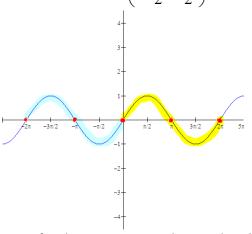


Section 5.3a - Graphs of Secant and Cosecant Functions

Using the identity $\csc(x) = \frac{1}{\sin(x)}$, you can conclude that the graph of g will have a vertical asymptote whenever $\sin(x) = 0$. This means that the graph of g will have vertical asymptotes at $x = 0, \pm \pi, \pm 2\pi, \ldots$ The easiest way to draw a graph of $g(x) = \csc(x)$ is to draw the graph of $f(x) = \sin(x)$, sketch asymptotes at each of the zeros of $f(x) = \sin(x)$, then sketch in the cosecant graph.

$$g(x) = \csc(x) = \frac{1}{\sin(x)}$$
; if $\sin(x) = 0$, then $g(x)$ has a vertical asymptote.

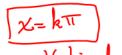
Here's the graph of $f(x) = \sin(x)$ on the interval $\left(-\frac{5\pi}{2}, \frac{5\pi}{2}\right)$.



$$f(x) = CSCX$$

$$= \frac{1}{Sinx}$$

Sinx = 0

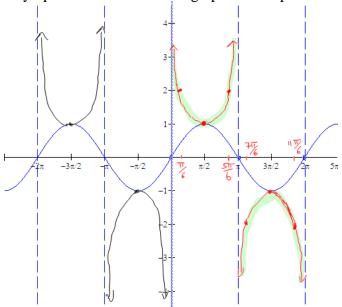


Next, we'll include the asymptotes for the cosecant graph at each point where sin(x) = 0.

Asymptotes.

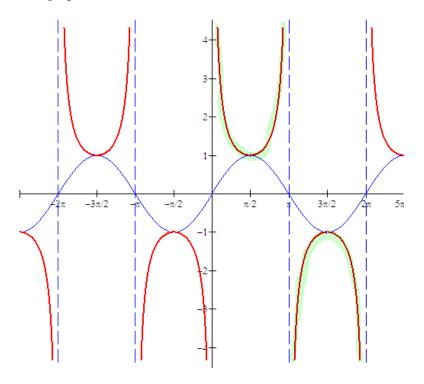
$$\sin\left(\frac{\pi}{6}\right) = \sin\left(\frac{5\pi}{6}\right) = \frac{1}{2}$$

$$Sin\left(\frac{71}{6}\right) = Sin\left(\frac{1111}{6}\right) = -\frac{1}{2}$$



$$f(x) = CSCX$$
 $period = 2\pi$
 $V.A. \quad \chi = k\pi$

Now we'll include the graph of the cosecant function.



Period: 2π

y-intercept: None

Domain: $x \neq k\pi$, k is an integer

Range: $(-\infty,-1] \cup [1,\infty)$

Typically, you'll just graph over one period $(0, 2\pi)$.

To graph $y = A\csc(Bx - C) + D$, first graph, **THE HELPER GRAPH**: $y = A\sin(Bx - C) + D$.

Y= 2 csc
$$(2x-T)+1$$
 Always

Graph $y=2\sin(2x-T)+1$

then put "the parabola" shapes on top at Sine function.

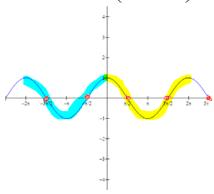
Do not forget $V.A.$

You'll also be able to take advantage of what you know about the graph of $f(x) = \cos(x)$ to help you graph $g(x) = \sec(x)$. Using the identity $\sec(x) = \frac{1}{\cos(x)}$, you can conclude that the graph of g will have a vertical asymptote whenever $\cos(x) = 0$.

This means that the graph of g will have vertical asymptotes at $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \ldots$. The easiest way to draw a graph of $g(x) = \sec(x)$ is to draw the graph of $f(x) = \cos(x)$, sketch asymptotes at each of the zeros of $f(x) = \cos(x)$, then sketch in the secant graph.

 $g(x) = \sec(x) = \frac{1}{\cos(x)}$; if $\cos(x) = 0$, then g(x) has a vertical asymptote.

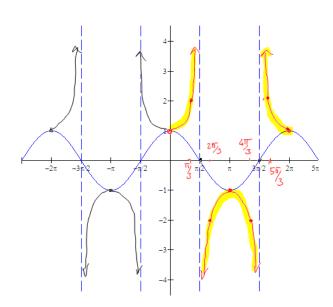
Here's the graph of $f(x) = \cos(x)$ on the interval $\left(-\frac{5\pi}{2}, \frac{5\pi}{2}\right)$.



