Popper 18

$$\frac{\sin 15^{\circ} \cos 75^{\circ} + \cos 15^{\circ} \sin 75^{\circ} = \sin (15^{\circ} + 75^{\circ}) = \sin (90^{\circ} = 1)}{\sin 15^{\circ} \cos 75^{\circ} + \cos 15^{\circ} \sin 75^{\circ}} = \sin (15^{\circ} + 75^{\circ}) = \sin (90^{\circ} + 75^{\circ}) = \sin (90^{\circ}$$

A. 0 B. $C. \frac{\sqrt{3}}{2}$ $D. \frac{1}{2}$

E. none

Be weful

A. 0 B.
$$\frac{\sqrt{2}}{2}$$
 C. $-\frac{\sqrt{2}}{2}$ D. 1

E. none

$$\frac{\tan(6x) + \tan(\pi)}{1 - \tan(6x) \cdot \tan \pi} = \tan(6x)$$
Actually $\tan(\pi) = 0$

A. tan (6x) B. tan (3x)

C. O D. none

$$\sin\left(\frac{\pi}{2} - \chi\right) = \cos \chi$$

 $\sin\left(\frac{\pi}{2} - x\right) = \sin\frac{\pi}{2} \cos x - \cos\frac{\pi}{2} \cdot \sin x$ $\sin\left(\frac{\pi}{2}-x\right) = \cos x$

$$C_{\cdot} - \sin x$$
 $D_{\cdot} - \cos x$

(6)
$$\left(\frac{\mathbb{T}}{2} - x\right) = \sin x$$

Similar

(A) sinx

Section 6.2 – Double and Half Angle Formulas

Now suppose we are interested in finding $\sin(2A)$. We can use the sum formula for sine to develop this identity:

to develop this identity:
$$\operatorname{Resul}_{Sin}(A+B) = \sin A \cos B + \cos A \sin B, \quad A = B$$
$$\sin(2A) = \sin A \cos A + \sin A \cos A$$
$$\sin A \cos A = 2\sin A \cos A$$

Similarly, we can develop a formula for cos(2A):

Similarly, we can develop a formula for
$$\cos(2A)$$
:
$$\cos(2A) = \cos(A + A)$$

$$= \cos A \cos A - \sin A \sin A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

We can restate this formula in terms of sine only or in terms of cosine only by using the Pythagorean theorem and making a substitution. So we have:

$$cos(2A) = cos^2 - sin^2 A$$

$$cos(2A) = 1 - 2sin^2 A$$

$$cos(2A) = 1 - 2sin^2 A$$

$$cos^2 A + sin^2 A = 1$$

$$cos^2 A = 1 - sin^2 A$$

$$cos^2 A = 1 - sin^2 A$$

$$cos^2 A = 1 - sin^2 A$$

We can also develop a formula for tan(2A):

tan(2A) =
$$\tan(A + A)$$

$$= \frac{\tan A + \tan A}{1 - \tan A \tan A}$$

$$= \frac{2 \tan A}{1 - \tan^2 A}$$

$$\tan(2A) = \frac{\tan A + \tan A}{1 - \tan^2 A}$$

$$\tan(2A) = \frac{\tan A + \tan A}{1 - \tan^2 A}$$

These three formulas are called the **double angle formulas for sine**, **cosine and tangent**.

Besides these formulas, we also have the so-called **half-angle formulas for sine, cosine and tangent**, which are derived by using the double angle formulas for sine, cosine and tangent, respectively.

Double – Angle Formulas

$$\sin(2A) = 2\sin A\cos A$$

$$cos(2A) = cos2 A - sin2 A$$
$$= 2cos2 A - 1$$
$$= 1 - 2sin2 A$$

$$\tan(2A) = \frac{2\tan A}{1 - \tan^2 A}$$

learn to apply correctly !!!

.....

Half – Angle Formulas

$$\sin\left(\frac{A}{2}\right) = \pm\sqrt{\frac{1-\cos A}{2}}$$

$$\cos\left(\frac{A}{2}\right) = \pm\sqrt{\frac{1+\cos A}{2}}$$

$$\tan\left(\frac{A}{2}\right) = \frac{\sin A}{1 + \cos A} = \frac{1 - \cos A}{\sin A}$$

To be done next Tuesday,

04/12.

