Section 5.3b - Graphs of Tangent and Cotangent Functions

Tangent function: $\quad f(x)=\tan (x)=\frac{\sin (x)}{\cos (x)}$;

Vertical asymptotes: when $\cos (x)=0$, that is $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots$
Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots \quad$ Range: $(-\infty, \infty)$
x-intercepts: when $\sin (x)=0$, that is $\quad x=0, \pm \pi, \pm 2 \pi, \ldots$
Period: π - Do not forget

$$
\begin{aligned}
& x \text {-intercepts: } \\
& \tan x=0 \\
& \Rightarrow \sin x=0 \\
& x=0, \pm \pi_{1} \pm 2 \pi_{1} \ldots
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =\tan x \\
& =\frac{\sin x}{\cos x}
\end{aligned}
$$

$$
V \cdot A \cdot \cos x=0
$$

$$
x= \pm \frac{\pi}{2}
$$

$$
\pm \frac{3 \pi}{2}
$$

$$
\pm \frac{5 \pi}{2}
$$

VA. $x=\frac{k \pi}{2}, k$ odd

Need to plot
these three points.

Often you will need to graph the function over just one period. In this case, you'll use the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Here's the graph of $f(x)=\tan (x)$ over this interval, with pertinent points marked. one-period interval

To graph $f(x)=A \tan (B x-C)+D$;

- The period is: $\frac{\pi}{B}$

- Find two consecutive asymptotes by solving: $B x-C=\frac{\pi}{2}$ and $B x-C=-\frac{\pi}{2}$.
initial and final points of period
- Find an x-intercept by taking the average of the consecutive asymptotes.
midpoint of period interval
- Find the x coordinates of the points halfway between the asymptotes and and the x-intercept. Evaluate the function at these values to find two more points on the graph of the function. Divide period interval in four equal pieces

Note: If $\mathrm{B}>1$, it's a horizontal shrink. If $0<B<1$, it's a horizontal stretch.

Example 1: Sketch $f(x)=2 \tan \left(\frac{x}{4}\right)$

- $B=\frac{1}{4} \Rightarrow$ period $=\frac{\pi}{1 / 4}=4 \pi$
- Vartical Asymptotes:

$$
\left\{\begin{array}{l}
\cos \left(\frac{x}{4}\right)=0 \\
\frac{x}{4}=-\frac{\pi}{2} \text { or } \frac{x}{4}=\frac{\pi}{2} \\
x=\frac{-4 \pi}{2} \text { or } x=\frac{4 \pi}{2} \\
x=-2 \pi \text { or } x=2 \pi
\end{array}\right.
$$

graph in between

- $A=2 \rightarrow$ Verticalbtretch
(No buffing)

Check $x=\pi, \quad f(\pi)=2 \tan \left(\frac{\pi}{4}\right)=2 \cdot 1=2$

$$
x=-\pi, \quad f(-\pi)=2 \tan \left|\frac{-\pi}{4}\right|=2(-1)=-2
$$

- $B=\pi \Rightarrow$ period $=\frac{\pi}{\pi}=1$
- Vertical Asymptotes:

$$
\cos \left(\pi x-\frac{\pi}{4}\right)=0
$$

- $A=2 \rightarrow$ Vertical Stretch

divide into four intervals

Cotangent Function: $f(x)=\cot (x)=\frac{\cos (x)}{\sin (x)}$;

Vertical asymptotes: when $\sin (x)=0$, that is $x=0, \pm \pi, \pm 2 \pi, \ldots$
Domain: $x \neq 0, \pm \pi, \pm 2 \pi, \ldots$ Range: $(-\infty, \infty)$
\mathbf{x}-intercepts: when $\cos (x)=0$, that is $x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \pm \frac{5 \pi}{2}, \ldots$

$$
\begin{aligned}
f(x) & =\cot (x) \\
& =\frac{\cos (x)}{\sin (x)}
\end{aligned}
$$

Period: π

Often you will need to graph the function over just one period. In this case, you'll use the interval $(0, \pi)$. Here's the graph of $f(x)=\cot (x)$ over this interval.
one-period interval

You can take the graph of either of these basic functions and draw the graph of a more complicated function by making adjustments to the key elements of the basic function.

