Math 1330 - Section 2.3
Rational Functions

A rational function is a function of the form \(f(x) = \frac{P(x)}{Q(x)} \), where \(P \) and \(Q \) are polynomial functions and \(Q(x) \neq 0 \). You’ll need to be able to find the following features of the graph of a rational function and then use the information to sketch the graph.

- Domain
- Intercepts
- Holes
- Vertical asymptotes
- Horizontal asymptote
- Slant asymptote
- Behavior near the vertical asymptotes

Domain: The domain of \(f \) is all real numbers except those values for which \(Q(x) = 0 \).

\(x \) intercept(s): The \(x \) intercept(s) of the function will be all values of \(x \) for which \(P(x) = 0 \), but \(Q(x) \neq 0 \).

\(y \) intercept: The \(y \) intercept of the function is \(f(0) \).

Holes: The graph of the function will have a hole at any value of \(x \) for which both \(P(x) = 0 \) and \(Q(x) = 0 \).
Vertical asymptotes: The graph of the function has a vertical asymptote at any value of \(x \) for which \(Q(x) = 0 \) but \(P(x) \neq 0 \).

\[f(x) = \frac{x(x-2)}{(x+2)(x-2)} = \frac{x}{x+2} \]

First, always simplify the hole factors.

\[x + 2 = 0 \quad \Rightarrow \quad x = -2 \]

Continue on Mon. 09/14

Horizontal asymptote: You can determine if the graph of the function has a horizontal asymptote by comparing the degree of the numerator with the degree of the denominator.

- If the degree of the numerator is smaller than the degree of the denominator, then the graph of the function has a horizontal asymptote at \(y = 0 \).

 \[\text{ex.} \quad f(x) = \frac{x+4}{x^3+2x-2} \quad \Rightarrow \quad y = 0 \quad \text{H.A.} \]

- If the degree of the numerator is equal to the degree of the denominator, then the graph of the function has a horizontal asymptote at

 \[y = \frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}} \]

 \[\text{ex.} \quad f(x) = \frac{3x^2 - 5}{4x^2 + 2x - 1} \quad \Rightarrow \quad y = \frac{3}{4} \quad \text{H.A.} \]

- If the degree of the numerator is greater than the degree of the denominator, then the graph of the function does not have a horizontal asymptote.

 \[\text{ex.} \quad f(x) = \frac{x^8 + 2x - 3}{100x^2 + 2} \quad \Rightarrow \text{No H.A.} \]

Note: The graph of a function \(f(x) \) can never intersect the Vertical Asymptote. However, it MAY intersect the Horizontal Asymptote.

Look at highlighted graph. This graph does not touch V.A., but it touches the H.A.
Given \(f(x) = \frac{3x^2 - 3}{x^2 + 2x - 3} \), find the

1. horizontal asymptote degrees match.
 (A) 3 (B) 0 (C) 1 (D) none of them

2. vertical asymptote \(f(x) = \frac{3(x-1)(x+1)}{(x-1)(x+3)} = \frac{3(x+1)}{x+3} \)
 (A) \(x = -1 \) (B) \(x = 1 \) (C) \(x = -3 \) (D) none of them

3. holes of \(f \), and their location simplified factor
 (A) \(x = -3 \) (B) \(x = 1 \) (C) no holes (D) none of them

\[f(1) = \frac{3(1+1)}{1+3} = \frac{6}{4} \]

\[(1, \frac{6}{4}) \]
Example: Given \(f(x) = \frac{x - 2}{x^2 - 1} \), find the point at which \(f(x) \) intersects the HA.

First, find HA

\[\Rightarrow y = 0, \text{ then take } f(x) = 0 \Leftrightarrow HA \text{ value} \]

\[\frac{x - 2}{x^2 - 1} = 0 \text{ iff } x - 2 = 0 \]

\[\boxed{x = 2} \]

Example: Given \(f(x) = \frac{x^2 - 2x + 2}{x^2 - x} \), find the point at which \(f(x) \) intersects the HA.

First, find HA

\[\Rightarrow y = \frac{1}{1} = 1 \]

Then, say \(f(x) = 1 \) i.e. \(\frac{x^2 - 2x + 2}{x^2 - x} = 1 \)

\[\Rightarrow x^2 - 2x + 2 = x - x \]

\[\Rightarrow \boxed{x = 2} \]

Slant asymptote: The graph of the function may have a slant asymptote if the degree of the numerator is greater than the degree of the denominator. To find the equation of the slant asymptote, use long division to divide the denominator into the numerator. The quotient is the equation of the slant asymptote.

\[f(x) = \frac{x^2 - x + 2}{x - 3} \]

\[f(x) = (x + 2) + \frac{8}{x - 3} \]

\[\boxed{\text{Quotient = Slant}} \]

\[\Rightarrow \frac{x + 2}{x - 3} \]

\[\frac{x - 3}{x^2 - x + 2} \]

\[\frac{- (x^2 - 3x)}{- (2x - 6)} \]

\[\frac{2x + 2}{3} \]

\[\boxed{8} \text{ Remainder} \]
Examples:

