Popper \# 10
(1) $\frac{A(\sqrt{2} \sqrt{2}}{1} \Rightarrow \tan \left(45^{\circ}\right)=\frac{\theta}{A}=\frac{1}{1}$
A. $\sqrt{2}$
B. $\frac{\sqrt{2}}{2}$
(c) 1
D. none
(2) Convert $\frac{\pi}{6}=30^{\circ}$
(A.) 30°
B. 45°
$\begin{array}{cc}\text { C. } 60^{\circ} & \text { D. } 90^{\circ}\end{array}$
(3) Convert 45° in radianl $45^{\circ} \times \frac{\pi}{10}$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
(c.) $\frac{\pi}{4}$
D. none
(4) Mark (A.)
(5) Mark B.

Unit Circle: $x^{2}+y^{2}=1$, any point $(x, y)=(\cos \theta, \sin \theta)$
Never forget:

$$
x=\cos \theta, \quad y=\sin \theta
$$

ex. Find all angles in unitcircle for which $\cos \theta=\frac{1}{2}$
\rightarrow From wit circle, we can see Two Answers
(same position)

Using unit circle, we plot $\quad f(x)=\cos x . \quad \begin{array}{lllll}\theta=0 & \theta=\frac{\pi}{2} & \theta=\pi & \theta=\frac{3 \pi}{2} & \theta=2 \pi \\ \cos 0=1 & \cos \frac{\pi}{2}=0 & \cos \pi=-1 & \cos \frac{3 \pi}{2}=0 & \cos 2 \pi=1\end{array}$

To be continued on Tuesday, 03/08.

Section 5.4 - Inverse Trigonometry

We have not yet studied the graphs of the sine and cosine functions, but we are going to take a quick look at them before we cover inverse trigonometry.

Here's the graph of $f(x)=\sin (x)$.

The function is a periodic function. That means that the functions repeats its values in regular intervals, which we call the period. The period of sine function $=2 \pi$.

Is it one to one? $\quad f(x)=\sin (x)$ is not one-to-one! We con make it one-to-one
Restrict the domain!!!

If the function is not one-to-one, we run into problems when we consider the inverse of the function. What we want to do with the sine function is to restrict the values for sine. When we make a careful restriction, we can get something that IS one-to-one.

If we limit the function to the interval $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$, the graph will look like this: possible values. Hence, the restriction defines the function correctly.

Restricted Sine function

Domain: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \leftarrow I_{1}, \underline{\mathbb{V}}$
Range: [$-1,1$]

On this limited interval, we have a one-to-onefunction.

$$
\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \xrightarrow[1-1]{f(x)=\sin x}[-1,1]
$$

Let's do the same thing with $f(x)=\boldsymbol{\operatorname { c o s }}(x)$. Here's the graph of $f(x)=\cos (x)$.

$$
f(x)=\cos x,
$$

periodic,

$$
\text { period }=2 \pi \text {, }
$$

not 1-1.

Restrict the domain.

It's also not one-to-one. If we limit the function to the interval $[0, \pi]$, however, the function IS one-to-one.

Here's the graph of the restricted cosine function. In this interval, $f(x)=\cos x$ gets all its possible values, hence restriction defines

Restricted Cosine function the function correctly.
Domain: $[0, \pi] \leftarrow I_{1}$ II
Range: [$-1,1$]

$$
[0, \pi] \xrightarrow{1-1}\left[\begin{array}{l}
f(x)=\cos x \\
{[-1,1]}
\end{array}\right.
$$

Period $=\pi \leftarrow$ length of interval where it repeats. Here's the graph of $f(x)=\tan (x)$. Is it one-to-one?

$$
\begin{aligned}
\tan x & =\frac{\sin x}{\cos x} \\
\cos x & =0 \\
\text { V. } A & \Leftrightarrow x=\frac{\pi}{2},-\frac{\pi}{2}, \cdots
\end{aligned}
$$

The highlighted shape repeats forever If we restrict $f(x)=\tan x$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, it becomes 1-1

If we restrict the function to the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$, then the restricted function IS one-toone.

Restricted Tangent function
Domain: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \leftarrow I_{1} \square$
Range: ($-\infty, \infty$)

Graph for $\cot x=\frac{\cos x}{\sin x}, \sin x=0 \Rightarrow x=0, \pi, 2 \pi<V . A$.

