

Recall:

• Trigonometric Equation:

$$sin(x) = \frac{1}{2}$$
 \leftarrow Find all x .
 $\frac{a}{goal}: x = ?$ $\frac{1}{2}$ $cook$ for solution in the
unit circle first.
 $\Rightarrow x = \frac{11}{6}$ or $x = \frac{511}{6}$ in the first period
Trigonometric Functions are periodic
 \Rightarrow we get infinitely many solutions
when possible.
 $x = \frac{1}{6} + 2\pi \cdot k$ or $x = \frac{5\pi}{6} + 2\pi \cdot k$, k integer

0

Linear Equation:
$$2x + 3 = 9 \leftarrow \text{Solve!}$$

"Goal is to leave \underline{x} alone".
 $2x = 6 \longrightarrow x = 3$

Section 6.3 - Solving Trigonometric Equations

Next, we'll use all of the tools we've covered in our study of trigonometry to solve some equations. An equation that involves a trigonometric function is called a trigonometric equation. Since trigonometric functions are periodic, there may be infinitely solutions to some

trigonometric equations. Let's say we want to solve the equation: $\sin(x) = \frac{1}{2}$ Ask yourself: Which angle(s) have sine = $\frac{1}{2}$? The first angles that come to mind are: $x = \frac{\pi}{6}$ and $x = \frac{5\pi}{6}$. Answer $x = 30^{\circ}$ or 150° (onvert in readians) in one period

Remember that the period of the sine function is 2π ; sine function repeats itself after each rotation. The solutions of writ circle repeat the reactives in every periodic Therefore, the solutions of the equation are: $x = \frac{\pi}{6} + 2k\pi$, $x = \frac{5\pi}{6} + 2k\pi$, where k is any integer. $uit = 2\pi \cdot k$ unit $2\pi \cdot k$ unit $2\pi \cdot k$

Recall: For sine and cosine functions, the period is 2π . For tangent and cotangent functions, the period is π .

DO NOT FORGET:	
General (ALL) solutions =	Special Solutions + Period . k
	wit circle

one rotation

Example 1: a) Solve the equation in the interval $[0,2\pi)$: $2\cos x = -1$

b) Find all solutions to the equation: $2\cos x = -1$

From post (a),
$$\cos x = -\frac{1}{2} \implies x = \frac{2\pi}{3} = -\frac{4\pi}{3}$$

all $x = \frac{2\pi}{3} + 2\pi \cdot k$ or $x = \frac{4\pi}{3} + 2\pi \cdot k$, k integer

Example 2: a) Solve the equation in the interval
$$[0, \pi)$$
: $\tan x = -1$

$$tan x = -1$$

From 0 to TT,
only $X = \frac{3T}{4}$ in Quadrant TT, gives $tan(\frac{3T}{24}) = -1$

b) Find all solutions to the equation: $\tan x = -1$

$$= \frac{3\pi}{4} + \pi \cdot k_i \qquad k integer$$

Example 3: Solve the equation in the interval $[0,\pi)$: $2\sin(2x) = 1$

$$2 \operatorname{Sin}(2x) = 1$$

$$\operatorname{Sin}(2x) = \frac{1}{2} \qquad \Rightarrow \qquad 2x = \frac{\pi}{6} \qquad \text{or} \qquad 2x = \frac{5\pi}{6}$$

$$\operatorname{Period} = \frac{2\pi}{2} = \pi$$

$$\Rightarrow \qquad X = \frac{\pi}{12} \quad \text{or} \qquad X = \frac{5\pi}{12}$$

Example 4: Solve the equation in the interval $[0,2\pi)$: $\csc^2 x = 4$ \leftarrow In one period

