# PRINTABLE VERSION

# Ouiz 6

# You scored 100 out of 100

3

### **Question 1**

### Your answer is CORRECT.

In right triangle ABC, with right angle C, AB = 11, and BC = 4. Find the length of the missing side.

II









e) 
$$\sqrt{15}$$

**f)** None of the above.

# **Question 2**

# Your answer is CORRECT.

In right triangle ABC, with right angle C, AC = 12, and BC = 6. Find the length of the missing side.

a)  $0.3\sqrt{2}$ 



c)  $0.12\sqrt{3}$ 



e)  $\bigcirc$  6 $\sqrt{3}$ 



C2= 180

42= 121-16

- **f)** None of the above.

### **Question 3**

# Your answer is CORRECT.

In right triangle ABC, AB = 7. Find x.



45:45:90  
a a 
$$\sqrt{2}a$$
  
x x 7  
 $\sqrt{2}a = 7$   
 $a = \frac{7}{\sqrt{2}} = \frac{7\sqrt{2}}{2}$ 

- **b**) 0 14
- $c) \odot 7\sqrt{2}$
- d)  $0.7\sqrt{3}$
- **e)**  $\frac{7}{2}$
- **f)** None of the above.

# **Question 4**

# Your answer is CORRECT.

Right triangle ABC is shown below. If  $AC = 11\sqrt{3}$ , find x.



X= 1156

- **(b)** 11√6
- c)  $\bigcirc$  33 $\sqrt{2}$
- **d)**  $0.11\sqrt{2}$
- e)  $0.22\sqrt{3}$
- **f)** None of the above.

### **Question 5**

# Your answer is CORRECT.

In the figure below, an altitude is drawn to the base of equilateral triangle ABC. If AC = 8, find a and b.





a) 
$$a = b = 4\sqrt{3}$$

**b)** 
$$a = b = 8\sqrt{3}$$

c) 
$$a = b = 8\sqrt{2}$$

(d) • 
$$a = b = 4$$

**e)** 
$$a = b = 4\sqrt{2}$$

**f)** None of the above.

### **Question 6**

# Your answer is CORRECT.

In the figure below, an altitude is drawn to the base of equilateral triangle ABC. If AC = 5, find c, the length of the altitude.



a) 
$$c = 5\sqrt{3}$$

$$C = \sqrt{3} \left( \frac{5}{2} \right) = \frac{5\sqrt{3}}{2}$$

$$c = \frac{5}{2}\sqrt{2}$$

**c)** 
$$\circ$$
  $c = 10\sqrt{2}$ 

$$c = \frac{5}{3}\sqrt{3}$$

$$c = \frac{5}{2}\sqrt{3}$$

f) None of the above.

### **Question 7**

### Your answer is CORRECT.

Given triangle ABC as shown below. If AC = 12, find x and y.

$$X = 2a$$
$$X = 8\sqrt{3}$$



30:60:90

a 
$$\sqrt{3}a$$
  $2a$ 

y  $12$   $\times$ 
 $\sqrt{3}a = 12$ 
 $a = \frac{12}{\sqrt{3}} = \frac{12\sqrt{3}}{3} = 4\sqrt{3}$ 

a) 
$$\{x = 12\sqrt{2}, y = 12\}$$

**b)** 
$$\bigcirc \{x = 12\sqrt{3}, y = 8\sqrt{3}\}$$

(c) 
$$\{x = 8\sqrt{3}, y = 4\sqrt{3}\}$$

**d)** 
$$\bigcirc \{x = 24, y = 24\sqrt{3}\}$$

e) 
$$\{x = 4\sqrt{3}, y = 8\sqrt{3}\}$$

**f)** None of the above.

### **Question 8**

# Your answer is CORRECT.

Right triangle ABC is shown below. If  $AB = 4\sqrt{2}$ , find x and y.



a) 
$$x = y = 4$$

**b** • 
$$\{x = 2\sqrt{2}, y = 2\sqrt{6}\}$$

c) 
$$\{x = 4\sqrt{6}, y = 2\sqrt{2}\}$$

**d)** 
$$\bigcirc \{x = 8\sqrt{2}, y = 8\sqrt{6}\}$$

e) 
$$(x = 2\sqrt{6}, y = 2\sqrt{2})$$

**f)** None of the above.

### **Question 9**

# Your answer is CORRECT.

Given triangle DEF as shown below. If DF = 26 and EF = 24, find sin(D) and tan(F). Note: The triangle may not be drawn to scale.

