Popper \# 19
(1) $\cos ^{2}\left(\frac{\pi}{8}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)=\cos \left(2 \times \frac{\pi}{8}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$
A. 0
B. 1
C. $\frac{1}{2}$
(D.) $\frac{\sqrt{2}}{2}$
E. none

Given $\sin (x)=\frac{3}{5}, \quad \cos (y)=\frac{12}{13}, \quad 0<x<90^{\circ}, \quad 270^{\circ}<y<360^{\circ}$.

$$
\cos x=\frac{4}{5} \quad \sin (y)=-\frac{5}{13}
$$

(2) $\sin (x+y)=\sin x \cos y+\cos x \sin y=\frac{3}{5} \cdot \frac{12}{13}+\frac{4}{5} \cdot\left(-\frac{5}{13}\right)=\frac{16}{65}$
A. $\frac{36}{65}$
(3.) $\frac{16}{65}$
C. $\frac{-16}{65}$
D. $\frac{-20}{65}$
(3) $\tan \left(\frac{y}{2}\right)=\frac{1-\cos y}{\sin y}=\frac{1-\frac{12}{13}}{\frac{-5}{13}}=\frac{\frac{1}{13}}{\frac{-5}{13}}=-\frac{1}{5}$
A. $-\frac{12}{5}$
(15.) $-\frac{1}{5}$
C. $\frac{5}{13}$
D. none
(4) $\cos (2 x)=\cos ^{2} x-\sin ^{2} x=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}=\frac{7}{25}$
(A. $\frac{7}{25}$
B. $\frac{18}{25}$
C. $\frac{-7}{25}$
D. none
(5) Bubble

A
(6) Bubble B.

Recall:

- Linear Equation:

$$
2 x+3=\underset{-3}{3}=\underset{-3}{9} \quad \longleftarrow \quad \text { Solve it }
$$

"Goal: Leave the x alone."

$$
\frac{2}{2} x=\frac{6}{2} \quad \Rightarrow \quad x=3
$$

- Trigonometric Equation:

$$
\sin (x)=\frac{1}{2} \leftarrow \text { Find all } x \text {. }
$$

"Goal: $x=$?" Look for solution in the unit circle first.
$\Longrightarrow x=\frac{\pi}{6}$ or $x=\frac{5 \pi}{6} \quad$ in the first period
Trigonometric Functions are periodic
we get infinitely many solutions when possible.
$x=\frac{\pi}{6}+2 \pi \cdot k \quad$ or $\quad x=\frac{5 \pi}{6}+2 \pi \cdot k$, k integer!

Section 6.3 - Solving Trigonometric Equations

Next, we'll use all of the tools we've covered in our study of trigonometry to solve some equations. An equation that involves a trigonometric function is called a trigonometric equation. Since trigonometric functions are periodic, there may be infinitely solutions to some trigonometric equations.

- Trigonometric Equation \leftarrow Unit Circe

Let's say we want to solve the equation: $\sin (x)=\frac{1}{2} \quad$ Ask yourself: Which angle (s)
have sine $=\frac{1}{2}$?
The first angles that come to mind are: $\frac{\left\lvert\, x=\frac{\pi}{6}\right. \text { and } \left.x=\frac{5 \pi}{6} \right\rvert\,}{\text { in one period }}<$ Answer. $\quad \begin{aligned} & x=30^{\circ} \text { or } 150^{\circ} \\ & \text { (convert in radians) }\end{aligned}$
Remember that the period of the sine function is 2π; sine function repeats itself after each rotation.

Therefore, the solutions of the equation are: $x=\underbrace{\frac{\pi}{6}}+\underbrace{2 k \pi}, \quad x=\underbrace{\frac{5 \pi}{6}}+\underbrace{2 k \pi}_{2 \pi \cdot k}$, where k is any
integer.

$$
\underbrace{6}_{\begin{array}{c}
\text { unit } \\
\text { circle }
\end{array}} \underbrace{6}_{\substack{\text { unit } \\
\text { circle }}} \underbrace{2 \pi \cdot k}_{2 \pi \cdot k}
$$

Recall: For sine and cosine functions, the period is 2π. For tangent and cotangent functions, the period is π.

