
MATH 3325: NOTES TO ACCOMPANY LECTURES

VERN I. PAULSEN

Abstract. This notes are intended to supplement the in class lectures.

Lecture 1

Inductive vs Deductive Reasoning

Inductive reasoning is the means by which we discover many patterns
and relationships. Many principles of science are discovered by inductive
reasoning. For example, by observing the relationship between the moon
and tides, we learned how to predict when high and low tides would occur.

A limitation of inductive reasoning is that you never know how far pat-
terns extend. Some bad examples of inductive reasoning would be:

I flip a coin ten times and it always comes up heads. I conclude that it
will always come up heads and bet a lot of money that the next time I flip
the coin it will come up heads.

I give everyone in my class a peanut butter sandwich, no one gets sick
and I conclude everyone can eat peanut butter without getting sick.

I smoke a pack-a-day of cigarettes for a month with no ill effects and
deduce that it will be ok to smoke for the rest of my life.

These examples are meant to illustrate the real problem with inductive
reasoning. Namely, there is no certainty. A conclusion that is drawn might
have many exceptions and needs to be subject to constant review and debate
about whether or not it really is a “pattern” or just a fluke, like when the
coin came up heads ten times in a row.

Deductive reasoning is the process by which we use logic and the given
rules or axioms to deduce further facts. The nice thing about deductive
reasoning and what sets it apart from inductive reasoning, is that as long
as the axioms are correct or the rules are obeyed, then the conclusions of a
deductive reasoning process are certain.

Although many areas of science work primarily by inductive reasoning,
what sets the science of mathematics apart is that it is primarily based on
deductive reasoning.

While most mathematicians often start with inductive reasoning to un-
cover a pattern that might be true, we then use deductive reasoning and
proofs to determine what is true.

Here are some examples of deductive reasoning.
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In chess when someone says, “checkmate”, they are using the rules that
govern how pieces move and deductive reasoning to decide that there is no
escape for their opponent.

In the game of Clue, one gathers facts and then uses deductive reasoning
to decide who was the murderer in which room and with which weapon.

In the American jury system, when it works like it should, the jury is
supposed to first agree on what are the facts and then based on those facts
and the rules of law given to them deduce the outcome.

Of course, in many of the above cases one often arrives at the “right”
conclusion without really formally knowing why and sometimes arrives at
the “wrong” conclusion through faults in their deductive reasoning.

The main purpose of this course is to help us all sharpen our deductive
reasoning skills. Along the way we will learn a lot about formal mathemat-
ical proofs, how to produce them and why they are important.

Assignment: Read “Preface to the Students”.

Some Basic Background

It is impossible to start a course without assuming that the student knows
something. In this section we organize the things that we believe that you
should know for this course.

0.1. Sets and Set Notation. A set is a collection of things called the
elements or members of the set. Often we will denote the elements of a
set by brackets. For example, when I write K = {3, 4, 5, 7, a}, it means that
K is a set and the elements of K are the numbers 3, 4, 5, 7 and the letter a.
When A is a set and we want to indicate that x is an element of A we write
x ∈ A. If we want to indicate that x is not an element of A we write x /∈ A.

So for the above set K we have that 7 ∈ K and 6 /∈ K.
Often it is hard to list all the elements of a set, like I did with the set K,

and instead we use set builder notation.
An example of this would be:

B = {x : 1 ≤ x ≤ 100 and x is an integer},

which tells me that B is the set of all integers from 1 to 100. When we use
set builder notation the colon should always be read as, “such that”. The
set B has 100 elements, which is why set builder notation is a much better
way to write it than listing all the elements.

Given two sets A and B we say that the sets are equal and write A = B to
mean that they have exactly the same elements. For example if A = {3, 4}
and B = {x : x2 − 7x + 12 = 0}, then, by factoring the polynomial, we see
that A = B.

One thing to be careful of. We have that 5 ∈ {5}, but 5 6= {5}, because
the left hand side is just the number 5 while the right hand side means the
set with exactly one element, the number 5. So they are not equal, because
they are “different things”.
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Given two sets A and B we say that A is a subset of B provided that
every element of A is also an element of B. In this case we write, A ⊆ B.
For example, if B = {x : 1 ≤ x ≤ 10 and x is an integer} and A = {3, 4, 5}
then A ⊆ B.

Here is an example of deductive reasoning:
If A ⊆ B and B ⊆ A, then A = B.
Can you see why? Explaining why has a lot to do with what proofs are

about.
We will often talk about the empty set which means the set with no

elements. This is denoted by ∅ or Ø.
Here are some sets that we will encounter, along with the special notations

that we use for them.
N = {1, 2, 3, ...} the set of natural numbers.
Z = {....,−3,−2,−1, 0, 1, 2, 3, ...} the set of integers.
Z+ = {0, 1, 2, 3, ...} the set of non-negative integers.
Q = {mn : m,n ∈ Z, n 6= 0} the set of rational numbers.
R the set of real numbers.
C the set of complex numbers.
Writing down a careful definition of what exactly is the set R is not so

easy. In fact, this is done in Math 3333.
A set is finite if it has n elements for some natural number n, and is

called infinite if it is not finite.
One of the interesting things that we’ll see in Chapter 5, is that infinite

sets can come in different “sizes”. We’ll expalain exactly what this means
when we get to Chapter 5.

0.2. The Natural Numbers. Here are the basic arithmetic and order
properties of N.

1. The Successor Property.

• 1 is a natural number.
• Every natural number n has a unique successor, n+1, i.e., the “next”

natural number.
• 1 is NOT the successor of any natural number, i.e., the natural

numbers “start” at 1.

2. Closure Properties

• The sum of two natural numbers is a natural number.
• The product of two natural numbers is a natural number.

3. Associativity

• For all x, y, z ∈ N, x+ (y + z) = (x+ y) + z.
• For all x, y, z ∈ N, x(yz) = (xy)z.

4. Commutativity

• For all x, y ∈ N, x+ y = y + x.
• For all x, y ∈ N, xy = yx.

5. Distributivity
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• For all x, y, z ∈ N, x(y + z) = xy + xz,
• For all x, y, z ∈ N, (y + z)x = yx+ zx.

NOTE: We didn’t really need the last one! Why?
6. Cancellation

• For all x, y, z ∈ N, if x+ z = y + z, then x = y.
• For all x, y, z ∈ N, if xz = yz, then x = y.

0.3. Primes and Divisors. Given a, b ∈ N we say that a divides b or that
a is a divisor of b or that b is a multiple of a if and only if there is a k ∈ N
such that b = ak.

For example, 3 divides 12 since 12 = 3 · 4.
If you are bothered by what “if and only if” means, don’t worry, that

is something we’ll talk more about later. For now, you could replace it by
“exactly when”. So a divides b exactly when there is k ∈ N with b = ak.

Note a always divides a.
A natural number p is prime if and only if p > 1 and the only natural

numbers that divide p are p and 1.
Note: In this book, 1 is NOT prime. Sometimes books call 1 prime. Our

book’s definition agrees with the definition found on Wikipedia! Good job
Wiki!

A natural number n is called composite if and only if n 6= 1 and n is not
a prime.

So n is composite if and only if some natural number a 6= 1 and a 6= n
divides n.

For example, 2, 3, 5, 7, 11 are primes, while 4 = 2 · 2, 6 = 3 · 2 and 8, 9, 10
are composite.

0.4. The Fundamental Theorem of Arithmetic. Every natural number
n 6= 1 can be expressed uniquely as a product of primes. For example,
12 = 2 · 2 · 3 = 22 · 3 and 90 = 2 · 32 · 5.

Remember the way that we do this: If the number is composite, then we
can write it as a product of two things, 90 = 9 · 10 and then each of those
factors is either prime or composite, 9 = 3 · 3 and 10 = 2 · 5 and eventually,
we arrive at primes.

The book has more things in the preface but this is plenty for now! You
should read these, but we will also return to these other facts as we need
them.

Lecture 2

Logic and Proofs

In mathematics we use proofs, based on deductive reasonig and logic,
to demonstrate that our conclusions are true. In the Chapter 1, we will
be looking carefully at the basics of logic and the key concepts and their
definitions.
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0.5. Propositions. The first important concept in logic is a Proposition.

Definition. A proposition is a sentence that has exactly one truth value:
it is either true, which we denote by T or false which we denote by F.

These concept needs lots of examples. Some propositions:

• The square of 3 is 9.
• The square of 2 is 5.
• 3 is a divisor of 6.
• 19 is a composite number.
• Vern is the tallest boy in our class.
• x is an integer, 1 < x < 3 and x2 = 4.
• The next time I flip a coin it will come up heads.
• By the year 2052, humans will be extinct.

Note that the last two are propositions, even though at the moment I
cannot give them a truth value.

Some things that aren’t propositions:

• x2 = 4. (Reason: nobody said what x was.)
• She lives in Houston. (Reason: nobody said who “she” is.)
• What time is it?

Some things that could be propositions:

• Steve is tall.
• The US national debt is too big.

These would be propositions if we had precise definitions of “tall” and “too
big”.

A statement like this sentence is false is not a proposition. It is called a
paradox. If it was true, it would be false and if it was false, it would be
true!

We will often use letters to denote propositions, so I might write let P be
a proposition.

0.6. Negations.

Definition. The negation of a proposition P , is denoted by ∼ P and ∼ P
is the proposition “not P”. The proposition ∼ P is true exactly when P is
false and ∼ P is false exactly when P is true.

So the truth value of ∼ P is the opposite of the truth value of P.
Notice that there is often more than one way to express the negation of a

proposition. For example the negation of the proposition that “Vern is the
tallest boy in our class” could be expressed as:

• Vern is not the tallest boy in our class.
• There is a boy in our class taller than Vern.

Is “Vern is the shortest boy in our class” also a negation of “Vern is the
tallest boy in our class” ?
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0.7. Conjunctions and Disjunctions.

Definition. Given propositions P and Q the conjunction of P and Q is
the propositons “P and Q”. It is denoted by P ∧Q and it is the proposition
that is true exactly when both P and Q are true.

The disjunction of P and Q, is the proposition “P or Q”. It is denoted
P ∨ Q and it is the proposition that is true exactly when at least one of P
or Q is true.

Let’s let P be the statement 32 = 10 and Q be the statement “2 divides
6”.

Then P ∧Q is the statement 32 = 10 and 2 divides 6. T or F?
P ∨Q could be written as the statement: Either 32 = 10 or 2 divides 6.

T or F?
Translate (∼ P ) ∧Q, (∼ P ) ∨Q, P ∧ (∼ Q) and P ∨ (∼ Q) into English

sentences. Is each one T or F?
Sometimes, especially in computer science, people are interested in the

exclusive or this means that exactly one of two statements is true. Express
this in terms of conjunctions and disjunctions.

Answer: (P ∨Q) ∧ [∼ (P ∧Q)].
Sometimes when people write sentences in English it is hard to tell exactly

what they meant. How about: At the grocery store I can buy apples, peaches
and pears.

This time “and” really meant “or”!
Another example: Natural numbers greater than one can be composite

and prime.
Again “and” meant “or”.
The words “but”, “while” and “although” usually mean conjunction. Here

are some examples:

• Sally is a girl, but Steve is the tallest boy in our class.
• 39 is prime, although 6 is composite.
• Austin is the capitol of Texas, while Lansing is the capitol of Michi-

gan.

The word “or” almost always means disjunction.
Can you think of any English sentences where “and” means disjunction?

Any where “or” means conjunction?

0.8. Propositional Forms and Truth Tables. When we write P ∧Q we
don’t know if it is true or false until we know whether P is true or false and
whether Q is true or false. Formulas like P ∧Q, P ∧ ( Q), (P ∧Q) ∨R are
called propositional forms. Once you know whether or not eaach of the
terms in a propositional form are true or false, you can work out if the form
is true or false. Truth tables are a good way to display all the possibilities.
The way that you should read a T or F in the table, is to mean that “if we
knew this proposition was T”. Below are the truth tables for P and P , and
for for P,Q, P ∧Q,P ∨Q, ( P ) ∧Q, etc.
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P ∼ P
T F
F T

P Q P ∧Q P ∨Q (∼ P ) ∧Q
T T T T F
T F F T F
F T F T T
F F F F F

We also do some propositional forms with 3 propositions, P,Q,R, e.g.,
(P ∧Q) ∨R, (P ∨Q) ∧R.

P Q R (P ∧Q) ∨R (P ∨Q) ∧R
T T T T T
T T F T F
T F T T T
F T T T T
T F F F F
F T F F F
F F T T F
F F F F F

0.9. Tautologies and Contradictions. A propositional form is called a
tautology if it is true for every assignment of truth values to its components.

For example, P ∨ (∼ P ) is a tautology. In plain English it says that either
P is true or not P is true, but this is the same as saying that either P is true
or P is false, which is always the case. If P is true this is true and if P is
false this is true. This tautology is called the Law of the Excluded Middle.

A more complicated tautology is: (P ∨Q) ∨ (∼ P∧ ∼ Q).
In plain English this says that: either P or Q is true or both are false.

Seeing that this is always true can be unraveled with a truth table, see page
4 of the book.

A contradiction is a propositional form that is always false. For exam-
ple, P ∧ (∼ P ) is a contradiction since it is impossible for both P to be true
and not P to be true.

0.10. Equivalent Statements. Two statements are equivalent if they say
the same thing. For example, “Vern is not the tallest boy in the class” and
“there is a boy in the class taller than Vern” are equivalent.

Two propositional forms are equivalent if they have the same truth
tables.
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For example, P and ∼ (∼ P ) are equivalent. Because if P is true, then
∼ P is false and so ∼ (∼ P ) is true. While if P is false, then ∼ P is true
and so ∼ (∼ P ) is false.

This is just the principle that if you negate something twice then you are
back to the original statement.

An example of using this in plain English, “there is not a boy in the class
taller than Vern” is the same as saying that “Vern is the tallest boy in the
class”. Note what we have done is that the first phrase is the negation of
“there is a boy in the class taller than Vern” and since we have negated
twice, we are just making the original statement.

Another example of equivalent propositional forms is ∼ P and ∼∼∼ P.
The form P and P ∧ P are equivalent propositional forms.
Here is a more complicated example. The propositional forms ∼ (P ∧Q)

and (∼ P ) ∨ (∼ Q) are equivalent. First try seeing why in plain English,
then form the truth table. See page 5 of the book for the truth table.