The key elements will be the locations) of the asymptotes), x intercepts, and the translations of the points at $\left(\frac{\pi}{4}, 1\right)$ and either $\left(\frac{-\pi}{4},-1\right)$ or $\left(\frac{3 \pi}{4},-1\right)$.

To graph $g(x)=A \cot (B x-C)+D$;

- The period is: $\frac{\pi}{B}$

- Find two consecutive asymptotes by solving: $B x-C=0$ and $B x-C=\pi$.
initial and final endpoints of period
- Find an x-intercept by taking the average of the consecutive asymptotes.
midpoint of period interval
- Find the x coordinates of the points halfway between the asymptotes and and the x-intercept. Evaluate the function at these values to find two more points on the graph of the function.
Divide period into four equal pieces.

Note: If $B>1$, it's a horizontal shrink. If $0<B<1$, it's a horizontal stretch

Example 3: $f(x)=-4 \cot \left(\frac{\swarrow^{\prime}}{\left.\pi x-\frac{\pi}{2}\right)+6} \iota^{C} \rightarrow\right.$ Never Forget: Graph is between tui vertical asymptotes.
Period: $\frac{\pi}{B}=\frac{\pi}{\pi}=1$
Describe the transformations needed: $A=-4 \Rightarrow$ Vertical stretch and reflection wrt.xaxts
$B=\pi \Rightarrow$ period $=1 \Rightarrow$ Horizontal shrinking
$C=\frac{\pi}{2} \Rightarrow$ shift $=\frac{C}{B}=\frac{\pi / 2}{\pi}=\frac{1}{2}$ to the right
Asymptotes:

$$
\begin{aligned}
& \pi x-\frac{\pi}{2}=0^{\leftarrow \text { first }} \\
& \Rightarrow \pi x=\frac{\pi}{2} \\
& \Rightarrow x=\frac{1}{2}
\end{aligned}
$$

or

$$
\text { or } \begin{aligned}
& \pi x-\frac{\pi}{2}=\pi \\
\Rightarrow & \pi x=\frac{3 \pi}{2} \\
\Rightarrow & x=\frac{3}{2}
\end{aligned}
$$

$D=6 \Rightarrow$ shift 6 units up.

$$
\begin{gathered}
A=5 \\
\iota^{A} B
\end{gathered}
$$

Example 4: Sketch $f(x)=5 \cot (2 x) \rightarrow N_{0}$ shiftrent

- $A=5 \Rightarrow$ Vertical Stretching

$$
\text { - } B=2 \Rightarrow \text { period }=\frac{\pi}{B}-\frac{\pi}{2}
$$

Horizontal Shrinking

- Vertical Any ptotes

$$
\begin{aligned}
& y=\cot x \Rightarrow x=0, \pi \\
& \Rightarrow 2 x=0 \text { or } 2 x=\pi \\
& x=0 \text { or } x=\frac{\pi}{2}
\end{aligned}
$$

graph is between V.A.

To be continued on
Monday, $3 / 28$.

Example 5: Give an equation of the form $f(x)=A \tan (B x-C)+D$ and $f(x)=A \cot (B x-C)+D$ that could represent the following graph.

- It is a tangent function.
- Period $=\pi \Rightarrow B=1$
- From graph, it is shifted 3 units up $\Rightarrow D=3$
- No horizontal shifts $C=0$
- From graph, there is a vertical stretching $A=5$

Exercise: Give an equation of the form $f(x)=A \tan (B x-C)+D$ and $f(x)=A \cot (B x-C)+D$ that could represent the following graph.

- It is a cotangent f_{n}.

- The period $=\frac{\pi}{2}=\frac{\pi}{B} \Rightarrow B=2$
\rightarrow Horizontal shift $=\frac{\pi}{8}=\frac{C}{B}$

$$
\frac{\pi}{8}=\frac{c}{2} \Rightarrow c=\frac{2 \pi}{\delta}=\frac{\pi}{4}
$$

- There is a vertical shift of 3 units down $\Rightarrow D=-3$

$$
\Rightarrow y=3 \cot \left(2 x-\frac{\pi}{4}\right)-3
$$

There is avertical stretching

$$
\Rightarrow A=3
$$