5/20/2015 Print Test



$$\sin(0) = \frac{24}{26} = \frac{12}{13}$$

$$\tan(F) = \frac{10}{24} = \frac{5}{12}$$

**a)** 
$$\circ$$
  $\sin(D) = \frac{12}{13}$ ,  $\tan(F) = \frac{12}{5}$ 

**b)** 
$$\circ \sin(D) = \frac{5}{12}$$
,  $\tan(F) = \frac{12}{13}$ 

$$\mathbf{c}$$
)  $\sin(D) = \frac{13}{12}$ ,  $\tan(F) = \frac{12}{5}$ 

$$\sin(D) = \frac{12}{13}$$
,  $\tan(F) = \frac{5}{12}$ 

**e**) 
$$\circ$$
  $\sin(D) = \frac{13}{12}$ ,  $\tan(F) = \frac{5}{12}$ 

**f)** None of the above.

#### **Question 10**

# Your answer is CORRECT.

Suppose that  $\theta$  is an acute angle of a right triangle and  $\tan(\theta) = \frac{4\sqrt{2}}{5}$ . Find  $\sin(\theta)$  and  $\cos(\theta)$ .

a) 
$$\sin(\theta) = \frac{1}{8} \sqrt{114}$$
,  $\cos(\theta) = \frac{1}{5} \sqrt{57}$ 

**b)** 
$$\odot$$
  $\sin(\Theta) = \frac{8}{57} \sqrt{114} , \cos(\Theta) = \frac{10}{57} \sqrt{57}$ 

$$\sin(\Theta) = \frac{4}{57} \sqrt{114} \cos(\Theta) = \frac{5}{57} \sqrt{57}$$

d) 
$$\sin(\theta) = \frac{4}{5}\sqrt{2}$$
,  $\cos(\theta) = \frac{5}{8}\sqrt{2}$ 

e) 
$$\sin(\Theta) = \frac{5}{57} \sqrt{57}$$
,  $\cos(\Theta) = \frac{4}{57} \sqrt{114}$ 



**f)** None of the above.

#### **Question 11**

### Your answer is CORRECT.

Suppose that  $\theta$  is an acute angle of a right triangle and that  $\sec(\theta) = \frac{13}{7}$ . Find  $\csc(\theta)$  and  $\tan(\theta)$ .

a) 
$$\csc(\theta) = \frac{13}{60} \sqrt{30}$$
,  $\tan(\theta) = \frac{7}{60} \sqrt{30}$ 

**b)** 
$$\bigcirc$$
  $\csc(\boldsymbol{\theta}) = \frac{2}{7} \sqrt{30}$ ,  $\tan(\boldsymbol{\theta}) = \frac{2}{13} \sqrt{30}$ 

$$\csc(\mathbf{\Theta}) = \frac{13}{60} \sqrt{30} \quad \tan(\mathbf{\Theta}) = \frac{2}{7} \sqrt{30}$$

**d)** 
$$\cos(\theta) = \frac{7}{60} \sqrt{30} , \tan(\theta) = \frac{13}{60} \sqrt{30}$$

e) 
$$\operatorname{csc}(\boldsymbol{\theta}) = \frac{2}{13} \sqrt{30}$$
,  $\tan(\boldsymbol{\theta}) = \frac{2}{7} \sqrt{30}$ 

4 4= 2130

d) 
$$\cos(\theta) = \frac{7}{60} \sqrt{30}$$
,  $\tan(\theta) = \frac{15}{60} \sqrt{30}$   $\csc\theta = \frac{13}{2\sqrt{30}} = \frac{13\sqrt{30}}{60}$   
e)  $\csc(\theta) = \frac{2}{13} \sqrt{30}$ ,  $\tan(\theta) = \frac{2}{7} \sqrt{30}$   $\tan \theta = \frac{2\sqrt{30}}{7}$ 

**f)** None of the above.

### **Question 12**

# Your answer is CORRECT.

Convert the following degree measure to radians: 240°.

a) 
$$0.6\pi/5$$

**b)** 
$$0.16\pi/3$$

c) 
$$0^{2\pi}/3$$

**d** • 
$$4\pi/3$$

e) 
$$0.3\pi_{/2}$$

**f)** None of the above.

# **Question 13**

# Your answer is CORRECT.

Convert the following radian measure to degrees:

b) 
$$0.2700^{\circ}/7$$
  $1477 \cdot 186 = 14 \cdot 12 = 168^{\circ}$ 

**f)** None of the above.

#### **Question 14**

### Your answer is CORRECT.

To find the length of the arc of a circle, think of the arc length as simply a fraction of the circumference of the circle. If the central angle  $\theta$  defining the arc is given in degrees, then the arc length can be found using the formula:

$$s = \frac{\theta}{360^{\circ}} \cdot 2\pi r$$

Use the formula above to find the arc length s, where  $\theta = 45^{\circ}$  and r = 9cm.

a) 
$$9\pi/8$$
 cm  $S = \frac{45}{360} \cdot 2\pi (9) = \frac{9\pi}{4}$ 

- **b)**  $910\pi$  cm
- c)  $0.9\pi$ /2 cm
- **d**  $9\pi/4$  cm
- e)  $9\pi/16 \text{ cm}$
- **f)** None of the above.

