Math 1330 - Section 2.2
Polynomial Functions

Our objectives in working with polynomial functions will be, first, to gather information
about the graph of the function and, second, to use that information to generate a
reasonably good graph without plotting a lot of points. In later examples, we’ll use
information given to us about the graph of a function to write its equation.
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Example: The graph of f(x)=x(x—-2)*(x+1)? is given:
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4 The graph of f(x)=x",n>0, niseven, will resemble the graph of f(x)=x?, and the 8 “'7‘
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Next, you will need to be able to describe the end behavior of a function. du_;f Lpa,c { 4 $
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If the degree of the function is even and a, >0, then the end behavior of the function is
Degree: Even, Coefficient: +

neven and «,> 0 (even degree and leading coefficient positive)
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If the degree of the function is even and a, <0, then the end behavior of the function is

Degree: Even, Coefficient: -
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If the degree of the function is odd and a, >0, then the end behavior of the function is

Degree: Odd, Coefficient: +
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n odd and ¢,>0 (odd degree and leading coefficient positive)

If the degree of the function is odd and a, <0, then the end behavior of the function is

Degree: Odd Coefficient: -

7 odd and @,< 0 (odd degree and leading coefficient negati
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Example 1: Determine the end behavior of the function:

a) f(x)=x"-5x*+4.
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b) f(x)=-4x-x*+2x*-x°.
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Next, you should be able to find the x intercept(s) and the y intercept of a polynomial
function.

You will need to set the function equal to zero and then use the Zero Product Property
to find the x intercept(s). That means if ab=0,then either a=00r b=0. To find they

intercept of a function, you will find f (0).
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Example 2: Find the x and y intercept(s) of f(x)=-2(x- 3|)(x+4)(2 xi
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In some problems, one or more of the factors will appear more than once when the
function is factored. The power of a factor is called its multiplicity. So

given P(x) = x*(x —3)*(x +1), then the multiplicity of the first factor is 2, the multiplicity of
the second factor is 3 and the multiplicity of the third factor is 1.

If the multiplicity of a factor is 1: the graph crosses the x-axis (looks like a line there). Ll
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If the multiplicity of a factor is odd and greater than 1: the graph crosses the x-axis
and it looks I|ke a cubic there. A
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Example 3: Find the x intercept(s) of the function and state the multlpI|C|ty of each.

Indicate the possible behavior of the graph through each zero: (5,-,,_,(21 Neet slole )
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Now we’ll put all of this information together to generate the graph of a polynomial
function. For each problem, you’ll need to state

the degree of the function

the leading coefficient of the function

the end behavior of the function

the x and y intercepts (and multiplicities)

behavior of the function through each of the x intercepts (zeros) of the function

Your graph should be smooth, with no sharp corners.

Note that graphs of polynomial functions may have peaks or valleys, but without
additional information, you will not be able to determine how high or low these
points are.

Example 4: Find the x and y intercepts of the graph of the function. State the
multiplicities of the zeros of the function. State the degree of the function and find the
leading coefficient. Indicate the end behavior of the function and the behavior of the
function through each zero. Use all of this information to graph the function.

P(x):(x+2)l(x—1)3(x—4)2. 4
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Example 5: Write the equation of the cubic polynomial P(x) with leading coefficient
-2 whose graph passes through (2, 16) and is tangent to the x-axis at the origin.
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c e Example 6: Write the equation of a 5™ degree polynomial with leading coefficient -1
given that the graph of the polynomial is tangent to the x-axis at the points 2 and 4 and

the graph passes through the origin.
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Example 7: Given the graph of a polynomial, try to determine the equation of the

polynomial.
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We may not have enough time to solve all the examples here. Since graphing polynomials is
a subject covered in College Algebra, we assume that you are already familiar with this
subject. If you are not comfortable with graphing polynomials, please study! You can check
Chapter 4 of the online textbook for College Algebra (the link is on your CASA account!).
Please solve these extra problems to practice.

(Extra) Example: Find the x and y intercepts of the graph of the function. State the
multiplicities of the zeros of the function. State the degree of the function and find the
leading coefficient. Indicate the end behavior of the function and the behavior of the
function through each zero. Use all of this information to graph the fudction.

P(x) = (x+3)(x=1)° (2—x):
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(Extra) Example: Find the x and y intercepts of the graph of the function. State the
multiplicities of the zeros of the function. State the degree of the function and find the
leading coefficient. Indicate the end behavior of the function and theTbehavior of the
function through each zero. Use all of this information to graph the jjnction.

P(x) = x* —4x* - x + 4. (W) T
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(Extra) Example: Find the x and y intercepts of the graph of the function. State the
multiplicities of the zeros of the function. State the degree of the function and find the
leading coefficient. Indicate the end behavior of the function and the behavior of the
function through each zero. Use all of this information to graph the function.

fescale.

P(x) £(4— xi(x—1)2(x+5)3 . h

slaeo

deQ =112 +3 =( even

asirg Qo

)(-in"l'. L\- | \, -
{,’..nt F'")“\& cuboe

%-m . Plo) = (4-0)(0- ) (o045

Ploy = >%°

-5~ 400

NOTE: With some problems, you can use transformations to graph polynomial functions.

(Extra) Example: Graph using transformations: f(x)=(x-1) -4
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