Similar as $\tan x, \cot x$ gets repeated in every π-interval
\Rightarrow period $=\pi$. Restrict on $(0, \pi) \leftrightarrow I, \mathbb{I}$ then

I, II

$$
\cot x:(0, \pi) \xrightarrow{\xrightarrow{\cot ^{-1}(x) \text { exist } s}(-\infty, \infty)}
$$

We now want to evaluate inverse trig functions. With these problems, instead of giving you the angle and asking you for the value, I'll give you the value and ask you what angle gives you that value.

Important: When we covered the unit circle, we saw that there were two angles that had the same value for most of our angles. With inverse trig, we can't have that. We need a unique answer, because of our need for 1-to-1 functions. We'll have one quadrant in which the values are positive and one quadrant where the values are negative. The restricted graphs we looked at can help us know where these values lie. We'll only state the values that lie in these intervals (same as the intervals for our graphs):

Restricted Sine function
Domain: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longleftrightarrow$ IV, I
Range: [$-1,1$]

$$
\begin{aligned}
& \sin (x):\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \xrightarrow{1-1}[-1,1] \\
& \sin ^{-1}(x):[-1,1] \xrightarrow{1-1}\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \leftrightarrow \text { quadrant I, IV }
\end{aligned}
$$

Notation: $\sin ^{-1}(x)$ or $\arcsin (x)$
Inverse Sine Function:
Domain: [-1,1]
Range: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (quadrants 1 and 4)

Example: $\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \rightarrow \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}$
$\left[\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \leftarrow\right.$ use unit circle to evaluate.

$$
\begin{aligned}
& \sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6} \leftarrow \text { what is the angle whose sine is } \frac{1}{2} \text { ? } \\
& \text { (Looking at wit circle, you find } \frac{\pi}{6} \text { or } \frac{10}{6} \text { since } \\
& \left.\left.\sin ^{-1}(x):[-1,1] \xrightarrow[2]{2}\right] \frac{\pi}{2}\right]
\end{aligned}
$$

- When asked to find all angles in unit circle for which
$\sin \theta=\frac{1}{2} \Rightarrow$ Answer: $\theta=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
- Evaluate $\sin ^{-1}\left(\frac{1}{2}\right)$:
$\sin ^{-1}:[-1,1] \longrightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]=$ Quadrant I or \mathbb{T}
Think $\sin ^{-1}\left(\frac{1}{2}\right)=\theta$ in quadrant I or \bar{V}
i!

$$
\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}
$$

- Short cut:

Evaluate $\sin ^{-1}(x) \rightarrow$ if x positive \Rightarrow QI \downarrow

- if x negative \Rightarrow GIG $-1 \leq x \leq 1$.

Restricted Cosine function
Domain: $[0, \pi] \longleftrightarrow$ I, II
Range: [-1,1]

Inverse Cosine Function:
Domain: [-1,1]
Range: $[0, \pi]$ (quadrants 1 and 2)

Notation: $\cos ^{-1}(x)$ or $\arccos (x)$

$$
\begin{aligned}
& \cos x:[0, \pi] \xrightarrow{H}[-1,1] \\
& \cos ^{-1}(x):[-1,1] \xrightarrow{1-1}[0, \pi] \leftrightarrow \text { quadrant } I, \frac{\pi}{}
\end{aligned}
$$

Example: $\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \rightarrow \cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
$\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \leftarrow \operatorname{losk}$ at unit circle
$\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\left(\frac{\pi}{4} \leftarrow\right.$ what is the angle whose cosine is $\frac{\sqrt{2}}{2}$?
(looking at wit circle, you find $\frac{\pi}{4}$) and

$$
\cos ^{-1}(x):[-1,1] \rightarrow[0, \pi]
$$ not belong

- When asked find all angles in mit circle for which

$$
\cos \theta=\frac{\sqrt{2}}{2} \Rightarrow \text { Answer: } \theta=\frac{\pi}{4} \text { or } \frac{7 \pi}{4}=\frac{-\pi}{4}
$$

- Evaluate $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)$

$$
\cos ^{-1}:[-1,1] \rightarrow[0, \pi]=\text { quadrant } I \text { or } \pi
$$