Next, we'll include the asymptotes for the secant graph.

$$\cos \frac{4\pi}{8} = -\frac{1}{2}$$

$$\cos 2\pi = 1$$



flx1 = secx = 1 Cosx

con be zero

$$\cos x = 0$$

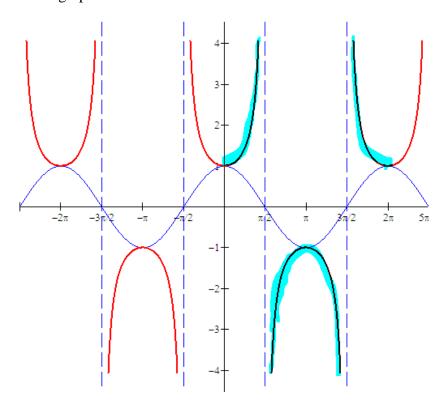
$$x = \frac{\pi}{2} \, | \, \frac{3\pi}{2} \, | \, \frac{5\pi}{2} \, | \, ...$$

$$-\frac{\pi}{2} \, | \, -\frac{3\pi}{2} \, | \, \frac{-5\pi}{2} \, | \, ...$$

$$\lambda = \frac{\pi}{2} \cdot \frac{3\pi}{2} \quad \frac{\text{V.A.}}{\text{A}}$$

$$-\frac{\pi}{2} \cdot \frac{-3\pi}{2}$$

Now we'll include the graph of the secant function.



Period: 2π

Vertical Asymptote:

 $x = k\pi/2$ is an odd integer, k is 0 do

x-intercepts: None *y*-intercept: (0, 1)

Domain: $x \neq k\pi/2$, k is an odd integer

Range: $(-\infty, -1] \cup [1, \infty)$

$$\mathcal{X} = \frac{\pi}{2} \cdot \frac{3\pi}{2} \cdot \frac{5\pi}{2} \cdot \dots$$

$$\frac{\pi}{2} \cdot \frac{3\pi}{2} \cdot \frac{5\pi}{2} \cdot \dots$$

$$\frac{\pi}{2} \cdot \frac{\pi}{2} \cdot \frac{5\pi}{2} \cdot \dots$$

$$\frac{\pi}{2} \cdot \frac{\pi}{2} \cdot \frac{5\pi}{2} \cdot \dots$$

Typically, you'll just graph over one period $(0, 2\pi)$.

To graph $y = A \sec(Bx - C) + D$, first graph, **THE HELPER GRAPH**: $y = A \cos(Bx - C) + D$.

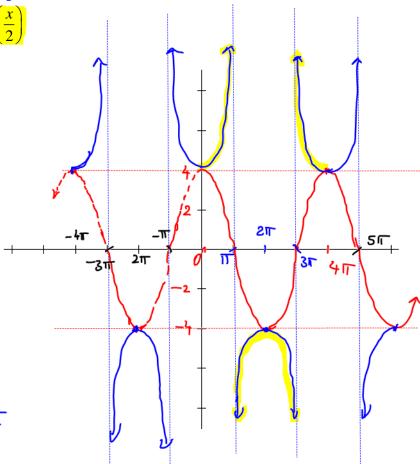
y = A sec(Bx-c)+D Always

graph $y = A \cos(Bx-c) + D$ and then put "parabola"
shapes on top of cosine!
Do not forget V.A.

Example 1: Sketch
$$f(x) = 4\sec\left(\frac{x}{2}\right)$$



period =
$$\frac{2\pi}{1/2} = 4\pi$$



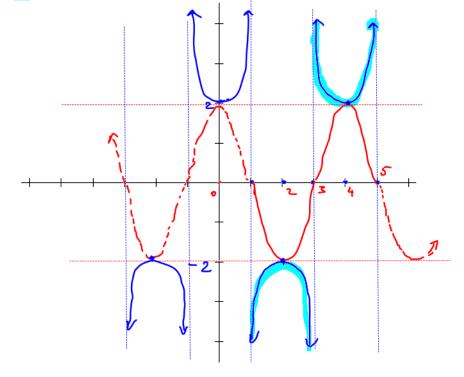
Note
$$f(x) = 4 \sec(\frac{x}{2})$$
 has $V.A$ at

Example 2: Sketch
$$f(x) = -2\csc\left(\frac{\pi x}{2} - \frac{\pi}{2}\right)$$

Helper graph:

$$y = -2$$
 ston $(\mathbb{Z} \times -\mathbb{Z})$

B=
$$\frac{T}{2}$$
 — horizontel Shrinking
period = $\frac{2\pi}{T_2}$ = 4



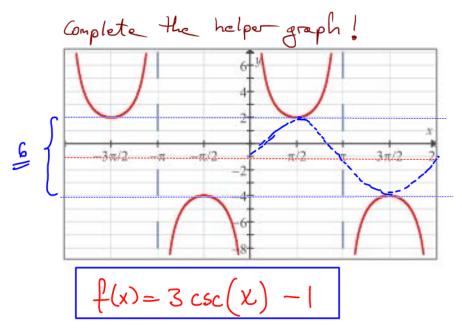
•
$$C = \frac{\pi}{2}$$
 \rightarrow horizontal shift
by $\frac{C}{B} = \frac{\sqrt{3}}{2} = 1$ witright.

Then put
$$y = -2 \csc(\frac{\pi}{2}x - \frac{\pi}{2})$$
.

Note
$$f(x) = -2 \csc(\frac{T}{2}x - \frac{T}{2})$$
 has $V.A$.

because
$$\sin(\frac{\pi}{2}x - \frac{\pi}{2}) = 0$$
 at these values.