In plain English: ∼ (P ∧Q) is saying that “P and Q are not both true”
which means that “either P is not true or Q is not true”. So the “either” is
a disjunction and we have (∼ P ) ∨ (∼ Q).

HW1, Due 9/4:

Write plain English negations(besides just putting a “not” in the sentence)
of the following propositions:

• 17 is a composite number.
• Humans will be extinct by January 1, 2052.
• The next time I roll a die it will come up a 3.

Make truth tables for each of the following propositional forms:

• ∼ (P ∧Q)
• (P ∧Q) ∨ (P ∧R)

Lecture 3: 9/4

Quick Review: Suppose that A, B, C, D and E are propositions with A,
B, C all true and D, E both false. State whether the following are true or
false: A ∧ (C ∧D), (A ∨ E) ∧ (C ∨D).

Is P ∧Q equivalent to Q ∧ P ? Find a form equivalent to ∼ (P ∧Q).
A denial of a proposition is any statement equivalent to its negation.
A denial of a propositional form P is any propositional form equivalent

to ∼ P. So ∼∼∼ P, ∼∼∼∼∼ P are both denials of P.
A denial of P∧Q would be any propositional form equivalent to ∼ (P∧Q).

Can you think of one? If not, see the theorem below to find one.
Here is a summary of some important equivalences.
Theorem 1.1.1. For propositions P,Q, and R the following are equiva-

lent:

• (a) P and ∼ (∼ P ) Double Negation Law
• (b) P ∨Q and Q ∨ P Commutative Law
• (c) P ∧Q and Q ∧ P Commutative Law
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• (d) P ∨ (Q ∨R) and (P ∨Q) ∨R Associative Law
• (e) P ∧ (Q ∧R) and (P ∧Q) ∧R Associative Law
• (f) P ∧ (Q ∨R) and (P ∧Q) ∨ (P ∧R) Distributive Law
• (g) P ∨ (Q ∧R) and (P ∨Q) ∧ (P ∨R) Distributive Law
• (h) ∼ (P ∧Q) and (∼ P ) ∨ (∼ Q) DeMorgan’s Law
• (i) ∼ (P ∨Q) and (∼ P ) ∧ (∼ Q) DeMorgan’s Law

These are proved in the book. I’ll discuss a couple.
More importantly, let’s see how to use these in sentences.
Let P be the statement “Prof. Plum is the murderer”, Q the statement

“the murder was in the library”, and R the statement “the murderer used
a knife”.

Then P ∧ (Q∨R) is true provided that “Prof. Plum is the murderer and
either the murder was in the library or a knife was used. By (f) this sentence
means the same thing as (P ∧ Q) ∨ (P ∧ R) which is “either Prof. Plum
commited the murder in the library or Prof. Plum used a knife to commit
the murder”.

Using (h), we see that the negation of the statement, “Prof. Plum com-
mited the murder in the library” is “either Prof. Plum is not the murderer
or the murder did not take place in the library”.

Conditionals and Biconditionals

New kinds of propositional forms.

Definition. Let P and Q be propositions the conditional sentence P =⇒
Q is the statement that “if P is true then Q is true” or “when P is true, Q
is true”. P is called the antecedent and Q is called the consequent.

Note that if P is a false proposition, then Q can be any proposition and
P =⇒ Q will still be true!

Here’s some “if-then” statements, we’ll decide if they are true or false.

(1) If 2 + 2 = 5 then 14 is odd.
(2) If 2 + 2 = 5 then 14 is even.
(3) If a line in the plane is vertical, then its slope is undefined.
(4) If two lines in the plane are parallel and not vertical, then they have

the same slope. This sentence gave me trouble in class, the problem
is that it is not stated very clearly. Let’s restate as: “If two lines
in the plane are parallel and at least one is not vertical, then both
slopes exist and are equal.”

(5) If Vern is the tallest boy in the class then Richard is a girl.
(6) If f is differentiable at x0 and f ′(x0) = 0 then f(x0) is a relative

maximum.
(7) If f is differentiable at x0 and f(x0) is a relative maximum, then

f ′(x0) = 0.
(8) If you score above 90 on the test, then you will get an A.
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Note that deciding if (8) is true or false depends on my grading scale.
Let’s suppose that I use a straight scale, then (8) is true.

It turns out that P =⇒ Q can be expressed in terms of ∼’s and ∨’s.
More precisely, it is equivalent to (∼ P ) ∨Q. To see this we build the truth
table.

P Q P =⇒ Q (∼ P ) ∨Q
T T T T
T F F F
F T T T
F F T T

Definition. The converse of P =⇒ Q is the statement Q =⇒ P.
The contrapositive of P =⇒ Q is the statement (∼ Q) =⇒ (∼ P ).

State converses of all of the previous sentences. Which are true which are
false? Here are a few:

(1) If 14 is odd, then 2+2=5. (true)
(2) If 14 is even, then 2+2 =5. (false)
(3) If the slope of a line in the plane is undefined, then the line is vertical.

(true)
(4) If two lines in the plane have slopes that exist and are equal, then

they are parallel and at least one is not vertical. (true)
(6) If f(x0) is a relative maximum, then f is differentiable and f ′(x0) =

0.(false)
(8) If you get an A then you scored above 90 on the test. (true, for

straight scale)
State contrapositives of all of the previous sentences. Which are true

which are false?
(1) If 14 is not odd, then 2+2 6= 5. OR If 14 is even, then 2+2 6= 5.(true)
(2) If 14 is odd, then 2 + 2 6= 5.(true)
(3) If the slope of a line in the plane is defined, then the line is not

vertical.(true)
(4)
The contrapositive is still very complicated. Note that both the an-

tecedent and consequent have an “and”. Remember that when we negate
“A and B” it becomes “either not A or not B”. The clause that “one is not
vertical” means “either A is not vertical or B is not vertical” which negates
to “A is vertical and B is vertical”

If at least one slope does not exist or both slopes exist but are not equal,
then either the lines are not parallel or both lines are vertical.(true)

Whew! Much harder than I thought when I wrote it down!
(5) If Richard is a boy, then Vern is not the tallest boy in the class.(true)
(6) If f(x0) is not a relative maximum, then either f is not differentiable

at x0 or f ′(x0) 6= 0. (false, f(x0) could be a relative minimum with f differ-
entiable at x0 and f ′(x0) = 0.) (7) If f ′(x0) is not the number 0, then either
f is not differentiable at x0 or f(x0) is not a relative maximum.(true) (8) If
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you did not get an A, then you did not score above 90 on the test.(true, for
straight scale.)

So we see that there is no general relationship between a statement being
true and its converse being true. But in every example, the contrapositive is
true when the original statement is true, so by inductive reasoning we might
guess that this is always the case! Now we will show this with a cold, hard
proof!

Theorem 1.2.1. For propositions P and Q.

• (a) P =⇒ Q is equivalent to its contrapositive (∼ Q) =⇒ (∼ P ).
• (b) P =⇒ Q is NOT equivalent to its converse Q =⇒ P.

Proof: We’ll do (b) first. To prove that something is not true, it is enough
to give an example and in the sentences that we had above we have lots of
examples. One could also do this with a truth table.

The easiest way to prove (a) is to do a truth table.
I want to do it another way. We saw above that P =⇒ Q is equivalent

to (∼ P ) ∨Q. This says you negate the first and ∨ with the second.
Hence, (∼ Q) =⇒ (∼ P ) is equivalent to ∼ (∼ Q)∨ (∼ P ), which by the

double negation property is equivalent to Q∨ (∼ P ) which is (∼ P )∨Q, by
commutativity. But this last statement is equivalent to P =⇒ Q.

Lecture 4: 9/9

Quick Review: P =⇒ Q read “P implies Q” means that whenever P
is true, then Q is true. So P =⇒ Q is true when this happens. For
example, if P is the proposition that “6 divides the number n” and Q is
the proposition that “3 divides the number n” then “P implies Q” is the
statement: “If 6 divides the number n, then 3 divides the number n”, which
is a true statement.

The converse of the statement P =⇒ Q is the statement Q =⇒ P. In
this case the converse is the statement that “if 3 divides the number n, then
6 divdes the number n” which is not true.

The contrapositive of the statement P =⇒ Q is the statement ∼ Q =⇒
∼ P. In this case the contrapositive is the statement: “If 3 does not divide
the number n, then 6 does not divide the number n”. In this case the
contrapositive is true.

In fact, last time we saw that the statement P =⇒ Q and its contrapos-
itive ∼ Q =⇒ ∼ P are equivalent statements. In other words either both
statements are true or both statements are false.

This is an example of a biconditional.

Definition. Let P and Q be propositions. The biconditional denoted,
P ⇐⇒ Q, is the statement that P and Q have the same truth values. In
other words, either P and Q are both true or P and Q are both false. In
words, the biconditional is stated as “P if and only if Q”.
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Stated differently: whenever P is true it must be the case that Q is true
AND whenever P is false it must be the case that Q is false.

The statement that whenever P is true, Q is true is the statement that
P =⇒ Q.

The second statement that whenever P is false Q is false is the statement
that (∼ P ) =⇒ (∼ Q) which is the contrapositive of Q =⇒ P.

So the statement P ⇐⇒ Q is the same as saying that P =⇒ Q AND
Q =⇒ P.

This at least explains the notation. Put more formally, we are saying that
P ⇐⇒ Q and [P =⇒ Q]∧ [Q =⇒ P ] are equivalent propositional forms.

Some good examples of the biconditional are:

• 2 divides the natural number b if and only if b=2k for some natural
number k
• 2 divides the natural number b and 3 divides the natural number b
⇐⇒ 6 divides the natural number b,
• [P =⇒ Q] ⇐⇒ [(∼ Q) =⇒ (∼ P )].
• [P ∧Q] is true ⇐⇒ [Q ∧ P ] is true.
• A line in the plane is horizontal ⇐⇒ it has slope 0.
• A line in the plane is vertical ⇐⇒ its slope is undefined.
• Two lines in the plane are parallel ⇐⇒ either they both have a

slope that is defined and is the same number or they both have slope
that is undefined.

Notice that when we are talking about propositional forms, then saying
that they are equivalent is the same as saying that we have an “if and only
if”, so for example we could write:

[P ∧Q] ⇐⇒ [Q ∧ P ],
[P =⇒ Q] ⇐⇒ [∼ Q =⇒ ∼ P ],
and one of deMorgan’s laws, [∼ (P ∧Q)] ⇐⇒ [(∼ P ) ∨ (∼ Q)].
The truth table for the biconditional is:

P Q P ⇐⇒ Q

T T T
T F F
F T F
F F T

A good way to deal with the biconditional is given by (b) below:

Theorem 1.2.2. For propositions P,Q and R.

• (a) P =⇒ Q is equivalent to (∼ P ) ∨Q.
• (b) P ⇐⇒ Q is equivalent to (P =⇒ Q) ∧ (Q =⇒ P ).
• (c) ∼ (P =⇒ Q) is equivalent to P ∧ (∼ Q).
• (d) ∼ (P ∧Q) is equivalent to P =⇒ (∼ Q).
• (d’) ∼ (P ∧Q) is equivalent to Q =⇒ (∼ P ).
• (e) P =⇒ (Q =⇒ R) is equivalent to (P ∧Q) =⇒ R.
• (f) P =⇒ (Q ∧R) is equivalent to (P =⇒ Q) ∧ (P =⇒ R).



MATH 3325 13

• (g) (P ∨Q) =⇒ R is equivalent to (P =⇒ R) ∧ (Q =⇒ R).

These can all be done with truth tables. We did (a) earlier.
For an example, let’s reason out (c) in words.
Recall that P =⇒ Q means that “when P is true, then Q is true”. So

for this to not be the case, then there must be the case that P is true and
Q is false. So we have P ∧ (∼ Q).

Here is (c) done in symbols:
We know by (a), that P =⇒ Q is equivalent to (∼ P ) ∨ Q. So by

deMorgan’s Law, the negation of one OR the other being true is that they
are both false. So ∼ [(∼ P ∨ Q] is equivalent to [∼∼ P ] ∧ [∼ Q] which by
double negation is P ∧ [∼ Q].

Here is an example typical of problem 1.2.7
Make a truth table for (P ∧Q) =⇒ (P ∨Q). First common sense: P ∧Q

is the statement that P AND Q are true, while P ∨Q is the statement that
P OR Q is true. So this statement should be universally true–a tautology!

P Q P ∧Q P ∨Q (P ∧Q) =⇒ (P ∨Q)

T T T T T
T F F T T
F T F T T
F F F F T

HW2, Due 9/11: Section 1.1: 4 b,d,e; 6b,d,f; 9a,b; 11b Section 1.2: 3
a,b,c,d,e; 5b,d; 6d,f,j; 7a,d; 12a,c

Many authors and often in ordinary English instead of the words “if” and
“then” people will say “necessary” or “sufficient”.

So, when someone says: “In order for Q to be true it is sufficient that P
be true” they mean that “to check that Q is true it is enough to know that
P is true”.

In other words, “if P is true then Q is true”.
The word “necessary” is hard to understand until you think about con-

trapositive:
“In order for P to be true it is necessary for Q to be true”.
This means that whenever Q is false, it must be the case that P is false,

i.e., that (∼ Q) =⇒ (∼ P ), which we know is the same as P =⇒ Q.
Finally, when someone says that: “in order for P to be true it is necessary

and sufficient for Q to be true”, then the “P necessary Q” part says P =⇒ Q
and the “P sufficient Q” part says QimpliesP.

Therefore, the statement, “in order for P to be true it is necessary and
sufficient for Q to be true” is another way to express the biconditional
P ⇐⇒ Q.

Quantifiers and Truth Sets

A statement like “x ≥ 2” is not a proposition, because we don’t know
what x is, so we can not assign a true or false to this statement. A sentence
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like this with a variable is called an open sentence or a predicate. It can
only be true or false AFTER x is assigned a particular value.

When we have an open sentence with a variable x, it is generally written
as P(x). Thus, P(3) is true while P(1) is false.

Simlarly, when we have more variables, like the open sentence “ x+y=z”
we might write as P(x,y,z). So here, P(1,2,3) is true and P(2,1,3) is true,
but P(3,1,2) is false.

When we have an open sentence, the collection of objects that can be
substituted in for the variable is called the universe, or universe of dis-
course. Often I will write U for the universe.

The elements of the universe that can be substituted in to make the
sentence true is called the truth set.