Think $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\theta$ in quadrant I or II.

$$
\begin{aligned}
& \sim \\
& \cos \theta\left.=\frac{\sqrt{2}}{2} \rightarrow \theta=\frac{\pi}{4}\right) \text { or } \\
& \Rightarrow \cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}
\end{aligned}
$$

- Snortant:

Evaluate $\cos ^{-1}(x) \rightarrow$ e if x is positive $\rightarrow Q$ I

$$
-1 \leq x \leq 1
$$

Restricted Tangent function

Domain: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Range: $(-\infty, \infty)$

Inverse Tangent Function:

Domain: $(-\infty, \infty)$

Range: $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ (quadrants 1 and 4)

Notation: $\tan ^{-1}(x)$ or $\arctan (x)$

$$
\tan (x):\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad \xrightarrow{1-1}(-\infty, \infty)
$$

$$
\tan ^{-1}(x):(-\infty, \infty) \xrightarrow{1-1}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \leftarrow \text { quadrant } I \text {, IV. }
$$

Example: $\tan \left(\frac{\pi}{4}\right)=1 \rightarrow \tan ^{-1}(1)=\frac{\pi}{4}$ $\tan \left(\frac{\pi}{4}\right)=1 \leftarrow$ use unit circle.
$\tan ^{-1}(1)=\frac{\pi}{4} \leftarrow$ What is the angle whose tangent is L ? By unit circle, you find $\frac{\pi}{4}$ or belong does not $\tan ^{-1}(x):(-\infty,+\infty) \underset{1-1}{\longrightarrow}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

RULE : $\tan ^{-1}(x) \rightarrow$ if x positive $\Rightarrow Q I$ if x negative \Rightarrow VII.

Example 1: Compute each of the following:
a) $\sin ^{-1}\left(\frac{1}{2}\right)=\theta \Leftrightarrow \sin \theta=\frac{1}{2} \Leftrightarrow \theta=\frac{I}{2}$ or $\frac{I}{6} \frac{5 \pi}{6} \Rightarrow \theta=\frac{\pi}{6}$
b) $\tan ^{-1}(\sqrt{3})=\theta \Leftrightarrow \tan \theta-\sqrt{3} \Leftrightarrow \theta=\frac{\pi}{3} \frac{\pi}{3}$ or $\frac{\pi}{3}$
c) $\arccos (0)=\theta \Leftrightarrow \cos \theta=0 \Leftrightarrow \theta=\frac{\text { III }}{2}$ or $\frac{3 \pi}{2} \Rightarrow \theta=\frac{\pi}{2}$
d) $\sin ^{-1}\left(-\frac{\sqrt{2}}{2}\right)=\theta \Leftrightarrow \operatorname{IN}$ IN $\theta=\frac{-\sqrt{2}}{2} \Leftrightarrow \theta=\frac{\text { III }}{4}$ or $\frac{7 \pi}{4}=-\frac{\pi}{4} \Rightarrow \theta=-\frac{\pi}{4}$
f) $\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)=\theta \Leftrightarrow \cos \theta=\frac{-\sqrt{3}}{2} \Leftrightarrow \theta=\frac{\frac{\pi}{5}}{6}$ or 势 6
g) $\arctan (-1)=\theta \Leftrightarrow \tan \theta=-1 \Leftrightarrow \theta=\frac{\frac{\pi}{4}}{\frac{3 \pi}{4}}$ or $\frac{\pi \pi}{4}=-\frac{\pi}{4} \Rightarrow \theta=-\frac{\pi}{4}$

Never forget: If the angle is in quadrant IV, write its negative equivalent.