$Csc^2 x = 4 \iff$	CSCX = +2	0	cscx = -2
$Csc \times = \pm 2$	$\frac{1}{\sin \chi} = 2$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\frac{1}{\sin x} = -2$
	$sinx = \frac{1}{2}$	Sware and the second se	$\sin x = -\frac{1}{2}$
	$\begin{array}{c} X = \underline{1} \\ 6 \\ 6 \\ \end{array}, \begin{array}{c} 5 \\ 5 \\ 6 \\ \end{array}$	0	$\chi = \frac{7\pi}{6}, \frac{11\pi}{6}$

Thursday,
04/14 Example 5: Find all solutions to the equation:
$$\cos(2x) = 0$$

Need to find solutions in one period first
and add repeatitions of periods.
 $\Rightarrow \cos(2x) = 0 \Rightarrow 2x = \frac{\pi}{2}$ or $2x = -\frac{3\pi}{2}$
 $period = \frac{2\pi}{2} = \pi$
 $x = \frac{\pi}{4}$ or $x = \frac{3\pi}{4}$
All solutions: $x = \frac{\pi}{4} + \pi \cdot k$, k integer.
 $x = \frac{3\pi}{4} + \pi \cdot k$

oneperiod

Example 6: Solve the equation in the interval $[0,2\pi)$: $2\sin^2 x - 5\sin x - 3 = 0$

$$2\sin^{2}x-5\sin^{2}x-3=0$$

$$(\sin^{2}x-3)(2\sin^{2}x+1)=0$$

$$\sin^{2}x-3=0 \quad \text{or} \quad 2\sin^{2}x+1=0$$

$$\sin^{2}x=3 \quad 2\sin^{2}x=-1 \quad \text{or} \quad x=\frac{7\pi}{6}, \quad \frac{11\pi}{6}$$

$$\sin^{2}x=3 \quad \sin^{2}x=-\frac{1}{2}$$

Example 7: Solve the equation in the interval $[0,2\pi)$: $\cos^2 x - 3\sin x - 3 = 0$ $\cos^2 x - 3\sin x - 3 = 0$ (Transform in an equation with just one trig. function) $1 - \sin^2 x - 3\sin x - 3 = 0$ $-\sin^2 x - 3\sin x - 2 = 0$ $\sin^2 x + 3\sin x + 2 = 0$ $(\sin x + 1) (\sin x + 2) = 0$ $x = 3\pi$ x = -2 $x = 3\pi$ x = -2 x = -2

Example 8: Solve the equation in the interval $[0,2\pi)$: $\cos(2x) = 5\sin^2 x - \cos^2 x$

$$\frac{\cos(2x)}{1-\cos^2 x} = 5 \sin^2 x - \cos^2 x \quad (Always, keep just one trip expression.)$$

$$\frac{1-\cos^2 x}{1-\cos^2 x} \quad (We'll do everything with cosx)$$

$$= 2 \cos^{2} x - 1 = 5 (1 - \cos^{2} x) - \cos^{2} x 2 \cos^{2} x - 1 = 5 - 5 \cos^{2} x - \cos^{2} x = 5 - 6 \cos^{2} x + 6 \cos^{2} x + 1 + 1 + 6 \cos^{2} x$$

$$8\cos^{2} x = 6 \iff \cos^{2} x = \frac{6}{8} \iff \cos^{2} x = \frac{3}{4}$$

$$\cos x = \pm \sqrt{\frac{3}{4}} \implies \cos x = \pm \sqrt{\frac{3}{2}} \implies \cos x = \pm \sqrt{\frac{3}{2}} = \frac{\sqrt{3}}{2}$$

$$x = \frac{\pi}{6}, \frac{4\pi}{6} = \pi - x = \frac{5\pi}{6}, \frac{7\pi}{6}$$

$$\cos x = -\frac{\sqrt{3}}{2}$$

$$x = \frac{\pi}{6}, \frac{4\pi}{6} = \pi - x = \frac{5\pi}{6}, \frac{7\pi}{6}$$

Example 8: Solve the equation in the interval $(0,2\pi)$: $\cos(2x) = 5\sin^2 x - \cos^2 x$