So for example, if my universe is N and my open sentence is P (x) : x ≥ 2,
then my truth set would be

{2, 3, 4, ...} = {x ∈ N : x 6= 1}.
This is an important example. It shows that when my universe is N then

the open sentences P (x) : x ≥ 2 and Q(x) : x 6= 1 have the same truth sets.

Definition. With a universe specified, two open sentences P(x) and Q(x)
are equivalent if and only if they have the same truth sets.

So another way to think about this is that P(x) and Q(x) are equivalent
if and only if

{x ∈ U : P (x) is true } = {x ∈ U : Q(x) is true }.
So when my universe is N the open sentence P (x) : x2 = 4 and the open

sentence Q(x) : x = 2 are equivalent.
Example: Let U = Z, let P (x) : x2 ≤ 4, let Q(x) : x2 − 4x+ 3 = 0. Give

the truth sets for P and for Q.
But when my universe is Z then these open sentences are no longer equiv-

alent.

Definition. Given an open sentence P(x) the sentence

(∃x)P (x)

is read as “there exists an x such that P(x)”. When my universe U is given,
then this sentence is true iff and only if there exists an x ∈ U such that P (x)
is true. In other words this sentence is true if and only if the truth set of
P (x) is non-empty.

The symbol “∃” is called the existential quantifier.
So the sentence P (x) doesn’t have a truth value, but (∃x)P (x) does as

soon as the universe is given.
For these examples, take U = N. Let P (x) : x ≥ 2, and Q(x) : x < 1.

Then (∃x)P (x) is true, but (∃x)Q(x) is false.
If I change my universe to U = Z then both are true.
If U = N with R(x) : 30 ≤ x ≤ 40 and x is prime, then is (∃x)R(x) true?
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Definition. Given an open sentence P(x) the sentence

(∀x)P (x)

is read as “for all x, P(x)”. When my universe U is given then this statement
is true if and only if the truth set of P(x) is the entire universe.

The symbol ∀ is called the universal quantifier.
Here are some true statements for U = R.
(∀x)(x < x+ 2)
(∀x)(x ≤ x+ 2)
(∀x)(x2 ≥ 0)
(∀x)(x = 0 ∨ x2 > 0)
When U = N then
(∀x)(2x is even )
(∀x)(6x is divisible by 3 )
are true.
Note that the sentence (∀x)(x2 + 1 ≥ 2) is true in the universe N but not

in R.

Lecture 5: 9/11

Quick Review: Last time introduced universes, open sentences, truth
sets, the concept of open sentences being equivalent in a universe, and the
quantifiers, ∃ and ∀.

Example: Give a universe and use quantifiers to translate the following
sentences.

“Every natural number is strictly less than its predecessor.”
“Every real number is either 0 or has an inverse.”
It is possible to have multiple variables and quantifiers. Here the universe

is N. Translate the following into plain English and decide if it is true or
false:

(∀x)(∃y)(x < y).

(∃x)(∀y)(x ≤ y).

(∀x)(∃y)(y < x).

Definition. Two sentences with quantifiers are said to be equivalent in
a given universe if they have the same truth value in that universe. Two
quantified sentences are equivalent if they are equivalent in every universe.

For example, (∃x)(P (x)∧Q(x)) and (∃x)(Q(x)∧ P (x)) are equivalent in
every universe.

For example, if my universe is R then (∀x)(x2 > 0) and (∃x)(x2 + 1 = 0)
are equivalent because they are both false. But they don’t make sense in
every universe. For example, if my universe is “all cows”.

Here are some useful equivalences.
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Theorem 1.3.1. If A(x) is an open sentence with variable x, then
(a) ∼ [(∀x)A(x)] is equivalent to (∃x)(∼ A(x)).
(b) ∼ [(∃x)A(x)] is equivalent to (∀x)[∼ A(x)].
First, let’s discuss why these are true, then we will see some common

sense uses.
(a) We have that ∼ [(∀x)A(x)] is true iff [(∀x)A(x)] is false iff the truth

set of A(x) is not the entire universe iff there is an x ∈ U with A(x) false iff
there exists x ∈ U with ∼ A(x) true iff (∃x)[∼ A(x)] is true.

(b) We have that ∼ [(∃x)A(x)] is true iff [(∃x)A(x)] is false iff the truth
set of A(x) is empty iff A(x) is false for all x ∈ U iff ∼ A(x) is true for every
x ∈ U iff (∀x)[∼ A(x)].

Here are some examples of using this theorem.
Supose that I want to decide whether the statement S:“it is not the case

that for every prime p, p2 + 1 is prime” is true or false. In this case my
universe is the set of primes U and my open sentence is “A(p) : p2 + 1 is
prime”. So S is “ ∼ [∀p]A(p) which has the same truth value as “(∃p)[∼
A(p)]” which is the statement R: “there exists a prime p such that p2 + 1 is
not prime”.

So S is true iff R is true and S is false iff R is false.
Here’s what’s been gained: To show S is true I would need to check every

prime. To show R is true I just need an example.
Look at p = 7, since 72 + 1 = 50 = 5 · 10 is not prime, so R is true, so S

is true.
The above rules are also useful for unraveling the denials of complicated

sentences.
Suppose that my sentence is:
“Every odd natural number is prime.”
and I would like to form a denial of this sentence.
First, take my universe to be N, let P(x) be the proposition: “x is odd”

and take Q(x) to be: “x is prime”.
Then this sentence becomes:

(∀x)(P (x) =⇒ Q(x)).

So the denial is:

(∃x)[∼ (P (x) =⇒ Q(x))].

But we saw that the negation of P =⇒ Q is P ∧ (∼ Q).
So the denial is:

(∃x)[P (x) ∧ (∼ Q(x))],

which is in words is:
“there exists a natural number x such that x is odd and x is not prime”.
This is a true statement, we could take x=1 or x=15, many examples only

need one!



MATH 3325 17

Since the denial of the original statement is true, the original statement
is false.

Here’s a complicated statement to find a denial of, where this stuff helps:

(∀x)(∃y)(∃z)(x+ y > z).

The denial is:
(∃x) ∼

(
(∃y)(∃z)(x+ y > z)

)
,

(∃x)(∀y) ∼
(
(∃z)(x+ y > z)

)
,

(∃x)(∀y)(∀z)[∼ (x+ y > z)],

(∃x)(∀y)(∀z)(x+ y ≤ z).
Another quantifier:

Definition. For an open sentence P(x) the proposition (∃!x)P (x) is read as
“there exists a unique x such that P(x)”. this statement is true if the truth
set of P(x) has exactly one element.

For example if P (x) : x2 = 9 then (∃!x)P (x) is true when my universe is
N but is false when my universe is Z.

Some typical examples of HW3:
Use U = N to translate: “there is a natural number that is strictly larger

than every other natural number” into symbols.
Answer: (∃x)(∀y)(y < x).
Form a denial in symbols, then in words.
Answer:

(∀x) ∼
(
(∀y)(y < x)

)
(∀x)(∃y) ∼ (y < x)

(∀x)(∃y)(x ≤ y)

For every natural number there is another natural number that is greater
than it.

Basic Proof Methods

We will cover the ideas in sections 1.4 and 1.5 of the book here.
Mathematics always has to start somewhere. The truths that we hold

to be self-evident are called either axioms or postulates. Sometimes I’ll
just refer to these as “facts”. For example, when we are dealing with the
integers, then one of the axioms is that x+ y = y+ x, this is not something
that we try to prove. Similarly, 2 + 2 = 4 is a fact, not something that I will
try to prove.

Sometimes the list of axioms is pretty short. Euclidean geometry has only
5 postulates and everything else that we prove about triangles, etc., come
from those 5 axioms.

A theorem is always a true statement whose truth follows from the given
facts. A proof is the way that we give a justification for why a theorem is
true.
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First to get an idea of how we make proofs. In a proof you can always do
the following things:

• State an assumption, axiom, or previously proved result.
So I might say “since 2+2=4...” or “since addition is commuta-

tive...”
• Replacement Rule: Restate a sentence in a logiclly equivalent way.

So if the sentence says “since x is not even” I might replace that
with “since x is odd”.
• Tautology: Replace a sentence by using a tautology.

For example, if dealing with real numbers I might say: “Either
x > 0 or x ≤ 0...”. Then I am really using the tautology P ∨ (∼ P ).
• Modus Ponens: If I know that P is true and I know that P =⇒ Q

is true, then I can deduce that Q is true.
A fancy Latin name for something pretty obvious. In logical sym-

bols this is expressed as [P ∧ (P =⇒ Q)] =⇒ Q. Perhaps better is
an example. Suppose that P is the statement that “x is even” and
Q is the statement that “x=2k”. We know that P =⇒ Q. So if at
some point in a proof, I have discovered that x is an even integer,
then I can say that, “hence x =2k for some integer k”.

Enough talk, action! Here is an example of a theorem and proof.
Theorem: Let a, b, c be natural numbers. If a divides b and b divides c

then a divides c.
Proof: By the definition of what “divides” means, the statement “a

divides b” means that there is an integer k so that b = ak. Also, by this
definition, there is an integerj so that c = bj.

Hence, by the associative axiom, c = bj = (ak)j = a(kj). Since the
product of two integers is again an integer kj is an integer.

Thus, a divides c. �
I’ll often use the symbol � so you can easily tell where the proof ends.
In this proof we really only basically used the definition and axioms.

0.11. Replacing a sentence by a logically equivalent statement.
Theorem: Let x ∈ N. If x 6= 1, then 4 ≤ 2x and 2x ≤ x2.

Discussion: This sentence has the form P =⇒ [Q∧R] This is logically
equivalent to: [P =⇒ Q] ∧ [P =⇒ R], so what we will do is show that
both P =⇒ Q and P =⇒ R are true.

Note sometimes: 4 ≤ 2x and 2x ≤ x2 is written as 4 ≤ 2x ≤ x2 in which
case the “and” is harder to see!

Proof: Since x ∈ N and x 6= 1, we know that 2 ≤ x or (x− 2) ≥ 0. Since
2 ≥ 0, we have that 2(x− 2) ≥ 0 or 2x− 4 ≥ 0, which is the same as 4 ≤ 2x.
(This is P =⇒ Q)

Also, since x ≥ 0, we have that x(x − 2) ≥ 0 or x2 − 2x ≥ 0. Thus,
2x ≤ x2. (This is P =⇒ R)

Hence, x ∈ N and x 6= 1 implies that 4 ≤ 2x ≤ x2. �
Theorem: Let x ∈ N. If x 6= 2, then either x = 1 or 2x < x2.
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Discussion: This is of the form P =⇒ [Q ∨ R]. This is harder to see
but it is equivalent to [P ∧ (∼ Q)] =⇒ R and also to [P ∧ (∼ R)] =⇒ Q.
If you can’t see this in your head–do a truth table.

Using the first we could instead prove: If x 6= 2 and x 6= 1 then 2x < x2.
Using the 2nd we could instead prove: If x 6= 2 and 2x ≥ x2 then x = 1.
Which looks easier? I go for 1.
Proof: equivalently, we will prove that for x ∈ N, if x 6= 2 and x 6= 1

then 2x < x2.
Since x 6= 1 and x 6= 2, we have 2 < x, or x − 2 > 0. Since we also have

that x > 0, we have that x(x− 2) > 0, which is x2− 2x > 0. Or, 2x < x2. �

0.12. Proof by contrapositive. This is a special case of replacing a state-
ment by a logically equivalent statement. Recall that P =⇒ Q is equivalent
to its contrapositive statement (∼ Q) =⇒ (∼ P ). So if we need to prove
P =⇒ Q we could prove (∼ Q) =⇒ (∼ P ) instead.

Often it is easier to see why the contrapositive of a statement is true.
Here is an example of proof by contrapositive.

Theorem: Let n ∈ Z. If n2 is odd, then n is odd. Proof: The contra-
positive of this statement is that if n is even, then n2 is even.

If n is even, then there is k ∈ Z so that n = 2k. Hence, n2 = 4k2 = 2(2k2),
which shows that n2 is an even number. �

0.13. Distinguish between your proof and your scrap work. When
we want to prove that P =⇒ Q, then we really need to start at P and
work our way forward until we arrive at Q. But sometimes, to understand
what is going on, we will start at Q and work backwards towards P. This is
not really part of our proof and should NOT be included when we turn in
a proof. Still it can be helpful. Here is an example.

Theorem: Let a, b ∈ R. If b > a > 0, then b2 − a2 > 0.
Scrap Work: Here Q, i.e., the consequent, is the statement that b2−a2 >

0. Note that b2 − a2 = (b − a)(b + a). Now I see what is happening, both
(b − a) > 0 and (b + a) > 0 and we know that the product of two strictly
positive numbers is strictly positive.

This is not a proof–but does tell me how to get one.
Proof: Since b > a we have that b − a > 0. Since a > 0 and b > a we

have that b > 0. Now since b > 0 and a > 0 we get that b+ a > 0. Because
(b − a) > 0 and (b + a) > 0 we have that the product, (b − a)(b + a) > 0.
Finally, (b− a)(b+ a) = b2 − a2. �

0.14. Proof by Exhaustion.

This involves dividing truth sets up into cases. To make it more concrete,
we will start with an example.

Recall that

|x| =

{
x when x ≥ 0

−x when x < 0
.
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Theorem: Let x ∈ R. If x 6= 0, then |x| > 0.
Discussion: Here P (x) is the statement x 6= 0 and Q(x) is the statement

that |x| > 0. So the truth set for P (x) is

{x : x > 0} ∪ {x : x < 0}.
These two subsets will define what we mean by “cases”. The principle of

proof by exhaustion says that if for each x > 0 I prove that Q(x) is true
AND for each x < 0 I prove that Q(x) is true, then P =⇒ Q is true.

It gets its name from the fact that by considering each case I have “used
up” all the x’s for which P (x) is true. Another phrase for “used up” is
“exhausted”.

