A function is **one-to-one** if no two elements in the domain have the same image.

The Horizontal Line Test: A function is one-to-one if any horizontal line intersects the graph of the function in no more than one point.

Example 1: Determine if the functions graphed are one-to-one.

Example 2: Determine if $f(x) = x^2 + 3$ is one-to-one.

Example 3: Determine if $f(x) = x^3 - 2$ is one-to-one.
If a function is one-to-one then there is an associated function called “the inverse”.

The inverse function of a one-to-one function is a function \(f^{-1}(x) \) such that \((f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x \).

Note: \(f^{-1}(x) \neq \frac{1}{f(x)} \)

To determine if two functions are inverses of one another, you need to compose the functions in both orders. Your result should be \(x \) in both cases. That is, given two functions \(f \) and \(g \), the functions are inverses of one another if and only if \(f(g(x)) = g(f(x)) = x \).

Example 4: Determine if \(f(x) = 5x - 2 \) and \(g(x) = \frac{x - 2}{5} \) are inverses of one another.

Note: The inverse function reverses what the function did. Therefore, the domain of \(f \) is the range of \(f^{-1} \) and the range of \(f \) is the domain of \(f^{-1} \).

Example 5: If \(f(-1) = 2 \), \(f^{-1}(-1) = 0 \) and \(f(2) = 5 \), find \(f(0) \) and \(f^{-1}(5) \).

Example 6: Find the linear function \(f \) if \(f^{-1}(4) = 0 \) and \(f^{-1}(2) = 1 \).
You need to be able to find the inverse of a function. Follow this procedure to find an inverse function:

1. Rewrite the function as \(y = f(x) \).
2. Interchange \(x \) and \(y \).
3. Solve the equation you wrote in step 2 for \(y \).
4. Rewrite the inverse using inverse notation, \(f^{-1}(x) \).

Example 7: You know that \(f(x) = 4x - 7 \) is a one-to-one function. Find its inverse.

Example 8: Determine if \(f(x) = (x - 5)^2, \ x \geq 5 \) is a one-to-one function. If it is, find its inverse.

Example 9: \(f(x) = \frac{1 + x}{2 - x} \) is a one-to-one function. Find its inverse.

(Extra) Example 10: Find the inverse of the function \(f(x) = 5 + \sqrt{4x + 1} \).