqrt{2}}, \frac{\sqrt{2}}{\sqrt{2}} = \frac{60\sqrt{2}}{2} = 30\sqrt{2}$$

$$\Rightarrow$$
 $X = 30\sqrt{2}$

extra examples

 $h \prec opp = BC = 5V3$

2 triangles => 2 choices