Proof: We will consider two cases.
Case x > 0: In this case |x| = x > 0.
Case x < 0: Recall that multiplying by (-1) reverses inequalities. Hence,

x < 0 implies that −x > (−1)0 = 0. Finally, |x| = −x > 0.
Since these two cases exhaust all the times that P (x) is true the proof is

complete. �
Theorem: If x ∈ R, then −|x| ≤ x ≤ +|x|.
Proof: We will consider two cases.
Case x ≥ 0: In this case |x| = x and so x ≤ |x|. Also −|x| ≤ 0, while

0 ≤ x so by transitivity, −|x| ≤ x. Thus, −|x| ≤ x ≤ +|x|.
Case x < 0: In this case |x| = −x and so −|x| = x and −|x| ≤ x. Since

x < 0 and 0 ≤ |x| by transitivity, x ≤ |x|. Thus, −|x| ≤ x ≤ +|x|.
Since these cases exhaust all possible x’s we are done. �

0.15. Proof by contradiction.

These are really an apllication of the law of the excluded middle. Recall
that this says that either P is true or ∼ P is true. So if ∼ P is false, then
it must be that P is true.

So one way to prove that P is true is to prove that ∼ P is false. To
prove that ∼ P is false, we will start by assuming or, as we will often say
supposing, that ∼ P is true and after some steps arrive at a contradiction.
This contradiction says that ∼ P true is impossible and so ∼ P is false and
P is true.

This technique is called proof by contradiction. Below are some ex-
amples, comments in parentheses.

Theorem: The graphs of y = 2x + 1 and y = 2x + 7 do not intersect.
(This is the statement P .)

Proof: Suppose that the graphs did intersect. (This is ∼ P the denial of
P .) Then there would be a point (a, b) that is on both graphs. This implies
that b = 2a+ 1 and that b = 2a+ 7.

This implies that 2a+1 = 2a+7. Cancelling the 2a from both sides yields,
1 = 7, which is not true, a contradiction. (Since ∼ P is false, P is true.)

This contradiction completes the proof. �
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Here are some “deeper” things that can be seen by this method.
Before we do this next example, recall that when we write a rational

number r as a ratio of two integers,

r =
b

c

then we can assume that b and c have no factors in common. This is because
if a divides both b and c then we could write b = ak and c = aj and we
would have that

r =
b

c
=
ak

aj
=
k

j
.

Continuing in this manner one can eliminate all common factors.
We will also use the fundamental theorem of arithmetic from the preface.
This is also an example of a two part proof–we will first prove something

useful that we will use later.

Theorem: Let m be an integer and let p be a prime. If p divides m2,
then p divides m.

Proof: We will prove the contrapositive of this statement, namely, that
if p does not divide m then p does not divide m2.

By the fundamental theorem of arithmetic, we can write m uniquely as a
product of primes and since p does not divide m it is not one of these primes.
But then m2 is written as the product of the squares of these primes.

This expresses m2 as a product of primes and none of them are p. The
fundamental theorem says that the way to write a number as a product of
primes is unique. So since we have one way to write m2 as a product of
primes that does not use p, it must be that p does not divide m2. �

Theorem:
√

2 is an irrational number.
Proof: Suppose that

√
2 was rational. Then we could write

√
2 =

m

n

where m and n integers with no common factors.
Squaring both sides of this equation yields,

2 =
m2

n2
and so 2n2 = m2.

This implies that 2 divides m2. By the result that we just did, this means
that 2 divides m. So we can write m = 2k for some integer k.

Now we have that 2n2 = m2 = (2k)2 = 4k2. Cancelling a 2 from both
sides of this equation, yields, n2 = 2k2.

This implies that 2 divides n2 and so again, using the above result, 2
divides n.

Thus, m and n both have a common factor of 2. This contradicts that
they had no factors in common.
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This contradiction shows that the statement “
√

2 is rational” is false, and
so
√

2 must be irrational. �

Theorem: There are infinitely many primes.
Proof: Suppose that there were only finitely many primes. List them,

{p1, , , , , pn}. Set m = p1 · p2 · · · pn + 1. If we try to divide m by any of these
primes then we get a remainder of 1.

Thus, m can not be written as a product of primes. This contradicts the
fundamental theorem of arithmetic. Hence, our assumption that there are
only finitely many primes must be false. �

0.16. The Biconditional.

To prove a statement of the form P ⇐⇒ Q we will almost alwyas use the
fact that this is equivalent to the statement (P =⇒ Q)∧ (Q =⇒ P ). This
breaks the proof that P ⇐⇒ Q into two parts. One part where we show
P =⇒ Q and another part where we show Q =⇒ P.

Since Q =⇒ P is the converse of P =⇒ Q, in the proof we will often
first prove P =⇒ Q and say “now we will prove the converse”.

Theorem: Let a, b ∈ N. The numbers a and b are both odd if and only
if ab is odd.

Proof: First assume that both are odd. Then there are integers k and j
so that a = 2k + 1 and b = 2j + 1. Hence,

ab = (2k + 1)(2j + 1) = 4kj + 2k + 2j + 1 = 2(2kj + k + j) + 1,

which is an odd integer.
To prove that if ab is odd, then both a and b are odd. We will use the

contrapositive:
If a and b are not both odd then ab is not odd. (That is ab is even.) We

will prove this by exhaustion. This has two cases.
Case a not odd: So a = 2k which implies that ab = 2(kb) which is even.
Case b not odd: So b = 2j and ab = a(2j) = 2(aj) which is even.
Done. �

Theorem: Let a, b ∈ N. The numbers a and b are both even if and only
if a+ b is even and ab is even.

Proof: If a and b are both even then there are integers k, j so that a = 2k
and b = 2j. Hence, a+ b = 2(k + j) which is even and ab = 2(2kj) which is
even.

To prove that if a+ b and ab are both even, then a and b are both even,
we will prove the contrapositive statement: If a and b are not both even,
then a+ b and ab are not both even.

Again we will do a proof by exhaustion. This time we need 3 cases. If a
and b are not both even then one or the other is odd.
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Case a is odd and b is even: Then a + b is odd, so a + b and ab are
not both even.

Case a is odd and b is odd: Then ab is odd, so a + b and ab are not
both even.

Case b is odd and a is even: Then a + b is odd, so a + b and ab are
not both even.

(Note the 4th case would be b odd and a odd, which is already done.) �

Proofs with Quantifiers

Given an open sentence P (x) where x belongs to some universe U. The
statement ∀x, P (x) is true exactly when P (x) is true for every x ∈ U. Said
differently, ∀x, P (x) is true exactly when the truth set of P (x) is the entire
universe U.

When the universe has not already been established, we will often write
statements like ∀n ∈ N, P (n) to indicate that for this statement, N is the
universe. Here are some examples.

Theorem: ∀n ∈ N, n2 − 2n+ 2 ≥ 1.
Proof: n2 − 2n+ 2 = n2 − 2n+ 1 + 1 = (n− 1)2 + 1. Since (n− 1)2 ≥ 0

for every n ∈ N, we have that (n− 1)2 + 1 ≥ 0 + 1 = 1. �

Theorem: For every prime p, p+ 7 is composite.
Proof: We will do a proof by exhaustion, where we divide the primes

into two cases: even primes and odd primes.
Case p is an even prime: In this case p = 2 and so p + 7 = 2 + 7 =

9 = 3 · 3 which is composite.
Case p is an odd prime: In this case p + 7 is the sum of two odd

numbers and so p+ 7 is even, which makes it composite.
�
For a statement of the form ∀x, P (x) to be false, we need that the truth

set of P (x) is NOT the whole universe. In other words we just need one x
such that P (x) is false.

An x such that P (x) is false is called a counterexample to the statem-
tent P (x).

For example, if our universe is the set P of all primes, then 2 is a coun-
terexample to the statement

∀x ∈ P, x is odd.

(In fact, it is the only counterexample.)

For each of the statements give a proof when the statement is true or
provide a counterexample.

Example: ∀n ∈ N, 3 + 2n2 is prime.
Solution: No idea if this is true or false. So I’ll start by looking for a

counterexample:
n = 1, 3 + 2n2 = 3 + 2 = 5, prime, not a counterexample.
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n = 2, 3 + 2n2 = 3 + 2(4) = 11 prime, not a counterexample.
n = 3, 3 + 2n2 = 3 + 2(9) = 21 = 3 · 7, a counterexample.
Hence, the statement is false.

Example: ∀n ∈ N, n2 + n is even.
Solution: Break this into cases.
Case n is even: Then n2 and n are both even and so n2 + n is even.
Case n is odd: Then n2 and n are both odd and so n2 +n is even(since

we have seen that the sum of two odd numbers is even.)

In the first example, if we hadn’t searched a little longer for a coun-
terexample, then we might have thought that it was true. This would have
been another bad example of using inductive reasoning instead of deductive
reasoning.

A very famous example of this dates from 1536. Mersenne noticed that
for p = 2, 3, 5, 7 the number 2p − 1 is prime. This lead him to believe that:

∀p ∈ P, 2p − 1 is prime.

If he had jut had the patience to check p = 11, he would have discovered
that this is false! That is p = 11 is a counterexample to the above statement.
However, now Mersenne is famous and many people have worked on trying
to figure out eactly which numbers n have the property that 2n−1 is prime.
The primes that are of the form 2n − 1 for some n ∈ N are now called
Mersenne primes.

0.17. Proof by contradiction with a “for all”.

Suppose that we have a statement of the form ∀x, P (x) and we want to use
a proof by contradiction to show that it is true. Then we need to show
that the negation is false. The denial is: ∼ [∀x, P (x)] which is equivalent to
(∃x)(∼ P (x)).

Theorem: ∀n ∈ N, 3n+ 2 ≥ 5.
Proof: We will do a proof by contradiction. Suppose that the negation

of this statement is true. Then

∃n ∈ N, 3n+ 2 < 5.

But for such an n we have that 3n < 3 which implies n < 1. This contradicts
n ∈ N. �

0.18. Proofs with ∃.

In some ways these are very easy. To prove that a statement of the form
∃x, P (x) we just need to show that there is at least one x in the universe so
that for that particular x the statement P (x) is true. That is, we only need
to give an example x where P (x) is true.

Theorem: ∃x ∈ N such that x2 + 3 is prime.
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Proof: Let x = 2, then 22 + 3 = 7 which is prime. �

Sometimes producing an actual x can be a tricky business and we need
to rely on other facts. Here is an example from calculus, where I have no
idea at all what the actual value of x is.

Theorem: ∃x ∈ R, such that x4 − 3x+ 1 = 0.
Proof: Let f(x) = x4 − 3x + 1. Then f is a continuous function. We

have that f(0) = 1 > 0 and f(1) = −1 < 0. Since f(1) ≤ 0 ≤ f(0), by the
Intermediate Value Theorem, there is x, 0 < x < 1 with f(x) = 0. �

The Division Algorithm

We will use this now, but we will actually prove later in this book.
The Division Algorithm: Given integers a and b with a 6= 0, then

there exists a unique pair of integers, (q, r) such that

b = aq + r and 0 ≤ r < |a|.

The integer a is called the divisor, the integer q is called the quotient,
and the integer r is called the remainder.

Example: b = 13, a = 3 then 13 = 3 · 4 + 1, so q = 4, r = 1.

Definition: Let a, b, c, d be non-zero integers.

• c is called a common divisor of a and b if and only if c divides a
and c divides b.
• d is called the greatest common divisor of a and b which is de-

noted d = gcd(a, b) if and only if
(i) d is a common divisor of a and b
(ii) if c is any common divisor of a and b, then c ≤ d.

Example: a = 12, b = 18 then 2, 3 are both common divisors and 6 =
gcd(12, 18). One way to see the last is to notice that any common divisor
must be less than or equal to 12 and check that no number e with 6 < e ≤ 12
is a common divisor. A way we learned in elementary school was to write as
products of primes, a = 2 · 2 · 3, and b = 2 · 3 · 3 and then look for primes in
common. Both have one 2 and one 3. But(obviously) we didn’t prove this!

In this section we want to learn some things about the gcd that do not
use things that we learned without proof.

Definition If a and b are integers, then any integer of the form ax + by
where x and y are integers is called a linear combination of a and b.

Theorem 1.7.1: Let a, b be non-zero integers. If c is a common divisor
of a and b, then c is a divisor of every linear combination of a and b.

Proof: Let k and j be integers so that a = ck and b = cj. If x and y are
integers, then

ax+ by = (ck)x+ (cj)y = c(kx+ jy),

which shows that c divides ax+ by. Since this was an arbitrary linear com-
bination, we have that c divides every linear combination. �
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A lemma is just a name for a “baby” theorem. So lemmas are theorems.
When we call a theorem a lemma, then we are trying to tell the reader that
this one is not as important as a “grown-up” theorem. Often lemmas are
proven to break the proof of a theorem up into smaller bite-size pieces.

However, some of our most important theorems are called “lemma” be-
cause at the time, the mathematician that proved it thought that the lemma
wasn’t important but that the “theorem” that came after was the really im-
portant fact. Often history proves them wrong: others find that the lemma
was what was important and the theorem, not so much!

Lemma: Let a and b be non-zero integers. The smallest positive linear
combination of a and b is a common divisor.

Proof: Let s and t be integers so that d = as+ bt is the smallest positive
linear combination of a and b. We must prove that d is a common divisor.

Using the division algorithm, we may write a = qd+ r with 0 ≤ r < d.
Then r = a − qd = a − q(as + bt) = a(1 − qs) + b(−qt) < d. This shows

that r is a linear combination smaller than d. So r can not be positive and
we have that r = 0. Because r = 0, a = qd and d divides a.

Similarly, d divides b. �
Here’s theorem 1.7.3, in better words.
Theorem 1.7.3: Let a and b be non-zero integers. The gcd of a and b is

the smallest positive linear combination of a and b.
Proof: By the lemma we know that if d = as+ bt is the smallest positive

linear combination, then d is one of the common divisors of a and b.
All that we need to show that d = gcd(a, b) is to show that there cannot

be a common divisor larger than d.
So suppose that is a positive integer and that c divides a and b. Then

there are integers a = ck and b = cj. Then

d = as+ bt = cks+ cjt = c(ks+ jt).

This shows that c is a positive integer that divides the positive integer d. By
1.4, exercise 7g, c ≤ d. thus, d is larger than every other common divisor. �

Two non-zero integers a and b are called relatively prime or coprime
if and only if gcd(a, b) = 1.

Note that if p is prime and a is any number then since the only non-
negative divisors of p are 1 and p then gcd(p, a) can only be 1 or p. When
p divides a we get gcd(a, p) = p and when p does not divide a we get
gcd(p, a) = 1.

Euclid’s Lemma: Let a, b, p be non-zero integers with p prime. If p
divides ab then either p divides a or p divides b.

Remark: This statement is of the form P =⇒ (Q ∨ R) which we know
is equivalent to P ∧ (∼ Q) =⇒ R. This is the form we’ll prove.