III
h) $\sec ^{-1}(2) \cdot=\theta \Leftrightarrow \sec \theta=2$

III
$\sec \theta=\frac{1}{\cos \theta}$

$$
\begin{aligned}
\sec \theta=\frac{1}{\cos \theta}=2 & \Leftrightarrow \cos \theta=\frac{1}{2} \Leftrightarrow \theta=\frac{\pi}{3} \text { or } \\
& \Rightarrow \theta=\frac{\pi}{3}
\end{aligned}
$$

i) $\csc ^{-1}(0)=\theta$

$$
\Leftrightarrow \csc \theta=0
$$

Undefined!
$\frac{11}{\sin \theta}=0 \Leftrightarrow$ there is no angle for which

$$
\frac{1}{\sin \theta}=0
$$

NOTE: Domains of inverse trig functions: DO NoT FORGET?

$$
\begin{array}{ll}
f(x)=\sin ^{-1}(x) ; & {[-1,1] \longrightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]=\text { range }=\text { quadrant I \& IV }} \\
f(x)=\cos ^{-1}(x) ; & {[-1,1] \longrightarrow[0, \pi]=\text { range }=\text { quadrant I \& II }} \\
f(x)=\tan ^{-1}(x) ; & (-\infty, \infty) \longrightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)=\text { range = quadrant I \& IV } \\
f(x)=\cot ^{-1}(x) ; & (-\infty, \infty) \longrightarrow(0, \pi)=\text { range -quadrant I \& II }
\end{array}
$$

$\begin{aligned} & \text { look at } \\ & \text { the next } \\ & \text { page }\end{aligned}$$\left\{\begin{array}{l}f(x)=\sec ^{-1}(x) ; \quad(-\infty, 1] \cup[1, \infty) \rightarrow\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]=\text { range }=\text { quadrant } I, ~ I T \\ f(x)=\csc ^{-1}(x) ;\end{array}\right.$ for graphs

For example; $\sin ^{-1}(2)$ or $\cos ^{-1}(\sqrt{2})$ are not defined.

cant be can't be

Note: I will go over secant and cosecant functions on Thursday.

Plot $f(x)=\sec x=\frac{1}{\cos x}$

$\sec x:\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right] \rightarrow(-\infty,-1] \cup[1, \infty)$
range

domain

Plot $f(x)=\csc x=\frac{1}{\sin (x)}$

$$
\begin{aligned}
& \csc x:\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right] \rightarrow(-\infty,-1] \cup[1, \infty) \\
& \underbrace{\csc ^{-1}(x)}_{\text {domain }}: \underbrace{\rightarrow\left[-\frac{\pi}{2}, 0\right) \cup}_{\text {(}-\infty,-1] \cup[1, \infty)} \underbrace{\left[0, \frac{\pi}{2}\right]}_{\underline{\frac{\pi}{I V}}}
\end{aligned}
$$

Never forget the range of inverse trigonometric functions.
Example 2: Find the exact value: $\begin{aligned} \sin ^{-1}[\underbrace{\sin }_{\underbrace{\sin \left(\frac{7 \pi}{6}\right)} \frac{\operatorname{li\pi }}{6})}) & =-\frac{1}{2}\end{aligned}$
$\begin{aligned} \text { Example 3: Find the exact value: } \cos ^{-1}[\underbrace{\left[\cos \left(\frac{4 \pi}{3}\right)\right.}] & =\cos ^{-1}\left(-\frac{1}{2}\right)=\frac{2 \pi}{3} \leftarrow \text { quadrant } \text { II } \\ \cos \left(\frac{4 \pi}{3}\right) & =-\frac{1}{2}\end{aligned}$
Note: $\quad \cos ^{-1}\left(\cos \left(\frac{2 \pi}{3}\right)\right)=\frac{\frac{2 \pi}{3}}{\frac{\pi}{3}} \quad$ but $\cos ^{-1}\left(\cos \left(\frac{4 \pi}{\left.\frac{(4 \pi}{3}\right)}\right) \neq \frac{4 \pi}{3}\right.$
Example 4: Find the exact value: $\tan ^{-1}[\underbrace{\tan \left(\frac{3 \pi}{4}\right)}]=\tan ^{-1}(-1)=-\frac{\pi}{4} \leftarrow$ quadrant IV $\tan \left(\frac{3 \pi}{4}\right)=-1$
I正

$$
\tan ^{-1}(\underbrace{\tan \left(-\frac{\pi}{4}\right)}_{\text {IV }})=\underbrace{-\frac{\pi}{4}}_{\text {IV }} \quad \text { but } \quad \tan _{\substack{-1}}^{\underbrace{-1}_{\text {II }}}\left(\underset{\tan }{\left(\frac{3 \pi}{4}\right)}\right) \neq \frac{3 \pi}{4}
$$

$$
\begin{aligned}
\tan ^{-1}(\tan (\underbrace{\frac{7 \pi}{4}}_{\left.\frac{7 \pi}{4}\right)} & =\frac{-\pi}{4}
\end{aligned}
$$

