

Math 1330 - Section 1.5 Inverse Functions

A function is one-to-one if no two elements in the domain have the same image.
The Horizontal Line Test: A function is one-to-one if any horizontal line intersects the graph of the function in no more than one point. (H.L.T.)

Example 1: Determine if the functions graphed are one-to-one.

Example 2: Determine if $f(x)=x^{2}+3$ is one-to-one.

$$
\begin{aligned}
& x=1 \Rightarrow f(1)=1^{2}+3=4 \\
& x=-1 \Rightarrow f(-1)=(-1)^{2}+3=4
\end{aligned}
$$

 H.L.T. fails, not $1-1$.

Example 3: Determine if $f(x)=x^{3}-2$ is one-to-one.
Yes, f

Only 1-1 functions have inverses [1]!
If a function is one-to-one then there is an associated function called "the inverse" $=f^{-1}=f$ inverse
The inverse function of a one-to-one function is a function $f^{-1}(x)$ such that

$$
\left(f \circ f^{-1}\right)=\left(f^{-1} \circ f\right)=x
$$

* Note: $f^{-1}(x) \neq \frac{1}{f(x)}$

$$
\begin{gathered}
f(x)=y \\
f^{-1}(y)=x \\
f^{-1}(f(x))=x
\end{gathered}
$$

To determine if two functions are inverses of one another, you need to compose the functions in both orders. Your result should be x in both cases. That is, given two functions f and g, the functions are inverses of one another if and one if $f(g(x))=g(f(x))=x$.

Example 4: Determine if $f(x)=5 x-2$ and $g(x)=\frac{x-2}{5}$ are inverses of one another.
Look ot $(f \circ g)(x)^{5}=x$?? ?

$$
\begin{aligned}
\Rightarrow(f \circ g)(x) & =f(g(x))=5 \cdot g(x)-2=8 \cdot \frac{x-2}{f}-2 \\
& =x-2-2=x-4 \neq x .
\end{aligned}
$$

Hence, f and g are not inverses!
Note: The inverse function reverses what the function did. Therefore, the domain of f is the range of f^{-1} and the range of f is the domain of f^{-1}

Example: If $f(-1)=2, f^{-1}(-1)=0$ and $f(2)=5$, find $f(0)$ and $f^{-1}(5)$.

$$
\begin{aligned}
& f^{-1}(-1)=0 \quad \Longrightarrow \quad f(0)=1 \\
& f(2)=5 \quad \Longrightarrow \quad f^{-1}(5)=2
\end{aligned}
$$

Recall:

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \\
& \text { slope }=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

$$
f^{-1}(4)=0 \quad \Rightarrow \quad f(0)=4 \quad \Longrightarrow \quad(0,4)
$$

$$
f^{-1}(2)=1 \Rightarrow f(1)=2 \Rightarrow(1,2)
$$

equation:

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
\begin{aligned}
m=\frac{4-2}{0-1}=-2 & \Rightarrow y-4=-2(x-0) \\
& \Rightarrow y=-2 x+4
\end{aligned}
$$

extra example:
Show $f(x)=x^{3}+1$ and $f(x)=\sqrt[3]{x-1}$ are inverses. YES

Check: $(f \circ g)(x)=x$?

$$
\begin{aligned}
\underline{T}(f \circ g)(x) & =f(g(x))=(g(x))^{3}+1 \\
& =(\sqrt[3]{x-1})^{3}+1 \\
& =x-1+1=x
\end{aligned}
$$

Now, check: $(g \circ f)(x)=x$?

$$
\begin{aligned}
& \sqrt{(g \circ f)(x)}=g(f(x))=\sqrt[3]{f(x)-1} \\
& \quad=\sqrt[3]{x^{3}+1-1}=\sqrt[3]{x^{3}}=x
\end{aligned}
$$

You need to be able to find the inverse of a function. Follow this procedure to find an inverse function:
 Inverse is some function y s.t. $f(y)=x$
Example 7: You know that $f(x)=4 x-7$ is a one-to-one function. Find its inverse. composition

Example 8: Determine if $f(x)=(x-5)^{2}, x \geq 5$ is a one-to-one function. If it is, find its inverse.

Half of parabola is $1-1:[5, \infty) \xrightarrow{f}[0, \infty)$
(1) $y=(x-5)^{2}$
(2) $x=(y-5)^{2}$
(3) Solve for y $y=\sqrt{x}+5$

$$
\sqrt{(y-5)^{2}}=\sqrt{x}
$$

(4) $f^{-1}(x)=\sqrt{x}+5$

Example 9: $f(x)=\frac{1+x}{2-x}$ is a one-to-one function. Find its inverse.
(1) $y=\frac{1+x}{2-x}$
(2) $x=\frac{1+y}{2-y} \Rightarrow$ (3) Solve for y

$$
\begin{aligned}
-\frac{x}{1}=\frac{1+y}{2-y} \Leftrightarrow 1+y & =x(2-y) \\
1+y & =2 x-x y \\
x y+y & =2 x-1 \\
y(1+x) & =2 x-1 \\
y & =\frac{2 x-1}{x+1}
\end{aligned}
$$

- It is 1-1
- Domain of $f: 4 x+1 \geqslant 0$
- Range of $f:[5, \infty) \quad \begin{aligned} & x \geqslant-\frac{1}{4}\end{aligned} f^{-1}$

Find inverse:
(1) $y=5+\sqrt{4 x+1}$
(2) $x=5+\sqrt{4 y+1}$
(3) Solve for y :

$$
\begin{aligned}
& 5+\sqrt{4 y+1}=x \\
& \sqrt{4 y+1}=x-5 \\
& 4 y+1=(x-5)^{2} \\
& y=\frac{(x-5)^{2}-1}{4}=\frac{1}{4}(x-5)^{2}-\frac{1}{4}
\end{aligned}
$$

(4) $f^{-1}(x)=\frac{1}{4}(x-5)^{2}-\frac{1}{4},[5, \infty)$