### **Question 15**

# Your answer is CORRECT.

If the central angle  $\theta$  defining the arc is given in radians rather than degrees, then the arc length can be found using the formula:

5/20/2015 Print Test

$$s = \frac{\theta}{2\pi} \cdot 2\pi r$$
, which simplifies to  $s = r\theta$ 

Use the formula above to find the arc length s, where  $\theta = \frac{4\pi}{3}$  and r = 6yd.

a)  $0.2880\pi \text{ yd}$ 

$$S = \frac{4\pi/3}{2\pi} (2\pi)(6)$$

c)  $\bigcirc 2\pi$  yd

**b)**  $\bigcirc$   $4\pi$  vd

$$S = \frac{4\pi}{6\pi} (12\pi) = 8\pi$$

- **d)** 8π yd
- e)  $\bigcirc$  16 $\pi$  yd
- **f)** None of the above.

#### **Question 16**

### Your answer is CORRECT.

Find the perimeter of a sector of a circle with central angle  $\theta = \frac{3\pi}{2}$  and radius 8 ft.

a)  $0 (8 + 12\pi)$  ft

**b)** 
$$\bigcirc$$
 (16 + 24 $\pi$ ) ft

(16 + 
$$12\pi$$
) ft

**d)** 16 ft





f)  $\bigcirc$  None of the above.  $\mathcal{S} = \mathcal{C}$ 

$$S=r\theta = 8(\frac{3\pi}{2}) = 4(3\pi) = 12\pi$$

5

P=(16+12m)ft

#### **Question 17**

# Your answer is CORRECT.

To find the area of a sector of a circle, think of the sector as simply a fraction of the circle. If the central angle  $\theta$  defining the sector is given in degrees, then the area of the sector can be found using the formula:

$$A = \frac{\theta}{360^{\circ}} \cdot \pi r^2$$

Use the formula above to find the area of the sector, where  $\theta = 225^{\circ}$  and r = 7 cm.

(a) 
$$\circ$$
  $^{245\pi}/8$  cm<sup>2</sup>

$$A = \frac{225}{360} \pi (7^2) = \frac{5}{8} (49) \pi = \frac{245 \pi}{8} \text{ cm}$$

**b)** 
$$0.245\pi_{4}$$
 cm<sup>2</sup>

c) 
$$0.35\pi/8 \text{ cm}^2$$

**d)** 
$$0.35\pi/4$$
 cm<sup>2</sup>

e) 
$$0.35\pi_{2}$$
 cm<sup>2</sup>

**f)** None of the above.

#### **Question 18**

### Your answer is CORRECT.

A sector of a circle has central angle  $\theta = \frac{\pi}{3}$  and area  $\frac{49\pi}{6}$  ft<sup>2</sup>. Find the radius of the circle.

a) 
$$0.7$$
<sub>2</sub> ft

**b)** 
$$0.7_{4}$$
 ft

$$49\pi = \frac{1}{2}(r^2)(\frac{\pi}{3})$$

**f)** None of the above.

# **Question 19**

# Your answer is CORRECT.

A car has wheels with a 8 inch radius. If each wheel's rate of turn is 5 revolutions per second, find the angular speed in units of radians/second.

a) 
$$\bigcirc$$
 40 $\pi$ 

c) 
$$0.5\pi$$

- **d)**  $0.5\pi/2$
- e)  $0.5\pi$ /8
- **f)** None of the above.

### **Question 20**

### Your answer is CORRECT.

A car has wheels with a 11 inch radius. If each wheel's rate of turn is 5 revolutions per second, how fast is the car moving in units of inches/sec?

**a)** 
$$0.11\pi/5$$

- **b)**  $\bigcirc 22\pi$
- c)  $\bigcirc$  55 $\pi$
- **d)**  $0.5\pi/11$
- **(e)** 110π
  - **f)** None of the above.

$$(lon)(n) = llon$$