Note: If a trigonometric function and its inverse are composed, then we have a shortcut. However, we need to be careful about giving an answer that is in the range of the inverse trig function.

$$
\begin{cases}\cos ^{-1}[\cos (\theta)]=\theta & \text { if } \theta \in[0, \pi] \\ \sin ^{-1}[\sin (\theta)]=\theta & \text { if } \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ \tan ^{-1}[\tan (\theta)]=\theta & \text { if } \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\end{cases}
$$

Examples:

Example 5: Find the exact value: $\cos \left[\cos ^{-1}\left(\frac{1}{6}\right)\right]=\frac{1}{6}$
Wel-defined

If the inverse trig function is the inner function, then our job is easier.
$\left\{\begin{array}{l}\cos \left[\cos ^{-1}(x)\right]=x \text { for any number } x \text { such that }-1 \leq x \leq 1 . \\ \sin \left[\sin ^{-1}(x)\right]=x \text { for any number } x \text { such that }-1 \leq x \leq 1 . \\ \tan \left[\tan ^{-1}(x)\right]=x \text { for any number } x . \\ \text { as long as it is well-defined! } \\ \text { Examples: }\end{array}\right.$

$$
\sin \left[\sin ^{-1}\left(\frac{1}{5}\right)\right]=\frac{1}{5}
$$

$$
\left.\begin{array}{ll}
\cos \left[\cos ^{-1}\left(-\frac{2}{7}\right)\right]
\end{array}\right]=-\frac{2}{7} \quad \text { ex. } \quad \text { sin }(\underbrace{\sin ^{-1}(2)}_{\text {undefined }}) \text { undefined. }
$$

$$
\tan \left[\tan ^{-1}(5)\right]=5 .
$$

Example 6: Find the exact value: $\cos [\underbrace{\sin ^{-1}\left(\frac{5}{13}\right)}_{\theta}]$.
$\sin ^{-1}\left(\frac{5}{13}\right)=\theta \longleftrightarrow$ Quadrant I

$$
\Leftrightarrow \sin \theta=\frac{5}{13} \quad \Rightarrow \cos \theta=\frac{12}{13}
$$

Example 7: Find the exact value: $\tan [\underbrace{\left[\cos ^{-1}\left(-\frac{2}{5}\right)\right.}_{\theta}] . \tan \theta=$?

$$
\cos ^{-1}\left(-\frac{2}{5}\right)=\theta
$$

$\Leftrightarrow \cos \theta=\frac{-2}{5}$, quadrant II

$$
\Rightarrow \tan \theta=-\frac{\sqrt{21}}{2}
$$

Popper \# $11 \leftarrow$ Buboble
From unit circle, $\theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
(1) Given $\sin \theta=\frac{1}{2}$ and θ is QII find θ.
A. $\frac{\pi}{6}$
(B. $\frac{5 \pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$
E.none

$$
\longmapsto \theta=\frac{\pi}{4}, \frac{7 \pi}{4}=-\frac{\pi}{4}
$$

(2) Given $\cos \theta=\frac{\sqrt{2}}{2}$ and θ is in QIV, fird θ.
A. $\frac{\pi}{4}$
B. $\frac{3 \pi}{4}$
(c.) $-\frac{\pi}{4}$
D. none
(3) $\sin ^{-1}(\underbrace{\frac{1}{2}}_{\text {positive }})=\theta \leftarrow$ Quadrant $I \Rightarrow \theta=\frac{\pi}{6}$
(A.) $\frac{\pi}{6}$
B. $\frac{5 \pi}{6}$
C. $\frac{\pi}{3}$
D. $\frac{2 \pi}{3}$
(4) $\cos ^{-1}\left(\frac{\sqrt{2}}{2}\right)=\theta \leftarrow$ quadrant $I \rightarrow \theta=\frac{\pi}{4}$ positive
(A.) $\frac{\pi}{4}$
B. $-\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. $\frac{-3 \pi}{4}$