Note: In the half-angle formulas the \pm symbol is intended to mean either positive or negative but not both, and the sign before the radical is determined by the quadrant in which the angle $\frac{A}{2}$ terminates.

Example 1: Suppose that
$$\cos \alpha = -\frac{4}{7}$$
 and $\frac{\pi}{2} < \alpha < \pi$. Find Quadrant II , since positive

a.
$$\cos(2\alpha) = 2 \cos^2 \alpha - 1$$

= $2(-\frac{4}{7})^2 - 1 = 2 \cdot \frac{16}{49} - 1 = \frac{32}{49} - \frac{49}{49} = \boxed{-\frac{17}{49}}$

b.
$$\sin(2\alpha) = 2 \sin \alpha \cdot \cos \alpha$$

$$= 2(\frac{\sqrt{33}}{7}) \cdot (\frac{-4}{7})$$

$$= -\frac{8\sqrt{33}}{49}$$

$$= \sqrt{33}$$

$$= -\frac{8\sqrt{33}}{49}$$

$$= -\frac{\sqrt{33}}{49}$$

$$tan(2\alpha) = \frac{\sin(2\alpha)}{\cos(2\alpha)} = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{2\left(-\frac{\sqrt{3}3}{4}\right)}{1 - \left(-\frac{\sqrt{3}3}{4}\right)^2} = \frac{-\frac{\sqrt{3}3}{2}}{\frac{16}{16}} = \frac{-\frac{\sqrt{3}3}{2}}{-\frac{17}{16}}$$

$$= \frac{-8\sqrt{3}3/49}{-\frac{17}{49}} = \frac{\sqrt{3}3}{2} \cdot \frac{16}{17} = \frac{8\sqrt{3}3}{17}$$

$$= \frac{8\sqrt{3}3}{2} \cdot \frac{16}{17} = \frac{8\sqrt{3}3}{17}$$

Example 2: Simplify each:

DOUBLE ANGLE FORMULAS - BACKWARDS

a. $2\sin 45^{\circ}\cos 45^{\circ}$

b.
$$\cos^2 \frac{\pi}{9} - \sin^2 \frac{\pi}{9} = \cos \left(2 \times \frac{\pi}{9}\right) = \cos \left(\frac{2\pi}{9}\right)$$

c.
$$\frac{2 \tan 15^{\circ}}{1 - \tan^2 15^{\circ}} = \tan \left(2 \times 15^{\circ} \right)$$

$$= \tan \left(30^{\circ} \right) = \frac{\sqrt{3}}{3}$$

d.
$$1-2\sin^2(6A) = \cos(2\cdot 6A) = \cos(12A)$$

this is your argle, so you double it

Next Tuesday, 04/12.

Now we'll look at the kinds of problems we can solve using half-angle formulas.

Recall:
$$(as(2A) = 2 cos^2(A) - 1) = Solve for cos(A)$$

 $+ 1$ $+$

$$\cos^2(A) = \frac{\cos(2A)+1}{2}$$
 = Take $\sqrt{.}$

$$\cos(A) = \pm \sqrt{1 + \cos(2A)}$$

$$cos(2A) = 1 - 2 sin^{2}(A) Cos(2A)$$

$$+ 2 sin^{2}(A) + 2 sin^{2}(A)$$

$$- cos(2A) - cos(2A)$$

$$2\sin^2(A) = 1 - \cos(2A)$$
 Divide by 2

$$sin^2(A) = 1 - cos(2A)$$
 = Take $\sqrt{.}$

$$\sin(A) = \pm \sqrt{1 - \cos(2A)}$$

$$\tan A = \frac{\sin A}{2}$$

$$= \frac{1 - \cos(2A)}{2}$$

$$(+ \cos(2A))$$

Suppose A is in Quadrant I.