Practice Long Division to get these results:

\[f(x) = \frac{x^2 + 4}{x} = x + \frac{4}{x}; \text{ the slant asymptote is: } y = x. \]

\[f(x) = \frac{2x^2 + 1}{x} = 2x + \frac{1}{x}; \text{ the slant asymptote is: } y = 2x. \]

\[f(x) = \frac{x^2 - 2}{x - 1} = x + 1 - \frac{1}{x - 1}; \text{ the slant asymptote is: } y = x + 1. \]

\[f(x) = \frac{x^2 + x}{x - 2} = \text{Quotient} + \frac{\text{Remainder}}{x - 2}; \text{ the slant asymptote is: } y = \text{Quotient}. \]

Behavior near the vertical asymptotes: The graph of the function will approach either \(\infty\) or \(-\infty\) on each side of the vertical asymptotes. To determine if the function values are positive or negative in each region, find the sign of a test value close to each side of the vertical asymptotes.

Sometimes, if you are not sure whether the graph is positive (i.e. above x-axis) or negative (i.e. under x-axis), test some value for \(x\) on each side of vertical asymptotes.
Example 1: Sketch the graph of:

\[f(x) = \frac{2x^2 - 8}{x^2 - 3x + 2} \]

- **Domain:** \(x + 1, x + 2 \Rightarrow (-\infty, 1) \cup (1, 2) \cup (2, \infty) \)

- At \(x = 2 \), graph has a hole
 \[f(x) = \frac{2(x+2)}{x-1} \Rightarrow f(2) = \frac{2(2+2)}{2-1} = 8 \]

- **x-int:** \(x + 2 = 0 \)
 \(x = -2 \)

- **y-int:** \(y = 0 \)
 \[f(0) = \frac{2(0+2)}{0-1} = -4 \]

- **V.A.:** \(x - 1 = 0 \)
 \(x = 1 \)

- **H.A.:** \(y = \frac{2}{1} = 2 \)

Does \(f \) cut H.A. \(y = 2 \)?

\[f(x) = \frac{2(x+2)}{x-1} = 2 \Rightarrow \text{no solution} \]

Solve:

\[\begin{align*}
 2(x+2) &= 2x - 1 \\
 2x + 4 &= 2x - 1 \\
 2 &= -1 \\
 \end{align*} \]

It looks quite fancy.

Since graph passes through those points then it should be on this side.
Example 2: Sketch the graph of: \(f(x) = \frac{x^4 - 16}{x^3} = x - \frac{16}{x^3} \)

- **Long division**
 \[
 \begin{array}{c|cc cc}
 x^3 & x^4 & -16 \\
 \hline
 x^3 & x^4 & -16 \\
 \hline
 \end{array}
 \]

- **Slant asymptote:** \(y = x \)

- **Domain:** \(x \neq 0 \)
 \((-\infty, 0) \cup (0, \infty) \)

- **V.A.:** \(x=0 \)

- **H.A.: none**

- **X-int:** \(f(x) = 0 \)
 \[
 \frac{x^4 - 16}{x^3} = 0 \Rightarrow x^4 - 16 = 0 \Rightarrow x = \pm 2
 \]

- **Y-int:** none

- **Holes:** none
Exercise (Do on your own)

Exercise: Find all of the features of \(f(x) = \frac{x^3 - 4x^2}{x^2 - 2x - 8} \) and use them to graph the function.

\[
\frac{f(x)}{x+2} = \frac{x^2(x-4)}{(x-4)(x+2)} = \frac{x^2}{x+2}
\]

\(\Rightarrow \) domain: \(x \neq 4, x \neq -2 \)

\((-\infty,-2) \cup (-2,4) \cup (4,\infty) \)

\(\Rightarrow \) \(f \) has a hole at \(x=4 \)

\[
f(4) = \frac{4^2}{4+2} = \frac{16}{6} = \frac{8}{3}
\]

\(\Rightarrow \) x-int: \(f(x) = 0 \)

\[
\frac{x^2}{x+2} = 0 \Rightarrow x = 0 \text{ parabola}
\]

\(\Rightarrow y \)-int: \(y - f(0) = \frac{0^2}{0+2} = 0 \)

\(\Rightarrow \) V.A. \(x+2 = 0 \Rightarrow x = -2 \)

\(\Rightarrow \) H.A. none

\(\Rightarrow \) Slant A. \(f(x) = \frac{x^2}{x+2} = x - 2 + \frac{4}{x+2} \)

Long division:

\[
x+2 \left[\begin{array}{c} x^2 \\ \hline \end{array} \right]
\]

\[
x^2 \\ - (x^2 + 2x) \\ \hline
\]

\[
-2x \\ \hline
- (-2x - 4) \\ \hline
4
\]

\(y = x - 2 \)