Proof: Assume that p divides ab and that p does not divide a. Write
ab = pk for some integer k.
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Since p does not divide a, then as we saw above, gcd(p, a) = 1. This means
that we can find integers s and t so that 1 = as+pt. Hence, b = b(as+pt) =
(ba)s+ p(bt) = (pk)s+ p(bt) = p(ks+ bt).

This shows that p divides b. �

Here is the contrapositive statement of Euclid’s Lemma:
Let a, b, p be non-zero integers with p prime. If p does not divide a and p

does not divide b then p does not divide ab.
This statement fails when p is not prime. For example, 4 does not divide

6 and 4 does not divide 10 but 4 does divide 6 · 10 = 60.

Problem 1.7.2a: (∀n)(5n2 + 3n+ 4 is even)
Proof: We will do cases.
Case n even: Then n=2k for some k and so 5n2+3n+4 = 20k2+6k+4 =

2(10k2 + 3k + 2) which is even.
Case n odd: Then n = 2k + 1 for some k and so 5n2 + 3n + 4 =

5(2k+ 1)2 + 3(2k+ 1) + 4 = 20k2 + 20k+ 5 + 6k+ 3 + 4 = 2(10k2 + 13k+ 6)
which is even.

Problem 1.7.13a: 1 = gcd(13, 15) this problem asks us to find s and t
so that 1 = 13s + 15t. First, divide 13 into 15, to get 15= 13(1) +2 or 2=
15 -13. Now divide 2 into 13 to get 13= 6(2) + 1. This tells us that

1 = 13− 6(2) = 13− 6(15− 13) = 15(−6) + 13(7).

Chapter 2: Set Theory

In this chapter we will develop the basics of set theory. We will not try
to give a precise definition of what a set is in these notes. Defining sets in a
mathematically precise manner is more difficult than it might seem. Read
the book for some of the history and especially Russell’s paradox.

We recall a few of the things discussed in the first lecture.
For our purposes sets will either be indicated as lists A = {1, 3, 5, 7, 9, 11}

or in set builder notation, {x : P (x)} which should be read as the set
of all x’s in some universal set such that P (x) is true. So A = {x : x ∈
N, x odd , x ≤ 11}.

We use the symbols ∅ or Ø to indicate the set with no elements, called
the empty set or null set.

0.19. Subset. We use the notation A ⊆ B to indicate that A is a subset of
B. Using our logic notation this can be written as

(A ⊆ B) ⇐⇒ (∀x)(x ∈ A =⇒ x ∈ B).

Equality can be written as:

(A = B) ⇐⇒ (∀x)(x ∈ A ⇐⇒ x ∈ B)

or as
(A = B) ⇐⇒ (A ⊆ B) ∧ (B ⊆ A).

Here are a few basic facts.
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Theorem 2.1.1.

(a) For every set A, Ø ⊆ A.
(b) For every set A, A ⊆ A.
(c) If A ⊆ B and B ⊆ C, then A ⊆ C.

Definition: Let A be a set. The power set of A denoted P(A) is the
set of all subsets of A.

Example: Let A = {1, 2, 3}. Then

P(A) = {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Note that when x ∈ A, then it is {x} ∈ P(A), NOT x ∈ P(A).

Here is a helpful way to check if you have included everything in the list for
P(A) :

Theorem 2.1.4. Let A be a set with n elements then P(A) has 2n

elements.

We will prove this later.

Theorem 2.1.5. Let A and B be sets with A ⊆ B. Then P(A) ⊆ P(B).
Proof: Let X ∈ P(A). Then X ⊆ A, so by 2.1.1c, X ⊆ B, which implies
that X ∈ P(B). �

2.2 Set Operations

Given sets A and B. The union of A and B denoted A ∪B is the set

A ∪B = {x : x ∈ A or x ∈ B}.
The intersection of A and B denoted A ∩B is the set

A ∩B = {x : x ∈ A and x ∈ B}.
The difference of A and B(I don’t like the books language!) I prefer the
difference of B from A or A take away B denoted A−B is the set

A−B = {x : x ∈ A and x /∈ B}.
Note that if A = {1, 2, 3, 4} and B = {3, 4, 5, 6}. Then,

A ∪B = {1, 2, 3, 4, 5, 6} and A ∩B = {3, 4}.
Using the books language, the difference of A and B is the set

A−B = {1, 2},
while the difference of B and A is the set

B −A = {5, 6}.



MATH 3325 29

So the main thing is that “the difference of A and B” is NOT the same as
“the difference of B and A”. Usually, in the English language, “and” doesn’t
care which order you write things in! Which is why I don’t like the books
language.

There is a good reason that we use ∪ and ∩. If A and B are given in set
builder notation as A = {x : P (x)} and B = {x : Q(x)}, then

A ∪B = {x : P (x) ∨Q(x)} and A ∩B = {x : P (x) ∧Q(x)}.

Sets A and B are called disjoint iff A ∩B = Ø.

0.20. Venn Diagrams. These are pictures that help us to “see” various
relationships. They are NOT proofs, but often help us to understand what
is going on. I will draw these in class.

Here is a result that lists many basic facts about the relationships between
the concepts above. I wil only prove a couple.

Theorem 2.2.1. Let A, B and C be sets.

(a) A ⊆ (A ∪B),
(b) A ∩B ⊆ A,
(c) A ∩Ø = Ø,
(d) A ∪Ø = A,
(e) A ∩A = A,
(f) A ∪A = A,
(g) A ∪B = B ∪A(commutativity)
(h) A ∩B = B ∩A(commutativity)
(i) A−Ø = A
(j) Ø−A = Ø,
(k) A ∪ (B ∪ C) = (A ∪B) ∪ C (associativity)
(l) A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity)

(m) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (distributivity)
(n) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (distributivity)
(o) (A ⊆ B) ⇐⇒ (A ∪B = B)
(p) (A ⊆ B) ⇐⇒ (A ∩B = A)
(q) If A ⊆ B then (A ∪ C) ⊆ (B ∪ C)
(r) If A ⊆ B then (A ∩ C) ⊆ (B ∩ C).

We will prove (m) and (q) to see, not because they are hard, but to see
how to do proofs.

To prove (m) we will use our observation that X = Y ⇐⇒ (X ⊆
Y ) ∧ (Y ⊆ X) and do a proof by exhaustion.
A ∩ (B ∪ C) ⊆ (A ∩ B) ∪ (A ∩ C) Let x ∈ A ∩ (B ∪ C), then x ∈ A and

x ∈ (B ∪ C). Hence, xinA and (x ∈ B or x ∈ C). Case x ∈ A and x ∈ B
Then x ∈ (A ∩B) and so x ∈ (A ∩B) ∪ (A ∩ C).

Case x ∈ A and x ∈ C Then x ∈ (A∩C) and so x ∈ (A∩B)∪ (A∩C).
(A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C) We will do a proof by exhaustion.
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Case x ∈ (A ∩B) Then x ∈ A and x ∈ (B ∪ C) so x ∈ A ∩ (B ∪ C).
Case x ∈ (A ∩ C) Then x ∈ A and x ∈ (B ∪ C) so x ∈ A ∩ (B ∪ C).
This completes the proof of (m).
To prove (q). We have to show that (A ∪ C) ⊆ (B ∪ C). Again, cases. If

x ∈ A, then since A ⊆ B, we have x ∈ B and hence, x ∈ (B ∪ C). If x ∈ C,
then x ∈ (B ∪ C). So, (A ∪ C) ⊆ (B ∪ C).

Equation (m) can also be related to logic. Suppose that A = {x :
P (x)}, B = {x : Q(x)} and C = {x : R(x)}. Then A ∩ (B ∪ C) = {x :
P (x) ∧ (Q(x) ∨ R(x))}. From logic we know that P (x) ∧ (Q(x) ∨ R(x)) is
equivalent to (P (x)∧Q(x))∨ (P (x)∧R(x)). We have, {x : (P (x)∧Q(x))∨
(P (x) ∧R(x))} = (A ∩B) ∪ (A ∩ C).

Example: Give an example of sets A,B,C such that (A ∩ B) ∪ C 6=
(A ∩ C) ∪ (B ∩ C). We drew a Venn diagram to see why these sets are not
equal and then by assigning one number to each region in the Venn diagram,
we got actual sets for the example.

Complements of Sets

Given a universe U and a subseteq A ⊆ U, the complement of A denoted
Ac is the set

Ac = U −A.
Thus, x /∈ A ⇐⇒ x ∈ Ac.
When A is given as the truth set of some statement P (x), so that A =

{x : P (x)} then Ac = {x :∼ P (x)}.
If U = Z and A is the set of even integers then Ac is the set of odd

integers.
If U = R and A = {x : x ≥ 0}, then Ac = {x : x < 0}.

Theorem 2.2.2. Let U be the universe, A,B subsets of U. Then:

(a) (Ac)c = A,
(b) A ∪Ac = U.
(c) A ∩Ac = Ø
(d) A−B = A ∩Bc

(e) (A ⊆ B) ⇐⇒ (Bc ⊆ Ac) (contrapositive)
(f) (A ∪B)c = Ac ∩Bc (De Morgan Law)
(g) (A ∩B)c = Ac ∪Bc (De Morgan Law)
(h) (A ∩B = Ø) ⇐⇒ (A ⊆ Bc)

Proof of (d): x ∈ (A − B) ⇐⇒ (x ∈ A and x /∈ B) ⇐⇒ (x ∈
A and x ∈ Bc) ⇐⇒ (x ∈ A ∩Bc)

Proof of (e): First assume that A ⊆ B. Let x ∈ Bc, then x /∈ B. Since
A is a smaller set, x /∈ A. Hence, x ∈ Ac.

Now assume that Bc ⊆ Ac. If x ∈ A then x /∈ Ac. Since Bc is a smaller
set, x /∈ Bc. Hence, x ∈ B.

Proof (f): [x ∈ (A ∪ B)c] ⇐⇒ [x /∈ (A ∪ B)] ⇐⇒ [x /∈ A and x /∈
B] ⇐⇒ [x ∈ Ac and x ∈ Bc] ⇐⇒ [x ∈ (Ac ∩Bc)]
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We now show how to derive some of these in the case that A and B are
defined by statements.

So suppose that A = {x : P (x)} and B = {x : Q(x)}.
The first thing to see is that (e) becomes:

A ⊆ B ⇐⇒ [P (x) true =⇒ Q(x) true] ⇐⇒ [∼ Q(x) true =⇒ ∼ P (x) true]

⇐⇒ {x :∼ Q(x)} ⊆ {x :∼ P (x)} ⇐⇒ Bc ⊆ Ac.

Thus, (e) is just a set theory version of the contrapositive.
Similarly, (f) is:

(A ∪B)c = {x : P (x) ∨Q(x)}c = {x :∼ (P (x) ∨Q(x))}
= {x : (∼ P (x)) ∧ (∼ Q(x))} = {x :∼ P (x)} ∩ {x :∼ Q(x)}

= {x : P (x)}c ∩ {x : Q(x)}c = Ac ∩Bc.

Cartesian Products

Given sets A and B their product or Cartesian product is the set

A×B = {(a, b) : ∀a ∈ A,∀b ∈ B}.
Example: Let A = {1, 2} and B = {e, f, g} then

A×B = {(1, e), (1, f), (1, g), (2, e), (2, f), (2, g)}
while

B ×A = {(e, 1), (f, 1), (g, 1), (e, 2), (f, 2), (g, 2)}.
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Some key properties:
Theorem 2.2.3. Let A,B,C,D be sets.

(a) A× (B ∪ C) = (A×B) ∪ (A× C)
(b) A× (B ∩ C) = (A×B) ∩ (A× C)
(c) A×Ø = Ø
(d) (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D)
(e) (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D)
(f) (A×B) ∩ (B ×A) = (A ∩B)× (A ∩B)

Proof (a): We have that

(a, y) ∈ A× (B ∪ C) ⇐⇒ [a ∈ A] ∧ [y ∈ (B ∪ C)] ⇐⇒
[a ∈ A] ∧ [(y ∈ B) ∨ (y ∈ C)] ⇐⇒ [a ∈ A ∧ y ∈ B] ∨ [a ∈ A ∧ y ∈ C]

⇐⇒ [(a, y) ∈ A×B]∨ [(a, y) ∈ A×C] ⇐⇒ (a, y) ∈ (A×B)∪ (A×C).

Exercise 2.2.9b: We are given that A ⊆ (B ∪ C) and A ∩ B = Ø and
we need to prove that A ⊆ C.

Let x ∈ A, then x ∈ (B ∪ C). So x ∈ A and either x ∈ B or x ∈ C. Since
x ∈ A and A ∩ B = Ø, we have that x /∈ B. So since x is in either B or C,
it must be in C. Hence, x ∈ C.

Hence, x ∈ A implies x ∈ C, that is, A ⊆ C.
Exercise 2.2.9e: We will do a proof without words!

(A− C)− (B − C) = (A ∩ Cc)− (B ∩ Cc) = (A ∩ Cc) ∩ (B ∩ Cc)c =

(A ∩ Cc) ∩ (Bc ∪ (Cc)c) = (A ∩ Cc) ∩ (Bc ∪ C) =

(A∩Cc∩Bc)∪ (A∩Cc∩C) = A∩Cc∩Bc = (A∩Bc)∩Cc = (A−B)−C.

Mathematical Induction

We will cover proofs using the principle of mathematical induction. First
we look at what this principle says.

Principle of Mathematical Induction(PMI): Let S ⊆ N have the
following two properties:

(i) 1 ∈ S,(Basis for induction)
(ii) whenever n ∈ S then (n+ 1) ∈ S.(Inductive step)
Then S = N.

We look at a first example of how to use this.
Consider the statement

P (n) : The sum of the first n integers is equal to
n(n+ 1)

2
.

So

P (1) : 1 =
1(1 + 1)

2
,

P (2) : 1 + 2 =
2(2 + 1)

2
,
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etc.
We will write this as:

1 + · · ·+ n =
n(n+ 1)

2
,

but this last expression is a little sloppy, since for P(1) it is not clear what
is meant.

Now let

S = {n ∈ N : P (n) is a true formula} = {n ∈ N : 1 + · · ·+ n =
n(n+ 1)

2
}.