-Transform into an expression with only one
trigonometric function if possible.
- Wo'll do everything with sink.)

$$\cos(2x) = 5 \sin^{2}x - \cos^{2}x$$

$$1-2\sin^{2}x = 5 \sin^{2}x - (1-\sin^{2}x)$$

$$2 = 8\sin^{2}x - (1-\sin^{2}x)$$

$$2 = 8\sin^{2}x - (1-\sin^{2}x)$$

$$3 = 5\sin^{2}x - (1-\sin^{2}x)$$

$$2 = 5\sin^{2}x - (1-\sin^{2}x)$$

$$3 = 5\sin^{2}x - (1-\sin^{2}x)$$

$$4 = 5\sin^{2}x - (1-\sin^{2}x)$$

$$5 = 5\sin^{2}x - (1-\sin^{2}x)$$

Example 9: Find all solutions to the equation: $\sin^2 x \cos x = \cos x$. (there is a common factor, bring in one side) $5in^2 \times \cos x = \cos x$ All Solutions: Sin X OSX - OSX = 0 $X = \frac{\pi}{2} + 2\pi \cdot k_{1}$ $X = \frac{3\pi}{2} + 2\pi \cdot k_{2}$ $\sum_{n=1}^{\cos x} \left(\frac{\sin^2 x - 1}{2} \right) = 0$ $\cos x = 0$ or $\sin^2 x = 1 \implies \sin x = \pm 1$ $X = \frac{\pi}{2}, \frac{3\pi}{2}$ or $X = \frac{\pi}{2}, \frac{3\pi}{2}$ k integer in one period $(Wse sec^2 x = 1 t tan^2 x)$ Example 10: Find all solutions: $\sec^2 x + 2\tan x = 0$ $\sec^2 x + 2\tan x = 0$ $\frac{1}{\tan^2 x + 1} + 2 \tan x = 0 \iff (\tan x + 1)(\tan x + 1) = 0$ i.e. tarx + 1 = 0 $t_{enx} = -1 \implies X = \frac{3\pi}{4}$ in one period = π \Rightarrow $X = \frac{3\pi}{4} + \pi \cdot k$, k integer. \Rightarrow tonx = -1 => $(X = -\frac{\pi}{4})^{<}$ solution

Note that
$$-\frac{\pi}{4} = \frac{3\pi}{4} + \pi \cdot (-1)$$

 $\Rightarrow X = -\frac{\pi}{4} + \pi \cdot k$, k integer Both
cquivelent

there are two periodical intervals

Example 11: Solve the equation in the **interval** [0,2): $\cot(\pi x) = -1$

$$\cot(\pi x) = -1$$

$$\pi x = \frac{3\pi}{4}$$

$$= 0 \text{ ver one period}$$

$$\pi = \frac{\pi}{4}$$

$$x = \frac{3}{4} \Rightarrow x = \frac{3}{4} + 1 = \frac{7}{4}$$

$$\text{next period}$$

$$=) X = \frac{3}{4}, \frac{7}{4}$$

Example 12: Find all solutions of the equation in the interval $[0, 4\pi)$: $2\sin\left(\frac{x}{2}\right) = 1$

Example 13: Find all solutions of the equation in the interval $[0,2\pi)$: $\sec(x+2\pi)=2$

Hence,
$$sec(x+2\pi) = sec(x)$$

Thus,
$$\sec(x) = 2$$

 $\frac{1}{\cos x} = 2$
 $\cos x = \frac{1}{2} \implies x = \frac{\pi}{3}, \frac{5\pi}{3}$

Always, use identities (if possible) to simplify!

exercise

Example 14: Find all solutions of the equation in the interval $[0,\pi)$: $2\sin\left(2x-\frac{3\pi}{2}\right) = \sqrt{2}$

$$\Rightarrow 2 \sin\left(2x - \frac{3\pi}{2}\right) = 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$

$$= 12$$