Do NOT FORGET:

$$
\text { General (ALL) Solutions }=\underbrace{\text { Special Solutions }}_{\text {unit circle }}+\underbrace{}_{\text {Period }} \cdot k
$$

Example 1: a) Solve the equation in the interval $[0,2 \pi): \quad 2 \cos x=-1$

$$
\begin{array}{r}
2 \cos x=-1 \\
\cos x=-\frac{1}{2} \\
\text { period }=2 \pi
\end{array}
$$

Q. II
QUIT

$$
=
$$

b) Find all solutions to the equation: $2 \cos x=-1$

From port (a), $\cos x=-\frac{1}{2} \Rightarrow x=\frac{2 \pi}{3}$ or $\frac{4 \pi}{3}$

$$
\text { al } x=\frac{2 \pi}{3}+2 \pi \cdot k \quad \text { or } \quad x=\frac{4 \pi}{3}+2 \pi \cdot k, k \text { inter }
$$

one period
Example 2: a) Solve the equation in the interval $[0, \pi): \quad \tan x=-1$

$$
\tan x=-1
$$

From 0 to π,
Only $x=\frac{3 \pi}{4}$ in Quadrant II, gives $\tan \left(\frac{3 \pi}{4}\right)=-1$
b) Find all solutions to the equation: $\tan x=-1$
period $=\pi$

$$
\Rightarrow x=\frac{3 \pi}{4}+\pi \cdot k_{1} \quad k \text { integer }
$$

one period
Example 3: Solve the equation in the interval $[0, \pi): \quad 2 \sin (2 x)=1$

$$
\begin{aligned}
& \begin{array}{l}
\sin (2 x)=1 \\
\sin (2 x)=\frac{1}{2} \\
\text { period }=\frac{2 \pi}{2}=\pi
\end{array} \Rightarrow \begin{array}{lll}
\frac{2 x}{2}=\frac{\pi}{6} & \text { or } \quad \frac{2 x}{2}=\frac{5 \pi}{2} \\
x=\frac{\pi}{12} & \text { or } & x=\frac{5 \pi}{12}
\end{array}
\end{aligned}
$$

Example 4: Solve the equation in the interval $[0,2 \pi): \csc ^{2} x=4<$ In one period

$$
\begin{array}{lll}
\csc ^{2} x=4 \\
\csc x= \pm 2 & \begin{array}{c}
\csc x=
\end{array} \\
\frac{1}{\sin x}=2 \\
\sin x=\frac{1}{2} & \left\{\begin{array}{l}
\csc x=-2 \\
\\
\\
x=\frac{\pi}{6}, \frac{5 \pi}{6}
\end{array}\right. & \frac{1}{\sin x}=-2 \\
\sin x=\frac{-1}{2}
\end{array}
$$

Thursday,
04/14 Example 5: Find all solutions to the equation: $\cos (2 x)=0$
need to find solutions in one period first and add repeatitions of periods.

$$
\begin{aligned}
& \begin{aligned}
& \rightarrow \cos (2 x)=0 \\
& \Rightarrow \frac{2 x}{2}=\frac{\pi}{2} \\
& \text { period }=\frac{2 \pi}{2}=\pi
\end{aligned} \quad \text { or } \quad \frac{2 x}{2}=\frac{3 \pi}{2} \\
& \text { period }=\frac{2 \pi}{2}=\pi \\
& x=\frac{\pi}{4} \quad \text { or } \quad x=\frac{3 \pi}{4}
\end{aligned}
$$

All solutions:
$x=\frac{\pi}{4}+\pi \cdot k, k$ integer.

$$
x=\frac{3 \pi}{4}+\pi \cdot k
$$

To be continued on Thursday, 04/14.
one period
Example 6: Solve the equation in the interval $[0,2 \pi)$: $2 \sin ^{2} x-5 \sin x-3=0$

$$
\begin{aligned}
& 2 \sin ^{2} x-5 \sin x-3=0 \\
& (\underbrace{\sin x-3)}_{0}(\underbrace{2 \sin x+1}_{0})=0 \\
& \begin{array}{l}
\sin x-3=0 \\
\begin{array}{l}
\sin x=3 \\
\text { or }
\end{array} \quad \begin{array}{l}
2 \sin x+1=0 \\
2 \sin x=-1 \\
\sin x=-\frac{1}{2}
\end{array}
\end{array} \quad \Longrightarrow \quad \text { one period }
\end{aligned}
$$