Proving that P(n) is true for every n ∈ N is the same as proving that
S = N. By the PMI, we can do this by showing two things:

(i) That P(1) is true(Basis for induction)
(ii) that P(n) true implies that P(n+1) is true(inductive step).

Proof: Since 1(1+1)
2 = 2

2 = 1 we see that P(1) is true.
Now assume that P(n) is true,

1 + · · ·+ n =
n(n+ 1)

2

and we want to show that the next formula, P(n+1) is true,

1 + · · ·+ (n+ 1) =
(n+ 1)(n+ 1 + 1)

2
.

So to show that P(n+1) is true

1 + · · ·+ n+ (n+ 1) = [1 + · · ·+ n] + (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1)

2
+

2(n+ 1)

2
=

(n+ 1)n+ (n+ 1)2

2
=

(n+ 1)(n+ 2)

2
.

Comments: Many students are bothered and/or confused by the fact that

we want to prove P(n) is true and in the middle of the proof, we are assuming
P(n) is true! Sometimes to make clearer what is going on, I will use different
letters, like P(k) instead of P(n). The real point is that we want to prove
that (∀n)(P (n) is true) In the middle of the proof when we assume that
P(n) is true, we mean that it is true for a particular integer n. Then we go
on to show that when it is true for a particular n, then it is true for the next
value integer, (n+1).

This proof that we just did is often the way that we will use PMI:
Suppose we are given statements, P(n) for each natural number

n and we would like to prove that they are all true. The PMI says
that:

(i) if P(1) is true(Basis for induction)
(ii) if P(n) true implies P(n+1) is true(Inductive step)
then P(n) is true for every natural number n.
Here are some examples.
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Prove that (∀n ∈ N)(n+ 4 < 7n2).
Proof: Let P(n) be the statement that n+ 4 < 7n2. Since 1 + 4 = 5 and

7(1)2 = 7 and 5 < 7, we have that P(1) is true.
Now assume that n + 4 < 7n2 and we must prove that (n + 1) + 4 <

7(n+ 1)2. We have

(n+ 1) + 4 = n+ 4 + 1 < 7n2 + 1 < 7n2 + 14n+ 7 = 7(n+ 1)2.

�

Prove that 1 + 3 + · · ·+ (2n− 1) = n2.
Again this is a little sloppy, what we are really being asked is to prove

that the sum of the first n odd integers is n2. So that is our statement P(n).
Proof: The sum of the fisrt odd integer is 1 and 1 = 12. So P(1) is true.
Now assume P(n) that 1 + · · ·+ (2n−1) = n2 and we must prove P(n+1)

that 1 + · · ·+ (2(n+ 1)− 1) = (n+ 1)2.
So P(n+1) has added on one more odd integer. Thus,

[1+· · ·+(2n−1)]+(2(n+1)−1) = n2+(2n+2−1) = n2+2n+1 = (n+1)2.

Prove that (x− y) divides (xn − yn) for all n ∈ N.
When n=1 this is true, so we have the basis for induction. Now assume

that (x−y) divides xn−yn, we must show that (x−y) divides xn+1−yn+1.
We’ll use a trick I call getting “something for nothing”. In this case we’ll
add and subtract xny, which adds nothing.

Write

xn+1 − yn+1 = xn+1 − xny + xny − yn+1 = xn(x− y) + y(xn − yn)

since (x-y) divides both terms it divides the sum.

Problem 6g: Prove that 1
1·2 + · · ·+ 1

n(n+1) = n
n+1 .

When n = 1 we have that 1
1·2 = 1

2 = 1
1(1+1) , so the bbasis for induction is

true.
Now assume that the n-th statement is true, namely

1

1 · 2
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1
,

and we show that the (n+1)-st statement is true, namely, that

1

1 · 2
+ · · ·+ 1

(n+ 1)(n+ 1 + 1)
=

n+ 1

n+ 1 + 1
.

We have

[
1

1 · 2
+ · · ·+ 1

n(n+ 1)
] +

1

(n+ 1)(n+ 1 + 1)
=

n

n+ 1
+

1

(n+ 1)(n+ 2)

=
n(n+ 2)

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)
=

n2 + 2n+ 1

(n+ 1)(n+ 2)
=

(n+ 1)2

(n+ 1)(n+ 2)
=

n+ 1

n+ 1 + 1
.
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Problem 6h: Prove that 1
2! + 2

3! + · · ·+ n
(n+1)! = 1− 1

(n+1)!

When n = 1 we have that 1
2! = 1

2 = 1− 1
(1+1)! . So the basis for induction

is true. Now assume that 1
2! + 2

3! + · · ·+ n
(n+1)! = 1− 1

(n+1)! . Then

[
1

2!
+

2

3!
+ · · ·+ n

(n+ 1)!
] +

(n+ 1)

(n+ 2)!
= 1− 1

(n+ 1)!
+

(n+ 1)

(n+ 2)!
=

1− (n+ 2)

(n+ 2)!
+

(n+ 1)

(n+ 2)!
= 1− [

(n+ 2)− (n+ 1)

(n+ 2)!
= 1− 1

(n+ 2)!

The next result uses complex numbers and the multiple angle formulas:

cos(A+B) = cos(A)cos(B)− sin(A)sin(B)

sin(A+B) = sin(A)cos(B) + cos(A)sin(B)

Theorem 2.4.1. DeMoivre’s Formula. Let θ ∈ R. For all n ∈ N,
(cos(θ) + isin(θ))n = cos(nθ) + isin(nθ). Proof: We will use induction.

The equation is clearly true for n = 1. Now assume that it is true for n and
we must prove that (cos(θ) + isin(θ))n+1 = cos((n+ 1)θ) + isin((n+ 1)θ).
We have

(cos(θ) + isin(θ))n+1 = (cos(θ) + isin(θ))(cos(θ) + isin(θ))n =

(cos(θ) + isin(θ))(cos(nθ) + isin(nθ)) =

cos(θ)cos(nθ) + icos(θ)sin(ntheta) + isin(θ)cos(nθ) + (i)2sin(θ)sin(nθ) =

[cos(θ)cos(nθ)− sin(θ)sin(nθ)] + i[sin(nθ)cos(θ) + cos(nθ)sin(θ)]

= cos((n+ 1)θ) + isin((n+ 1)θ)

Not every formula holds starting at n = 1. Sometimes we want to prove
that a formula holds for every n ≥ k. We use the following:

Generalized Principle of Mathematical Induction(GPMI): Let
S ⊆ N. If

(i) k ∈ S(Basis)
and
(ii) for n ≥ k whenever n ∈ S we have (n+ 1) ∈ S(Inductive Step)
Then S = {n ∈ N : n ≥ k}.

Example: Prove that n3 < n! for all n ≥ 6. [Note 53 = 125 while 5! = 120
so 53 < 5! is false.]

We have that 63 = 216 while 6! = 720 so the basis for induction holds.
Now assume that n3 < n! and we must prove that (n + 1)3 < (n + 1)!. We
have that

(n+ 1)3 = (n+ 1)(n+ 1)2 = (n+ 1)(n2 + 2n+ 1)

< (n+1)(n2+n2+n2) = (n+1)[3n2] < (n+1)[n3] < (n+1)[n!] = (n+1)!
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Example: Prove that n2 + 6 > 5n for all n ≥ 4.
We have 42 + 6 = 22 > 5 ·4, so the basis for induction holds. Now assume

that n2 + 6 > 5n.
Then we have that

(n+1)2+6 = n2+2n+1+6 > n2+2n+7 = n(n+2) ≥ n(6)+7 > 5n+5 = 5(n+1).

Other Forms of Induction

Sometimes when we do a proof by induction we need to use more than
just that P(n) is true. Sometimes we need to use that P(k) is true for all
1 ≤ k ≤ n. This is called the Principle of Complete Induction. I will state
it differently than the book. I think that this version is less confusing.

Theorem (Principle of Complete Induction(PCI)). Let S ⊆ N. If

• 1 ∈ S(Basis)
• {1, ..., n} ⊆ S implies that (n+ 1) ∈ S(inductive step),

then S = N.

Example. Every natural number greater than 1 has a prime divisor.

For this example if we try to use PMI, then it turns out that knowing
that say 20 has a prime divisor does not help in deciding if 21 does. But we
will see that knowing that every number before 20 has a prime divisor does!

Proof. Let S = {k : k = 1 or k has a prime divisor }.(remember that 1 is
not prime so it doesn’t have a prime divisor.) We have that 1 ∈ S. Assume
that {1, ..., n} ⊆ S. This means that every number, 2, ..., n has a prime
divisor. Now we need to see if n+ 1 ∈ S, which is the same as proving that
n+ 1 has a prime divisor. There are 2 cases.

Case n+1 is prime. Since a number divides itself, n + 1 has a prime
divisor, itself.

Case n+1 is not prime. Since n+1 is not prime, there are numbers k, j
so that n + 1 = kj with k 6= 1 and j 6= 1. This implies that 2 ≤ k ≤ n. So
k ∈ S and k 6= 1, which means that k has a prime divisor. Let p be a prime
that divides k, so k = pb and n + 1 = p(bj) so p divides n + 1. Therefore,
n+ 1 ∈ S. �

Theorem (2.5.3 The Fundamental Theorem of Arithmetic). Every natural
number n > 1 can be written uniquely as a product of primes.

We will do part of the proof. We will skip the “uniquely” part.

Proof. Let S = {k : k = 1 or k can be written uniquely as a product of primes }.
Again 1 ∈ S. Let {1, ..., n} ⊆ S. We must prove that (n+ 1) ∈ S. Two cases.

Case n+1 is prime: Then it is written as a product of primes.
Case n+1 is not prime: Then n+ 1 = kj with k 6= 1 and j 6= 1. This

implies that 2 ≤ k ≤ n and 2 ≤ j ≤ n. Hence, both k and j can be written
uniquely as a product of primes. Combining these products, writes n+ 1 as
a product of primes. �
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0.21. The Well Ordering Principle. This case is also called the Least
Element Property. It states that given any non-empty set S ⊆ N, then
there is k ∈ S such that k ≤ j for every j ∈ S. Thus, k is the “first” element
in S, which is where the phrase “well-ordering” comes from. But also k is
the “least” element in S.

Proof. We do cases.
Case 1 ∈ S Then clearly, k = 1.
Case 1 /∈ S Let J = {j ∈ N : j /∈ S}, i.e., J = Sc. Since 1 ∈ J, J 6= Ø.

Since S is not empty, J 6= N. Hence, the PCI must fail to be true. So there is
a set {1, ..., n} ⊆ J for which (n+1) /∈ J. Hence, we see that 1 /∈ S, ...., n /∈ S
but (n+ 1) ∈ S. Set k = n+ 1. Thus, if j ∈ S, then j ≥ k. �

Theorem (The Division Algorithm 2.5.1). For all a, b ∈ Z with a 6= 0 there
exists a unique pair of integers (q, r) such that b = aq + r and 0 ≤ r < |a|.

Proof. We will do the case that b > 0 and a > 0. Other cases are similar.
Let T = {m ∈ N : am > b} Now since a ≥ 1, we have (b+ 1)a ≥ (b+ 1)1 =
b + 1 > b. Thus, (b + 1) ∈ T and so T 6= Ø. By the well-ordering principle,
there is k ∈ T such that ak > b but k − 1 /∈ T which implies a(k − 1) ≤ b.

Let q = k−1 and set r = b−aq. Then aq ≤ b < a(q+1) =⇒ 0 ≤ b−aq < a
so 0 ≤ r < a. Done �

0.22. Inductive Definition. The inductive principle can also be used to
define sequences of numbers.

For example, if we set a1 = 1 and an+1 = (n + 1)an, Then we get that
a2 = 2a1 = 2 · 1, a3 = 3a2 = 3 · 2 · 1, this is the definition of n!.

Another famous sequence of numbers defined inductively are the Fi-
bonacci numbers. These are defined by setting f1 = f2 = 1 and for
n ≥ 1, fn+2 = fn+1 + fn. Thus, f3 = f2 + f1 = 1 + 1 = 2, f4 = f3 + f2 =
2 + 1 = 3, f5 = f4 + f3 = 3 + 2 = 5, f6 = f5 + f4 = 5 + 3 = 8.

Principles of Counting

In this section we will look at some famous formulas for counting the
numbers of elements of sets. Given a finite set A we will let |A| = the

number of elements in A. (The book uses A–too hard to make!) Some
special cases, |{a}| = 1, |{a, b}| = 2, |Ø| = 0.

Theorem (Sum Rule). Let A and B be finite sets. If A ∩ B = Ø, then
|A ∪B| = |A|+ |B|.

This extends:

Theorem. Let A = {A1, ..., An} be a finite collection of finite sets. If
Ai ∩Aj = Ø for all i 6= j(i.e., if they are pairwise disjoint), then

|
n⋃

i=1

Ai| = |A1|+ · · ·+ |An|.
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Proof. The proof is by induction on the number of sets. We have that it is
true for n = 1 and n = 2, using the last theorem.

Now assume that it is true for a collection of n sets and assume that we
are given a collection of n+ 1 sets, A1, ..., An, An+1. Set B = ∪ni=1Ai. Then
B ∩An+1 = Ø and so

|
n+1⋃
i=1

Ai| = |B ∪An+1| = |B|+ |An+1| = |A1|+ · · ·+ |An|+ |An+1|.

�

Next we consider the case when the sets have non-empty intersection.

Theorem (2.6.3). Let A and B be finite sets. Then

|A ∪B| = |A|+ |B| − |A ∩B|.

Proof. Write A = (A − B) ∪ (A ∩ B) these sets are disjoint. Hence, |A| =
|A−B|+ |A∩B|. Similarly, B = (B−A)∪ (A∩B) expresses B as a disjoint
union, so |B| = |B −A|+ |A ∩B|.

Finally, A∪B = (A−B)∪ (B −A)∪ (A∩B) is a disjoint union. Hence,

|A ∪B| = |A−B|+ |A ∩B|+ |B −A| =
[|A−B|+ |A ∩B|] + [|B −A|+ |A ∩B|]− |A ∩B| = |A|+ |B| − |A ∩B|.