$$= \sqrt{\frac{1 - \cos(2A)}{1 + \cos(2A)}} \cdot \frac{(1 - \cos(2A))}{(1 - \cos(2A))} = \sqrt{\frac{(1 - \cos(2A))^2}{1 - \cos^2(2A)}}$$

$$= \frac{\sqrt{\left(1-\cos(2A)\right)^2}}{\sqrt{\sin^2(2A)}} = \frac{1-\cos(2A)}{\sin(2A)}$$

Similarly for the other form.

$$\frac{ex}{2-\cot^2\theta} + 3\cos^2\theta$$

$$= \csc^2\theta = \frac{1}{\sin^2\theta}$$

$$= \frac{\sin^2\theta \cdot 2}{\sin^2\theta} - \frac{\cos^2\theta}{\sin^2\theta} + 3\cos^2\theta$$

$$= \frac{1}{\sin^2\theta}$$

$$= \frac{2\sin^2\theta - \cos^2\theta}{\sin^2\theta} + 3\cos^2\theta$$

$$= 2\sin^2\theta - \cos^2\theta + 3\cos^2\theta$$

$$= 2\sin^2\theta + 2\cos^2\theta = 2\left(\sin^2\theta + \cos^2\theta\right)$$

$$= 2$$

$$\frac{1-\tan^2 x}{1+\tan^2 x} + 2\sin^2 x$$

$$1+\tan^2 x$$

$$\sec^2 x = \frac{1}{\cos^2 x}$$

$$=\frac{\cos^2 x \cdot 1 - \frac{\sin^2 x}{\cos^2 x}}{1 + 2\sin^2 x}$$

$$=\cos^2 x \cdot 1 + 2\sin^2 x$$

$$\cos^2 x \cdot 1 + 2\sin^2 x$$

$$=\frac{(\cos^2 x - \sin^2 x)}{\cos^2 x} \cdot \frac{(\cos^2 x)}{1} + 2\sin^2 x$$

$$=$$
 $\cos^2 x - \sin^2 x + 2\sin^2 x$

$$= \cos^2 x + \sin^2 x = \boxed{1}$$

$$\sin(x) = \pm \sqrt{1 - \cos(2x)}$$

$$(05/x) = \pm \sqrt{1 \pm (05/2x)}$$

Example 3: Use a half-angle formula to find the exact value of each.

$$= \sqrt{\frac{1 - \cos(2*15^{\circ})}{2}} = \sqrt{\frac{1 - \frac{\sqrt{3}}{2}}{2}} = \sqrt{\frac{2 - \sqrt{3}}{2}}$$

$$= \sqrt{\frac{2-\sqrt{3}}{2}} - \sqrt{\frac{2-\sqrt{3}}{4}} - \sqrt{\frac{2-\sqrt{3}}{2}}$$

Think b.
$$\cos\left(\frac{5\pi}{8}\right) = \cos\left(\frac{225^{\circ}}{2}\right) = \text{negative}$$

$$\frac{5\pi}{45} = \frac{5\pi}{80} - 225$$

$$1 + \cos\left(\frac{225^{\circ}}{2}\right) = \frac{1}{100} + \frac{1}{100} = \frac{1}{100}$$

$$\frac{5\pi}{8} = \frac{5\pi}{8} \cdot \frac{180}{1} = \frac{225}{2} = -\sqrt{1 + \cos(2 = \frac{225^{\circ}}{2})} = -\sqrt{1 + \cos(225^{\circ})}$$

$$= -\sqrt{\frac{1 - \sqrt{2}}{2}} = -\sqrt{\frac{2 - \sqrt{2}}{2}} = -\sqrt{\frac{2 - \sqrt{2}}{4}} = -\sqrt{\frac{2 - \sqrt{2}}{4}} = -\sqrt{\frac{2 - \sqrt{2}}{2}}$$

c.
$$\tan\left(\frac{7\pi}{12}\right) = \tan\left(105^{\circ}\right)$$

Think
$$\frac{717}{12} = \frac{77}{12} \cdot \frac{15}{12} = 105^{\circ}$$

$$\frac{7\pi}{12} = \frac{7\pi}{12} \cdot \frac{100}{11} = 1000$$

$$= \frac{5 \ln (2 \times 100^{\circ})}{1 + \cos(2 \times 100^{\circ})} = \frac{5 \ln (210^{\circ})}{1 + \cos(2 \times 100^{\circ})} = \frac{5 \ln (210^{\circ})}{1 + \cos(2 \times 100^{\circ})}$$