Example 3: Give an equation of the form $y = A\csc(Bx - C) + D$ and $y = A\sec(Bx - C) + D$ that could describe the following graph.



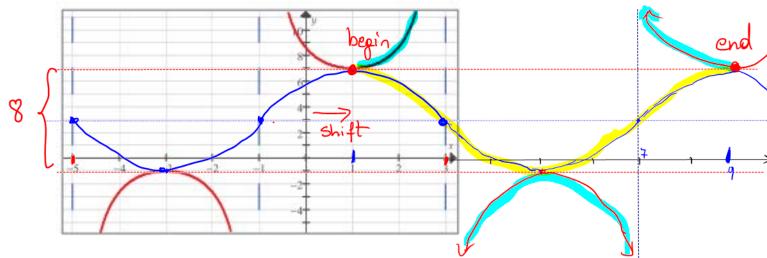
•
$$A = \frac{6}{2} = 3 \Rightarrow A = 3$$

$$D = -L \quad \text{of most down}$$

$$D = -4+2 = -L$$

Exercise: Give an equation of the form $y = A\csc(Bx - C) + D$ and $y = A\sec(Bx - C) + D$ that could describe the following graph.

Viewing as a secont function:



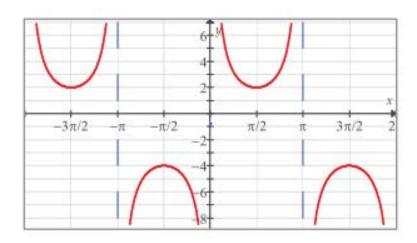
- amplitude = $\frac{7-(-1)}{2} = \frac{8}{2} = 4 \Rightarrow A = 4$
- $\text{period} = 8 = \frac{2\pi}{B} \implies B = \frac{\pi}{4}$
- Shift I to right, C= I => C=B=#
- Vertical Shift = (-1) +7 = 3 -> D = 3

$$U = 4 \cos(\frac{\pi}{4}(x-1)) + 3$$

$$= 4 \cos(\frac{\pi}{4}(x-1)) + 3$$

$$=>$$
 $y = 4 \sec(\frac{\pi}{4}x - \frac{\pi}{4}) + 3$

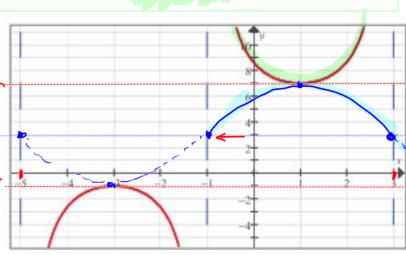
Example 3: Give an equation of the form $y = A\csc(Bx - C) + D$ and $y = A\sec(Bx - C) + D$ that could describe the following graph.



Exercise: Give an equation of the form $y = A\csc(Bx - C) + D$ and $y = A\sec(Bx - C) + D$ that could describe the following graph

Miemed as

Cosecant Function



$$\Rightarrow f(x) = 4 \csc\left(\frac{\pi}{4}x + \frac{\pi}{4}\right) + 3$$

let's find helper:

$$\frac{2\pi}{13} = 8 \Rightarrow \overline{13} = \overline{\frac{\pi}{4}}$$

· shifted I unit left

$$\frac{C}{13} = -1 \implies C = -\frac{17}{4}$$

Exercise: Find the vertical asymptotes of:

a)
$$f(x) = 2\sec\left(\frac{x}{2} - \pi\right) = 2 \cdot \frac{1}{\cos\left(\frac{x}{2} - \pi\right)}$$

Vertical Asymptotes:

$$\cos(\frac{x}{2} - \pi) = 0$$

b)
$$f(x) = 2\csc\left(x - \frac{\pi}{4}\right)$$

= $\chi = k\pi$, k oold

Vertical asymptotes:
$$\sin(x-\frac{\pi}{4})=0$$

$$x - \frac{\pi}{4} = 0$$
 => $x = \frac{\pi}{4}$
 $x - \frac{\pi}{4} = \pi$ => $x = \frac{5\pi}{4}$
 $x - \frac{\pi}{4} = 2\pi$ => $x = \frac{9\pi}{4}$

$$\frac{\chi}{2} - T = \frac{\pi}{2} \implies \frac{\chi}{2} = \frac{3\pi}{2} \implies \chi = 3\pi$$

$$\frac{x}{2} - \overline{x} = \frac{3\overline{x}}{2} \Rightarrow \frac{x}{2} = \frac{5\overline{x}}{2} \Rightarrow x = 5\overline{x}$$

$$\sin\left(x-\frac{\pi}{4}\right)=0$$

$$\chi - \frac{\pi}{4} = -\pi \implies \chi = -\frac{3\pi}{4}$$

$$\chi - \frac{\pi}{4} = -2\pi \longrightarrow \chi = -\frac{7\pi}{4}$$

$$\chi = \frac{k\pi}{4}$$
, $k = -- -7, -3, 1, 5, 9, ...$

or
$$x = \frac{\pi}{4} + k\pi$$
, k integer.