�

Principle of Inclusion and Exclusion. Once you have the case of two
sets, one can do more sets using the case of 2 and the distributivity rules
for union and intersection. For example,

|A ∪B ∪ C| = |(A ∪B) ∪ C| = |A ∪B|+ |C| − |(A ∪B) ∩ C| =
|A|+ |B| − |A ∩B|+ |C| −

(
|(A ∩ C) ∪ (B ∩ C)|

)
=

|A|+ |B|+ |C| − |A ∩B| −
(
|A ∩ C|+ |B ∩ C| − |(A ∩ C) ∩ (B ∩ C)|

)
=

|A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|

Notice that we obtain that |A ∪ B ∪ C| is the sum of all single sets, minus
the sum of intersections of all pairs, plus the intersection of all three.

This generalizes to |A1 ∪ · · · ∪ An|: It is the sum of |Ai|, minus the sum
of the intersection of all pairs, plus the intersection of all triples, etc. In
Exercise 5, you will work out this formula for a union of 4 sets.

Product Rules.

Theorem (Product Rule). Let A and B be finite sets then |A×B| = |A|·|B|.

Proof. Say |A| = n and write A = {a1, ..., an} and let |B| = m and write
B = {b1, ..., bm}. For each 1 ≤ i ≤ n, let

Ci = {(ai, b) : b ∈ B} = {(ai, b1), ..., (ai, bm)},
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so that |Ci| = m. Note Ci ⊆ A × B, for i 6= j Ci and Cj are disjoint and⋃n
i=1Ci = A×B.
Hence,

|A×B| = |C1|+ · · ·+ |Cn| = m+ · · ·+m = mn.

�

This extends to the product of more sets:

Theorem (2.6.5. Generalized Product Rule). Let A1, ..., An be finite sets.
Then

|A1 × · · · ×An| = |A1| · · · |An|.

Proof. This is proved by induction. We have already done the case of n = 1
and n = 2. Now assume that |A1 × A2 × · · · × An| = |A1| · |A2| · · · |An| and
suppose that we have a collection of (n+ 1) sets.

Notice that A1 × · · · × An × An+1 = (A1 × · · · × An) × An+1. Hence, by
the case for 2,

|A1 × · · · ×An ×An+1| = |A1 × · · · ×An| · |An+1| = (|A1| · · · |An|) · |An+1|.
�

Example. We can order pizzas that come in small S, medium M, or large
L; and either Thin crust(T) or Chicago style thick crust(C); and with 5
different toppings, cheese, olive, pepperoni, ham and green peppers. How
many one toppings can we order?

Think of ordering a pizza as filling in a form with 3 blanks. In the first
blank you put the size, in the second the crust thickness and in the 3rd blank
the topping. This identifies 1 topping pizzas with an ordered triple. These
ordered triples are elements of the product of three sets, where the sets are
Size = {S,M,L}, Thickness = {T,C} and Topping = {Ch,O, P,H,G}.
So the number of pizzas is

|Size| · |Thickness| · |Topping| = 3 · 2 · 5 = 30.

Note the general principle here: choices multiply!

Permutations. Given a set of say three letters, A = {a, b, c}, the set of all
permutations is the set of all ordered triples that you could make using
each letter once. So the permutations are

abc, acb, bac, bca, cab, cba

so 6 permutations. Sometimes I’ll call these “words” in the three letters.
So in general given a set A with n elements the set of all permutations of

A is the set of all possible ordered n-tuples that can be filled in using each
element exactly once.

Theorem (2.6.6). Given a set A with n elements, the set of all permutations
of A has n! elements.
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Proof. We give the idea of the proof, then do a formal inductive proof.
To write down all of the permutations in A we think of filling in n blanks.

In the 1st blank, we can use any element of A so we have n choices. Since we
cannot use the same element twice, for the 2nd blank we only have (n− 1)
choices. For the third lank, there are 2 elements that we cannot use, so we
have only (n− 2) choices. This continues until we get to the last blank and
there is only one element left, so only 1 choice.

Thus, the number of choices is

n · (n− 1) · · · 2 · 1 = n!

To prove formally, let Bn be the number of permutations of an n element
set. We have that B1 = 1. Now assume that Bn = n! and suppose that we
have a set of (n+ 1) elements.

Now to form a permutation of this (n + 1)-element set, we first pick an
element for the first blank, for which we have (n + 1) choices. We are now
left with a set of n elements to fill in the remaining blanks. By the inductive
assumption, we have Bn ways to fill in these remaining blanks. Thus,

Bn+1 = (n+ 1)Bn = (n+ 1)[n!] = (n+ 1)!

�

Example. I have 10 CD’s in my player, my shuffle play plays them in any
order. How many different “listening experiences” can I have? Answer:
10! = 3, 628, 800.

Example. We have 26 letters. How many 6 letter passwords can we make
if

(1) We allow letters to repeat?
(2) We can only use each letter once?

Answers: (1) (26)6

(2) 26 · 25 · 24 · 23 · 22 · 21 = (26)!
(20)! .

The answer in (2) is a special case of the following:

Theorem (2.6.7. Permutation Rule). Let A be a set with n elements and
let 0 ≤ r ≤ n. Then the number of permutations of any set of r of these n
elements is

n · (n− 1) · · · (n− r + 1) =
n!

(n− r)!
.

Definition. Let 0 ≤ r ≤ n given a set A of n elements the number of
subsets of A with exactly r elements is denoted by(

n
r

)
which is called the binomial coefficient or n choose r.
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Some of these are easy to see:

There is exactly one subset with 0 elements(the null set) so

(
n
0

)
= 1.

There are n one element subsets so

(
n
1

)
= n.

The only n element subset is the set itself, so

(
n
n

)
= 1.

The following gives the answer in general.

Theorem (2.6.8. The Combination Rule). Given a set with n elements, the
number of r element subsets is(

n
r

)
=
n · (n− 1) · · · (n− r + 1)

r(r − 1) · · · 1
=

n!

(n− r)!r!

Note that when r = 0 we know that 1 =

(
n
0

)
while the formula gives

us,

(
n
0

)
= n!

(n−0)!0! , so to make these formulas apply to the case r = 0(and

r = n) we define
0! = 1.

Example. Before we do the proof first an example. Let n = 5 and r = 2.
So we want all 2 element subsets of a set of 5 elements, say {a, b, c, d, e}.
First we count the permutations this gives 5 ·4. But each permutation would
have say (a, b) and (b, a) which would count twice but that is really just one
set, {a, b}. So each permutation counts the sets twice, Wo the number of
sets is

5 · 4
2

= 10.

Proof. First the number of permutations of any r by the Permutation Rule
is n!

(n−r)! . Each permutation gives a set of r elements, but each set appears

the same number of times as there are permutations of a set of r elements.
Since there are r! permutations of each set. The number of subsets is the
number given by the Permutation Rule divided by r!, which is

n!

(n− r)!
/r! =

n!

(n− r)! · r!
.

�

Example. Pizza’s Again. Use the same set-up as before. Now the question
is how many different 2 topping pizzas, provided that you have to order two
different toppings?

Solution: Since there are 5 toppings and we want to choose 2, the number
of different toppings that we can choose is(

5
2

)
=

5!

(5− 2)!2!
=

5 · 4
2

= 10
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So we have 3 choices for size, 2 choices for crust, and 10 choices for topping,
so altogether

3 · 2 · 10 = 60

different pizzas.

Example. Pizza’s a third time. Same set-up but allow double toppings,
so ordering Cheese twice means you get twice as much cheese. How many
different pizzas?

Solution: If you order two different toppings, then we already saw that
it is 10 choices. In addition to these 10 we can order each topping doubled.
There are 5 toppings so we can order each one doubled for 5 more choices.
Hence we have 10 + 5 = 15 choices for toppings. So altogether

3 · 2 · 15 = 90

different pizzas.

Example. From a deck of 52 cards, how many 5 card hands?

52!

(52− 5)!5!
=

52 · 51 · 50 · 49 · 48

5 · 4 · 3 · 2 · 1
= 5, 197, 920.

How many with 4 Aces? Answer need all 4 A’s plus one other card, there
are 52- 4 = 48 cards left. So 48.

Probability of getting 4 A’s:

48

5, 197, 920

Example. Megacorp has 50 workers and 200 Vice Presidents.
a) It wants to pick 5 workers to give bonuses of $1, $2, $3, $4, $5 each.

How many ways?
b) It wants to pick 5 VP’s to give a bonus of $1,000,000 each. How many

ways?
Answer a): The Permutation Rule, because you can tell the workers apart

(since the bonuses are different): 50 · 49 · 48 · 47 · 46.
Answer b): The Combination Rule, you cannot tell the VP’s apart(because

the bonuses are all the same):(
200
5

)
=

200 · 199 · 198 · 197 · 196

5!

Theorem (2.6.9). Let 0 ≤ r ≤ n. Let a, b ∈ R.

a) (a+ b)n =
∑n

r=0

(
n
r

)
arb(n−r).

b)

(
n
r

)
=

(
n

n− r

)
c)

(
n
r

)
=

(
n− 1
r

)
+

(
n− 1
r − 1

)
, ∀ 1 ≤ r ≤ n.
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Proof. a): First consider what happens when you want to do the product
of (a+ b)(c+ d)(e+ f). The product has 8 terms

ace+ acf + ade+ adf + bce+ bcf + bde+ bdf

and each term is a product of three things.
One way to see how we got these was that for each of the eight terms

we first chose one element of {a, b} followed by one element of {c, d} and
finally one element of {e, f}. There are two choices from each set for a total
of 2 · 2 · 2 = 8 terms.

So when we want to multiply (a+ b)(a+ b)(a+ b) again it is a sum of 8
terms where for each term we choose one element from the set {a, b} followed
by one element of the set {a, b}, followed by one element of the set {a, b}.
But now if we choose a then a then b we get aab. If we choose a then b then
a we get aba.

But since aab = aba = a2b, all that matters was that we chose 2 a’s and
1 b. Also, one we choose 2 a’s we are forced to choose 1 b. So all that really
mattered is that we chose 2 a’s. So we get a2b for each of the terms,

aab, aba, baa.

We got aab, when we chose a from the 1st and 2nd sets, we got aba when
we chose a from the 1st and 3rd set and we got baa when we chose a from
the 2nd and 3rd set.

So the number of times that we can get a2b is the number of times that
we can choose 2 a’s from our 3 sets.

Now to do the general case. Suppose that we want to find

(a+ b)n = (a+ b)(a+ b) · · · (a+ b).

To get a term with a in it r times, we must choose an a from the set {a, b}
exactly r times. But the set {a, b} appears n times.

So we get a exactly r times,

(
n
r

)
times. If we pick a exactly r times,

then we must pick b the remaining (n − r) times. So our term will have r

a’s and (n− r) b’s and so be equal to arb(n−r).

Thus, we see that in the product, the quantity arb(n−r) appears exactly(
n
r

)
times.

Since the product is equal to the sum of all these possible terms, we get
that

(a+ b)n = bn +

(
n
1

)
a1b(n−1) +

(
n
2

)
a2b(n−2) + · · ·+

(
n

n− 1

)
a(n−1)b1 +an

=

n∑
r=0

(
n
r

)
arb(n−r).
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b): There are two ways to see this. First by the formula:(
n

n− r

)
=

n!

[n− (n− r)]!(n− r)!
=

n!

r!(n− r)!
=

(
n
r

)
.

The second is that

(
n
r

)
counts the number of ways that we can pick r

elements from an n element set. But each time we form a set of r elements
there is a set of (n− r) elements left over. So the number of ways to pick r
elements is the same as the number of ways to pick (n− r) elements, which

is what

(
n

n− r

)
represents.

c): Use the formulas:(
n− 1
r

)
+

(
n− 1
r − 1

)
=

(n− 1)!

[(n− 1)− r]!r!
+

(n− 1)!

[(n− 1)− (r − 1)]!(r − 1)!
=

(n− 1)!

(n− 1− r)!r!
+

(n− 1)!

(n− r)!(r − 1)!
=
n− r
n− r

(n− 1)!

(n− r − 1)!r!
+
r

r

(n− 1)!

(n− r)!(r − 1)!

=
(n− 1)![n− r]

(n− r)!r!
+

(n− 1)![r]

(n− r)!r!
=

(n− 1)![n− r + r]

(n− r)!r!
=

(
n
r

)
�

A special case is when a = b = 1.

Theorem. 2n =
∑n

r=0

(
n
r

)
Proof. Set a = b = 1 in 2.6.9a, then

2n = (1 + 1)n =

n∑
r=0

(
n
r

)
1r1(n−r) =

n∑
r=0

(
n
r

)
.

�

We now have enough math to prove a result that the book stated much
earlier.

Theorem (2.1.4). Let A be a set with n elements, then the power set of A,
P(A) has 2n elements. That is, the total number of subsets of A is 2n.

Proof. The number of subsets of A with r elements is

(
n
r

)
. Hence the total

number of subsets of A is the sum of the number of subsets with 0 elements,
1 elements,....., n elements, which is

n∑
r=0

(
n
r

)
= 2n.

�
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Chapter 3: Relations and Partitions

Definition. Given sets A and B a relation R from A to B is just a
subset R ⊆ A × B. We say that an element a is R-related to b and write
aRb iff (a, b) ∈ R. When A = B we call R a relation on A.

Example. LetA = {1, 2, 3} andB = {4, 5, 6} and setR = {(1, 4), (2, 5), (3, 6)}.
Then 1R4, 2R5, 3R6. A simpler way to write the relation R is that

R = {(a, b) : b− a = 3}.

Example. Let A = N and define a relation on N by setting

R = {(a, b) : a− b is even }.

Then aRb iff either a and b are both even or a and b are both odd.

Example. A = R and define a relation on R by

R = {(x, y) : y − x > 0}.

Then xRy iff the point (x,y) is “above” the line x=y.

Definition. Given a relation R from A to B. The domain of R is the set

Dom(R) = {a ∈ A : ∃b ∈ B, aRb}.

The range of R is the set

Ran(R) = {b ∈ B : ∃a ∈ A, aRb}.

Example. Let A = {0, 1, 2, 3} and B = {4, 5, 6, 7} and let R = {(a, b) :
b−a = 3}. Then Dom(R) = {1, 2, 3} since no b is related to 0, and Ran(R) =
{4, 5, 6} since no a is related to 7.

Example. Let A = R and define a relation R on R by setting

R = {(x, y) : x2 + y2 ≤ 1}.

Then Dom(R) = Ran(R) = [−1,+1].

Definition. Given a relation R from A to B, for each a ∈ A the set

Ra = {b ∈ B : (a, b) ∈ R}

is called the vertical section through a. The set

bR = {a ∈ A : (a, b) ∈ R}

is called the horizontal section through b.

