Math 1330 – Section 8.2
Ellipses

Definition: An ellipse is the set of all points, the sum of whose distances from two fixed points is constant. Each fixed point is called a focus (plural = foci).

Basic ellipses (centered at origin):

Basic “vertical” ellipse:

Equation: \(\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1, \ a > b \)

Foci: \((0, \pm c)\), where \(c^2 = a^2 - b^2\)

Vertices: \((0, \pm a)\)

Eccentricity: \(e = \frac{c}{a}\)

Basic “horizontal” ellipse:

Equation: \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ a > b \)

Foci: \((\pm c, 0)\), where \(c^2 = a^2 - b^2\)

Vertices: \((\pm a, 0)\)

Eccentricity: \(e = \frac{c}{a}\)

The eccentricity provides a measure on how much the ellipse deviates from being a circle. The eccentricity \(e\) is a number between 0 and 1.

- small \(e\): graph resembles a circle (foci close together)
- large \(e\): flatter, more elongated (foci far apart)
- if the foci are the same, it’s a circle!
Graphing ellipses: \[\Rightarrow \text{Bring it in standard form} \]

To graph an ellipse with center at the origin:

- Rearrange into the form \(\frac{x^2}{\text{number}} + \frac{y^2}{\text{number}} = 1 \).
- Decide if it’s a “horizontal” or “vertical” ellipse.
 - if the bigger number is under \(x^2 \), it’s horizontal (longer in \(x \)-direction).
 - if the bigger number is under \(y^2 \), it’s vertical (longer in \(y \)-direction).
- Use the square root of the number under \(x^2 \) to determine how far to measure in \(x \)-direction.
- Use the square root of the number under \(y^2 \) to determine how far to measure in \(y \)-direction.
- Draw the ellipse with these measurements. Be sure it is smooth with no sharp corners
- \(c^2 = a^2 - b^2 \) where \(a^2 \) and \(b^2 \) are the denominators. So \(c = \sqrt{\text{big denom} - \text{small denom}} \)
- The foci are located \(c \) units from the center on the long axis.

To graph an ellipse with center not at the origin:

- Rearrange (complete the square if necessary) to look like \(\frac{(x-h)^2}{\text{number}} + \frac{(y-k)^2}{\text{number}} = 1 \).
- Start at the center \((h,k) \) and then graph it as before.

When graphing, you will need to find the orientation, center, values for \(a \), \(b \) and \(c \), vertices, foci, lengths of the major and minor axes and eccentricity.
Example 1: Find all relevant information and graph \(\frac{x^2}{16} + \frac{y^2}{9} = 1 \).

<table>
<thead>
<tr>
<th>Orientation:</th>
<th>horizontal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center:</td>
<td>((0,0))</td>
</tr>
<tr>
<td>Vertices:</td>
<td>((4,0), (-4,0))</td>
</tr>
<tr>
<td>Foci:</td>
<td>((\pm 4,0))</td>
</tr>
<tr>
<td>Length of major axis:</td>
<td>8</td>
</tr>
<tr>
<td>Length of minor axis:</td>
<td>6</td>
</tr>
<tr>
<td>Eccentricity:</td>
<td>(e = \frac{\sqrt{7}}{4} \approx 0.66)</td>
</tr>
</tbody>
</table>

Example 2: Find all relevant information and graph \(\frac{(x-1)^2}{9} + \frac{(y+2)^2}{25} = 1 \).

<table>
<thead>
<tr>
<th>Orientation:</th>
<th>vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center:</td>
<td>((1,-2))</td>
</tr>
<tr>
<td>Vertices:</td>
<td>((1,3), (1,-3))</td>
</tr>
<tr>
<td>Foci:</td>
<td>((1,2), (1,-6))</td>
</tr>
<tr>
<td>Length of major axis:</td>
<td>10</td>
</tr>
<tr>
<td>Length of minor axis:</td>
<td>6</td>
</tr>
<tr>
<td>Eccentricity:</td>
<td>(e = \frac{4}{5} = 0.8)</td>
</tr>
</tbody>
</table>
Example 3: Write the equation in standard form. Find all relevant information and graph:

\[4x^2 - 8x + 9y^2 - 54y = -49.\]

- Group x-terms together, y-terms together:
 \[(4x^2 - 8x) + (9y^2 - 54y) = -49\]

- Factor coefficients in front of squares:
 \[4(x^2 - 2x + 1) + 9(y^2 - 6y + 9) = -49 + 4\cdot1 + 9\cdot9\]

- Complete the square:
 \[4(x-1)^2 + 9(y-3)^2 = 36\]

- Divide both sides by 36:
 \[\frac{(x-1)^2}{9} + \frac{(y-3)^2}{4} = 1\]

Graph is easy now!

Example 4: Find the equation for the ellipse satisfying the given conditions.

- Foci \((\pm 3, 0)\), vertices \((\pm 5, 0)\)
 - Over x-axis \(a = 5\)
 - Vertical axis \(b = 3\)
 - Center is midpoint of foci \((0, 0)\)

\[\frac{x^2}{25} + \frac{y^2}{16} = 1\]

Example 5: Write an equation of the ellipse with vertices \((5, 9)\) and \((5, 1)\) if one of the foci is \((5, 7)\).

- By the graph, it is vertical and shifted.
 - Center = midpoint of major axis = \((5, 5)\)
 - Foci \((5, 7)\)
 - Length of major axis = \(2a = 8\)
 - \(a = 4\)

\[\Rightarrow \frac{(x-5)^2}{12} + \frac{(y-5)^2}{16} = 1\]