Section 5.3b - Graphs of Tangent and Cotangent Functions

Tangent function: $f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)};$

Vertical asymptotes: when $\cos(x) = 0$, that is $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$ Domain: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots$ Range: $(-\infty, \infty)$

Often you will need to graph the function over just one period. In this case, you'll use the interval

 $\frac{-\pi}{2}, \frac{\pi}{2}$. Here's the graph of $f(x) = \tan(x)$ over this interval, with pertinent points marked.

To graph $f(x) = A \tan(Bx - C) + D$;

- The period is: B • Find two consecutive asymptotes by solving: $Bx - C = \frac{\pi}{2}$ and $Bx - C = -\frac{\pi}{2}$.
- Find an x-intercept by taking the average of the consecutive asymptotes. midpoint of period interval
- Find the x coordinates of the points halfway between the asymptotes and and the x-intercept.
 Evaluate the function at these values to find two more points on the graph of the function.
 Divide period interval in four equal pieces.

Note: If B > 1, it's a horizontal shrink. If 0 < B < 1, it's a horizontal stretch.

Example 1: Sketch
$$f(x) = 2\tan\left(\frac{x}{4}\right)$$
 (No Shifting)
• $B = \frac{1}{4} \implies \text{period} = \frac{\pi}{\frac{1}{4}} = 4\pi$
• Vertical Asymptotes:
 $\cos\left(\frac{x}{4}\right) = 0$
 $\int \frac{x}{4} = -\frac{\pi}{2}$ or $\frac{x}{4} = \frac{\pi}{2}$
 $x = -\frac{4\pi}{2}$ or $x = 2\pi$
 $york in between$
• $A = 2$ - Vertical Stretch
 $Check = x = \pi$, $f(\pi) = 2 \tan\left(\frac{\pi}{4}\right) = 2(1 = 2)$

Example 2: Sketch
$$f(x) = 2\tan\left(\frac{\pi}{\pi x} - \frac{\pi}{4}\right)$$
 (Horizontal Shift $\frac{\pi}{4} = \frac{1}{4}$ to right)

•
$$B=T \implies period = \frac{T}{T} = 1$$

• Vertical Asymptotes;

$$\cos(\pi x - \frac{\pi}{4}) = 0$$

 $\pi x - \frac{\pi}{4} = \frac{\pi}{2} = \pi = \pi$
or
 $x = \frac{\pi}{4}$
 $x = \frac{\pi}{4}$

Cotangent Function: $f(x) = \cot(x) = \frac{\cos(x)}{\sin(x)};$

Vertical asymptotes: when sin(x) = 0, that is $x = 0, \pm \pi, \pm 2\pi, ...$

Domain: $x \neq 0, \pm \pi, \pm 2\pi, \dots$ Range: $(-\infty, \infty)$

Often you will need to graph the function over just one period. In this case, you'll use the interval $(0, \pi)$. Here's the graph of $f(x) = \cot(x)$ over this interval.

You can take the graph of either of these basic functions and draw the graph of a more complicated function by making adjustments to the key elements of the basic function.

The key elements will be the location(s) of the asymptote(s), x intercepts, and the translations of the points at $\left(\frac{\pi}{4}, 1\right)$ and either $\left(\frac{-\pi}{4}, -1\right)$ or $\left(\frac{3\pi}{4}, -1\right)$.

To graph $g(x) = A \cot(Bx - C) + D$;

- Vertical Asymptotes The period is:
- Find two consecutive asymptotes by solving: Bx C = 0 and $Bx C = \pi$. • Find an <u>x-inter</u>cept by taking the average of the consecutive asymptotes.
- ٠ midpoint period interval ∞4
- Find the x coordinates of the points halfway between the asymptotes and and the x-intercept. • Evaluate the function at these values to find two more points on the graph of the function. Divide period into four equal pieces.

Note: If B > 1, it's a horizontal shrink. If 0 < B < 1, it's a horizontal stretch

Example 3:
$$f(x) = -4 \operatorname{col} \left(\frac{\pi x - \frac{\pi}{2}}{2} \right) + 6^{-1}$$
 Never Forget : Graph is between two vertical asymptotes.
Period: $\frac{\pi}{3} = \frac{\pi}{3} = \frac{\pi}{3}$
Describe the transformations needed: $A = -\frac{1}{4} \Rightarrow$ Vertical Stretch and reflection wit xoas
 $B = \pi \Rightarrow \operatorname{period} = 1 \Rightarrow$ Horizontal Strinking
 $C = \frac{\pi}{2} \Rightarrow \operatorname{shift} = \frac{\pi}{3} = \frac{\pi}{3} = \frac{1}{2}$ to the right
Asymptotes:
 $D = 6 \Rightarrow \operatorname{shift} = 6 \text{ units up}$.
 $\pi x - \frac{\pi}{2} = 0^{-1}$.
 $\Rightarrow \pi x = \frac{\pi}{2}$
 $\Rightarrow \pi x = \frac{\pi}{2}$
 $\Rightarrow \pi x = \frac{\pi}{2}$
 $\Rightarrow x = \frac{1}{2}$
 $f = \frac{\pi}{4}$
 f

Example 5: Give an equation of the form f(x) = Atan(Bx - C) + D and f(x) = Acot(Bx - C) + D that could represent the following graph.

Exercise: Give an equation of the form f(x) = Atan(Bx - C) + D and f(x) = Acot(Bx - C) + D that could represent the following graph.