Example 7: Solve the equation in the interval $[0,2 \pi)$: $\cos ^{2} x-3 \sin x-3=0$
$\cos ^{2} x-3 \sin x-3=0$ (Transform in an equation with just one trig. function)

$$
\begin{aligned}
& 1-\sin ^{2} x-3 \sin x-3=0 \\
& -\sin ^{2} x-3 \sin x-2=0 \\
& \sin ^{2} x+3 \sin x+2=0
\end{aligned}
$$

$$
\begin{gathered}
\sin x+1=0 \\
\sin x=-1 \\
x=\frac{3 \pi}{2}
\end{gathered}
$$

can't happen

Example 8: Solve the equation in the interval $[0,2 \pi)$: $\quad \cos (2 x)=5 \sin ^{2} x-\cos ^{2} x$
$\left.\begin{array}{l}\underbrace{\cos (2 x)}=\underbrace{5 \cos ^{2} x-1}_{1-\cos ^{2} x} \sin ^{2} x-\cos ^{2} x\end{array} \begin{array}{l}\text { (Always, keep just one trig. expression.) } \\ \text { (well do everything with } \cos x\end{array}\right)$

$$
\begin{aligned}
& \Rightarrow 2 \cos ^{2} x-1=5\left(1-\cos ^{2} x\right)-\cos ^{2} x \\
& \begin{array}{r}
2 \cos ^{2} x-1=5-5 \cos ^{2} x-\cos ^{2} x=\begin{array}{r}
5-6 \cos ^{2} x \\
+6 \cos ^{2} x+1
\end{array}+1+6 \cos ^{2} x
\end{array} \\
& 8 \cos ^{2} x=6 \Leftrightarrow \cos ^{2} x=\frac{6}{8} \Leftrightarrow \cos ^{2} x=\frac{3}{4} \\
& \cos x= \pm \sqrt{\frac{3}{4}} \rightarrow \cos x=\frac{+\sqrt{3}}{2} \text { or } \cos x=-\frac{\sqrt{3}}{2} \\
& x=\frac{\pi}{6}, \frac{11 \pi}{6} \quad \text { or } \quad x=\frac{5 \pi}{6}, \frac{7 \pi}{6}
\end{aligned}
$$

- Transform into an expression with only one trigonometric function if possible.
- $w_{0}^{\prime} C l$ do everything with $\sin (x)$

$$
\begin{aligned}
& \underbrace{\cos (2 x)}=5 \sin ^{2} x-\cos ^{2} x \\
& \begin{array}{l}
1-2 \sin ^{2} x=5 \sin ^{2} x-\left(1-\sin ^{2} x\right) \\
1-2 \sin ^{2} x=5 \sin ^{2} x-1+\sin ^{2} x \\
+1+2 \sin ^{2} x
\end{array} \\
& 2=8 \sin ^{2} x \\
& \Rightarrow \sin ^{2} x=\frac{2}{8}=\frac{1}{4} \Rightarrow \sin x
\end{aligned}
$$

Example 9: Find all solutions to the equation: $\sin ^{2} x \underline{\cos x}=\underline{\cos x}$.
(there is a common factor, bring in one side)

$$
\begin{aligned}
& \sin ^{2} x \cdot \cos x=\cdot \cos x \\
& \sin ^{2} x \cos x-\cos x=0 \\
& \underbrace{\cos x}_{0}(\underbrace{\sin ^{2} x-1}_{0})=0 \\
& \cos x=0 \text { or } \sin ^{2} x=1 \Rightarrow \sin x= \pm 1 \\
& x=\frac{\pi}{2}, \frac{3 \pi}{2} \text { or } x=\frac{\pi}{2}, \frac{3 \pi}{2}
\end{aligned}
$$

All Solutions:

$$
\begin{aligned}
& x=\frac{\pi}{2}+2 \pi \cdot k \\
& x=\frac{3 \pi}{2}+2 \pi \cdot k
\end{aligned}
$$

k integer
in one period
Example 10: Find all solutions: $\sec ^{2} x+2 \tan x=0$ (use $\sec ^{2} x=1+\tan ^{2} x$)

$$
\begin{aligned}
& \sec ^{2} x+2 \tan x=0 \\
& \tan ^{2} x+1+2 \tan x=0 \quad \Longleftrightarrow \quad(\tan x+1)(\tan x+1)=0
\end{aligned}
$$

$$
\text { i.e. } \quad \tan x+1=0
$$

$$
\tan x=-1 \Rightarrow x=\frac{3 \pi}{4} \text { in one period }=\pi
$$

$$
\Rightarrow \quad x=\frac{3 \pi}{4}+\pi \cdot k, \quad k \text { integer. }
$$