$$1 + \cos(2*105^{\circ}) \qquad 1 + (05(210^{\circ})) \qquad 1 - \sqrt{3}/2$$

$$-\frac{1}{3} \qquad -1 \qquad (2+1)$$

$$= \frac{-(2+\sqrt{3})}{2^2 - (\sqrt{3})^2} = \frac{-(2+\sqrt{3})}{4-3} = \boxed{-2-\sqrt{3}}$$

(c)
$$tor \left(\frac{7\pi}{12}\right) = tor \left(los^{\circ}\right)$$

$$\tan x = \frac{1 - \cos(2x)}{\sin(2x)}$$

$$= \frac{1 - \cos(2 + 105^{\circ})}{\sin(2 + 105^{\circ})}$$

$$= \frac{1 - (\cos(210^\circ))}{\sin(210^\circ)} = \frac{\frac{2}{2}1 + \frac{15}{2}}{\frac{2}{2}} = \frac{2 + \sqrt{3}}{\frac{2}{2}}$$

$$= - \left(2t\sqrt{3}\right) = \left[-2-\sqrt{3}\right]$$

Example 4: Answer these questions for
$$\cos \theta = \frac{4}{9} \frac{3\pi}{2} < \theta < 2\pi$$
.

II O

Quadrant IV

Half of the argle of the land of the land

b. Complete the following:
$$\frac{3\pi}{\Delta} < \frac{\theta}{2} < \frac{\pi}{2}$$

- c. In which quadrant does the terminal side of $\frac{\theta}{2}$ lie? Quadrant $\mathbb T$.
- d. Determine the sign of $\sin\left(\frac{\theta}{2}\right)$ positive
- e. Determine the sign of $\cos\left(\frac{\theta}{2}\right)$ negative

f. Find the exact value of
$$\sin\left(\frac{\theta}{2}\right) = \sqrt{\frac{1-\omega 5\theta}{2}} = \sqrt{\frac{5}{1}} = \sqrt{\frac{5}{18}}$$

$$= \sqrt{\frac{5}{18}} = \sqrt{\frac{5}{18}} = \sqrt{\frac{5}{18}} = \sqrt{\frac{5}{18}}$$

$$= \sqrt{\frac{5}{18}} = \sqrt{\frac{5}{18}} = \sqrt{\frac{5}{18}} = \sqrt{\frac{5}{18}} = \sqrt{\frac{5}{18}}$$

g. Find the exact value of
$$\cos\left(\frac{\theta}{2}\right) = -\sqrt{\frac{1+\cos\theta}{2}} = -\sqrt{\frac{1}{1} + \frac{4}{4}} = -\sqrt{\frac{13}{4}} = -\sqrt{\frac{13}{18}}$$

$$= -\sqrt{\frac{13}{18}} = -\sqrt{\frac{13}{18}} = -\sqrt{\frac{13}{18}} = -\sqrt{\frac{13}{18}}$$

$$= -\sqrt{\frac{13}{18}} = -\sqrt{\frac{13}{18}} = -\sqrt{\frac{13}{18}} = -\sqrt{\frac{13}{18}}$$

h. Find the exact value of
$$\tan\left(\frac{\theta}{2}\right) = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = \frac{\frac{10}{6}}{-\frac{10}{6}} = -\frac{\frac{5}{13}}{\frac{13}{13}} = \frac{\frac{1}{65}}{\frac{13}{13}}$$

$$\frac{\partial S}{\partial x} = \frac{1 - \cos \theta}{\sin \theta} = \frac{1 - \frac{4}{9}}{-\frac{\sqrt{65}}{9}} = \frac{-\frac{5}{\sqrt{65}}}{-\frac{\sqrt{65}}{9}} = \frac{-\frac{5}{\sqrt{65}}}{-\frac{\sqrt{65}}}{-\frac{\sqrt{65}}}{-\frac{\sqrt{65}}}} = \frac{-\frac{5}{\sqrt$$