$\begin{gathered}\text { Another } \\ \text { version }\end{gathered} \Longrightarrow \tan x=-1 \Rightarrow x=-\frac{\pi}{4} \leftarrow$ Solution
Note that $-\frac{\pi}{4}=\frac{3 \pi}{4}+\pi \cdot(-1)$

$$
\Rightarrow \quad x=-\frac{\pi}{4}+\pi \cdot k, k \text { integer }
$$

Example 11: Solve the equation in the interval [0,2): $\quad \cot (\pi x)=-1$

$$
\begin{array}{ll}
\cot (\pi x)=-1 & \begin{array}{l}
\frac{\pi x}{\pi}=\frac{3 \pi}{4} \\
\text { period }=\frac{\pi}{\pi}=1
\end{array} \\
x=\frac{3}{4}
\end{array} \quad \Rightarrow x=\frac{3}{4}+1=\frac{7}{4}
$$

$$
\Rightarrow \quad x=\frac{3}{4}, \frac{7}{4}
$$

Example 12: Find all solutions of the equation in the interval $\frac{[0,4 \pi):}{\text { One period }} \quad 2 \sin \left(\frac{x}{2}\right)=1$

$$
2 \sin \left(\frac{x}{2}\right)=1
$$

$\Rightarrow \sin \left(\frac{x}{2}\right)=\frac{1}{2} \quad \Longrightarrow$ Think, in one full rotation,

$$
\text { period }=\frac{2 \pi}{1 / 2}=4 \pi
$$

$$
2 \times \frac{x}{2}=\frac{\pi}{6} \times 2 \text { or } 2 \times \frac{x}{2}=\frac{5 \pi}{6} \times 2
$$

$$
x=\frac{2 \pi}{6}=\frac{\pi}{3}, \quad x=\frac{50 \pi}{6_{3}}=\frac{5 \pi}{3}
$$

$$
\Rightarrow \quad x=\frac{\pi}{3}, \frac{5 \pi}{3}
$$

Always, use identities (if possible) to simplify!
exercise Example 13: Find all solutions of the equation in the interval $[0,2 \pi): \sec (\underline{x}+2 \pi)=2$

$$
\text { period }=2 \pi
$$

$$
\text { Hence, } \sec (\underbrace{x+2 \pi)}_{\text {period }}=\sec (x)
$$

Thus, $\quad \sec (x)=2$

$$
\begin{aligned}
& \frac{1}{\cos x}=2 \\
& \cos x=\frac{1}{2} \Longrightarrow x=\frac{\pi}{3}, \frac{5 \pi}{3}
\end{aligned}
$$

exercise
Example 14: Find all solutions of the equation in the interval $\left[\underline{\underline{0, \pi})}: \quad 2 \sin \left(2 x-\frac{3 \pi}{2}\right)=\sqrt{2}\right.$
one period

$$
\begin{array}{r}
\Rightarrow \quad 2 \sin \left(2 x-\frac{3 \pi}{2}\right)=\sqrt{2} \\
\quad \sin \left(2 x-\frac{3 \pi}{2}\right)=\frac{\sqrt{2}}{2} \\
\frac{\pi}{4} \text { or } \frac{3 \pi}{4}
\end{array}
$$

(there is no identity to) apply, hence go to unit circle.
In one full rotation, this expression

$$
\begin{array}{ll}
2 x-\frac{3 \pi}{2}=\frac{\pi}{4}, & \text { or } \\
2 x=\frac{\pi}{4}+\frac{3 \pi}{2} \cdot \frac{2}{2} & 2 x=\frac{3 \pi}{4}+\frac{3 \pi}{2} \cdot \frac{2}{2} \\
\frac{2 x=\frac{7 \pi}{2}}{2} & \frac{2 x}{2}=\frac{9 \pi}{4} \\
\Rightarrow x=\frac{7 \pi}{8}<\text { Answer. } & x=\frac{9 \pi}{8} \text { not in }[0, \pi) \\
&
\end{array}
$$