In class we drew some pictures of these.
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Relations and Directed Graphs

Directed graphs also called digraphs are pictures that can help us to
“see” relations, much as Venn diagrams were a visual aid. Given a relation
from A to B we draw dots for each of the elements of A and dots for each
of the elements of B and then draw an arrow from the dot for a to the dot
for b iff aRb.

When A=B, we just draw points for the set A once and connect points
with arrows iff they are related. When we have a point a ∈ A such that
aRa, then we draw a loop at that point.

In class we drew pictures of some digraphs.

Operations on Relations

Definition. Given a set A the identity relation on A denoted IA is

IA = {(a, a) : a ∈ A}.

Definition. Given a relation R from A to B, the inverse of R is the relation
from B to A,

R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}.

Note that when we draw a digraph for R then the digraph for R−1 is
obtained by reversing all of the arrows.

When the relation R is given by a formula, then the relation R−1 is given
by the inverting the formula.

Example. When A = R and R = {(x, y) : x < y} then R−1 = {(y, x) : x <
y} = {(y, x) : y > x}. But when we draw things we like to regard the first
component as the x variable and the second variable as the y variable. So,
making this substtution,

R−1 = {(x, y) : x > y}
is the region “below” the line y=x.

Example (3.1.4g). Let R = {(x, y) ∈ R×R : y > 3x− 4}, the region above
the line y = 3x− 4.. Then R−1 = {(x, y) : x > 3y− 4}. Solving for y we get
x+4
3 > y, so that R−1 is the region below the line y = x+4

3 .

Theorem (3.1.2). Let R ⊆ A×B be a relation. Then
a) Dom(R−1) = Ran(R),
b) Ran(R−1) = Dom(R).

Definition. Given relations R ⊆ A×B and S ⊆ B×C, the composite of
R and S is the relation from A to C given by

S ◦R = {(a, c) : ∃b, (a, b) ∈ R, (b, c) ∈ S}.

If we think of R as a digraph from A to B and S as a digraph from B to
C, then S ◦R is the set of arrows from A to C that you get by going through
a point in B. We drew pictures in class.



MATH 3325 47

Example. A = {1, 2, 3}, B = {e, f, g}, C = {x, y, z, w} and let R =
{(1, e), (1, f), (2, f), (3, g)}, and S = {(e, x), (e, y), (f, z), (g, w)} Then

S ◦R = {(1, x), (1, y), (1, z), (2, z), (3w)}.

Example (3.1.6d). A = B = C = R and R3 = {(x, y) : y = 7x − 10},
R2 = {(x, y) : y = −5x+ 2}. Find R2 ◦R3 and R3 ◦R2.

First we do R2 ◦ R3. To make it look more like the definition, we set
R3 = {(a, b) : b = 7a − 10}, and R2 = {(b, c) : c = −5b + 2}. Then to have
(a, b)inR3 and (b, c) ∈ R2 means that c = −5b + 2 = −5(7a − 10) + 2 =
−35a+ 52 function composition! Re-labelling,

R2 ◦R3 = {(x, y) : y = −35x+ 52}.
So for R3◦R2 we will get the composition, y = 7(−5x+2)−10 = −35x+4.

Theorem (3.1.3). Let A,B,C,D be sets,with R ⊆ A× B, S ⊆ B × C and
T ⊆ C ×D. Then:

a) (R−1)−1 = R
b) T ◦ (S ◦R) = (T ◦ S) ◦R,
c) IB ◦R = R and R ◦ IA = R,
d) (S ◦R)−1 = R−1 ◦ S−1.

We’ll prove d). We have that (c, a) ∈ (S ◦ R)−1 iff (a, c) ∈ (S ◦ R) iff
∃b ∈ B such that (a, b) ∈ R and (b, c) ∈ S iff ∃b ∈ B such that (c, b) ∈ S−1
and (b, a) ∈ R−1 iff (c, a) ∈ S−1 ◦R−1.

Equivalence Relations

Definition. Given a relation R on A, we say that:

• R is reflexive iff ∀x ∈ A, xRx, i.e., (x, x) ∈ R.
• R is symmetric iff ∀x, y ∈ A, (x, y) ∈ R implies that (y, x) ∈ R.
• R is transitive iff ∀x, y, z ∈ A, (x, y) ∈ R and (y, z) ∈ R implies

(x, z) ∈ R.
• R is an equivalence relation iff R is reflexive, symmetric and tran-

sitive.

We drew pictures of digraphs to see what these meant pictorially.

Example. Let A be the set of students in class and define xRy iff x and y
got the same score on the test. Check that this is an equivallence relation.
If we let the relation be that x and y have the same birthday, then that is
also an equivalence relation.

Example. Let A = Z and define aRb iff a − b is even. Check that this is
an equivalence relation.

Example. Let A = Z and define aRb iff a − b is odd. Not reflexive(a − a
is even), is symmetric(a− b odd implies that b− a is odd), not transitive(if
a− b is odd and b− c is odd, then a− c = (a− b) = (b− c) is even).
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Example. Let A = Z and let aRb iff a− b is divisible by 3. Check that this
is an equivalence realation.

Example. Let A = R and set xRy iff x ≤ y. This is reflexive, and transitive
but not symmetric.

Example. Let A = R and set xRy iff x2 + y2 ≤ 1. Not reflexive, is sym-
metric, not transitive.

Definition. Let R be an equivalence relation on A. The equivalence class
of x determined by R is the set

x/R = {y ∈ A : xRy}.
This set is also denoted by [x] and x in other texts and is also called x
modulo R or x mod R.

The set of all equivalence classes is called A modulo R and is denoted
A/R.

Example. Let A = Z and let xRy iff x − y is even. When x is even then
x/R is the set of all even integers. In particular, 0/R = 2/R. When x is odd
then x/R is the set of all odd integers, so 1/R = 3/R. Thus, A/R has two
elements 0/R = [0] and 1/R = [1]. We also have that [0] = [2] = 2Z, while
[1] = [3] = 2Z + 1.

Example. LetA = R and set xRy iff x2 = y2. This is an equivalence relation
and [a] = a/R = {+a,−a}. So each equivalence class has two elements
except for 0 and [0] = {0}.

Example. Let A be the set of students in the class and let aRb iff a and
b have the same birthday. Then [Jim] = Jim/R is the set of all people
that have the same birthday as Jim. Thus, A/R has one element for each
birthday of a student in the class. In a sense it can be thought of as the
collection of birthdays. Given a birthday, we get a set, namely, all the
students with that day for their birthday.

Theorem (3.2.1). Let A be a set and R an equivalence relation on A. Then:

a) For each x ∈ A, x/R ⊆ A and x ∈ x/R so x/R is non-empty.
b) xRy iff x/R = y/R.
c) x and y are not related iff (x/R) ∩ (y/R) = Ø.

Proof. a) By definition x/R is a subset of A. Since R is symmetric, xRx
and so x ∈ x/R, which guarantees that x/R is non-empty.

b) b) is a biconditional, we prove both implications. First assume that
xRy.

Let z ∈ x/R. Then xRz and by symmetryzRx. Since xRy and R is
transitive, we get zRy so z ∈ y/R. Thus, x/R ⊆ y/R.

Assume that z ∈ y/R, then yRz and by symmetry, zRy. Since also yRx,
again by transitivity, zRx and so z ∈ x/R. Thus, y/R ⊆ x/R. These two
containments show that x/R = y/R. Hence, xRy =⇒ x/R = y/R.
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Conversely, assume that x/R = y/R. By a), x ∈ x/R = y/R so x ∈ y/R
which by the definition means that yRx and so xRy.

c) Again a biconditional. First assume that x and y are not related, we
must prove this implies (x/R) ∩ (y/R) = Ø. We prove the contrapositive:
(x/R) ∩ (y/R) 6= Ø =⇒ xRy. Since the intersection is non-empty, there
exists z ∈ (x/R) ∩ (y/R). This implies that xRz and yRz. Hence, xRz and
zRy, which by transitivity implies that xRy.

Now we must prove the converse: (x/R)∩(y/R) = Ø =⇒ x and y are not
related. Again we prove the contrapositive: xRy =⇒ (x/R) ∩ (y/R) 6= Ø.
But if xRy then by b), x/R = y/R. Hence, (x/R) ∩ (y/R) = x/R which is
non-empty by a). �

It is good to remember this contrapositive statement of c):

(x/R) ∩ (y/R) 6= Ø iff xRy.

Combined with b) we get:

(x/R) ∩ (y/R) 6= Ø iff x/R = y/R.

Thus, we have:
Either (x/R) ∩ (y/R) = Ø or x/R = y/R.

The Congruence Relation

Definition. Fix m ∈ N. Given x, y ∈ Z, we say that x is congruent to y
modulo m iff m divides x− y. We write x ≡m y or x = y(mod m). We let

Rm = {(x, y) ∈ Z× Z : m divides x− y}

denote this relation.

Note that we have been a little redundant since x ≡m y and xRmy both
are used to denote this relation.

Theorem (3.2.2). For each fixed m ∈ N, the relation ≡m is an equivalence
relation.

Proof. Since x− x = 0 we have that m · 0 = x− x and so m divides (x− x)
and thus x ≡m x. Hence, ≡m is reflexive.

If x ≡m y, then ∃k ∈ Z so thatmk = x− y. Hence, m(−k) = (y − x) and
so y ≡m x. Thus, ≡m is reflexive.

Finally, if x ≡m y and y ≡m z then this means that ∃k, j ∈ Z so that
x− y = mk and y − z = mj. Hence, x− z = (x− y) + (y − z) = m(k + j),
so that m divides x− z and x ≡m z. Thus, ≡m is transitive. �

Definition. Let m ∈ N. We set

[x]m = x/Rm = {y ∈ Z : x ≡m y}.

We let Zm = Z/Rm denote the set of equivalence classes.
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Example. Let m = 3 then

[0]3 = {y ∈ Z : ∃k ∈ Z, y = 3k} = {3k : k ∈ Z},

[1]3 = {y ∈ Z : ∃k ∈ z, y − 1 = 3k} = {3k + 1 : k ∈ Z},
[2]3 = {y ∈ Z : ∃k ∈ Z, y − 2 = 3k} = {3k + 2 : k ∈ Z}.

Since, 0 ≡3 3 we have that [3]3 = [0]3. Similarly, [4]3 = [1]3, [5]3 = [2]3,
etc.

Thus, Z3 = {[0]3, [1]3, [2]3}.

The following theorem explains this phenomena exactly.

Theorem (3.2.3). Let m ∈ N be fixed. Then

(a) Given x, y ∈ Z, x ≡m y iff the remainder when x is divided by m is
equal to the remainder when y is divided by m

(b) The set Zm has exactly m equivalence classes and these are given by
Zm = {[0]m, [1]m, ...., [m− 1]m}

Proof. (a): By the divison algorithm, there are unique (q1, r1) so that x =
mq1+r1 with 0 ≤ r1 < m and (q2, r2) so that y = mq2+r2 with 0 ≤ r2 < m.
Note that x−y = m(q1− q2) + (r2− r1). Thus, m divides x−y iff m divides
r2 − r1.

But since r1 ≥ 0, r2−r1 < r1 < m. While, since r1 ≥ 0, r1−r2 ≥ 0−r2 >
−m. Thus, −m < r2 − r1 < +m. This shows that m divides r2 − r1 iff
r2 − r1 = 0.

Thus, we have: x ≡m y iff m divides x − y iff m divides (r2 − r1) iff
r2 = r1.

(b): The above calculation also shows that for 0 ≤ r1 < m and 0 ≤ r2 <
m, that r1 ≡m r2 iff r1 = r2. Thus, for 0 ≤ r1 < m and 0 ≤ r2 < m, we have
that r1/R 6= r2/R and so (r1/R) ∩ (r2/R) = Ø.

Thus, each of the equivalence classes [r]m, 0 ≤ r < m are distinct. That
is, [0]m, [1]m, ..., [m− 1]m are all distinct equivalence classes.

Now given any x ∈ Z by the division algorithm, we may write it as
x = mq+ r, with 0 ≤ r < m. Since x− r = mq we have that x ≡m r, and so
x/R = r/R = [r]m. Thus, every equivalence class is one of these classes and

Zm = {[0]m, ..., [m− 1]m}.

�

Partitions

A partition of a set is a way to divide the set up into disjoint non-empty
subsets, so that every element of the set belongs to exactly one subset. For
example, the US is divided up into states. The State of Texas is divided up
into counties. The US is also divided up into zip codes or into time zones.
Each of these is a partition, since no two states intersect, no two time zones
intersect, etc.
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Definition. Let A be a non-empty set. A collection P of subsets of A is
called a partition of A iff

(i) if X ∈ P then X 6= Ø,
(ii) if X ∈ P and Y ∈ P then either X = Y or X ∩ Y = Ø,
(iii) ∪X∈PX = A.

Example. Let A = Z let E = {x ∈ Z : x is even }, and let O = {x ∈ Z :
x is odd }. Then P = {E,O} is a partition of Z.

Example. Let A = R and let Gn = [n, n+ 1). Then P = {Gn : n ∈ Z} is a
partition of R.

Example. Let A = R and let Cn = [n, n+ 1], and let P = {Cn : n ∈ Z} is
NOT a partition of R.

Example. Let A = N. Let P = {n ∈ N : n is prime }, let D = {n ∈
N : n is not prime but is divisible by a prime }, then P = {P,D, {1}}, is a
partition of N.

Theorem (3.3.1). If R is an equivalence relation on a non-empty set A.
Then the set of equivalence classes is a partition of A.

Proof. We showed that each equivalence class is non-empty, every element
of x ∈ A belongs to an equivalence class(so the union is all of A), namely
x ∈ x/R and that given two equivalence classes, either (x/R) ∩ (y/R) =
Ø. �

Next we show that every partition yields an equivalence relation.

Theorem (3.3.2). Let P be a partition of the non-empty set A. For x, y ∈ A
define a relation Q by xQy iff ∃C ∈ P such that x ∈ C and y ∈ C. Then

(a) Q is an equivalence relation on A,
(b) A/Q = P, that is, the sets in P are precisely the equivalence classes

modulo Q.

Proof. (a): To see that Q is reflexive, note that since ∪C∈PC = A, given
any x ∈ A there exists C ∈ P with x ∈ C. Since x ∈ C and x ∈ C we have
xQx.

To see that Q is symmetric, note that if xQy then there is C ∈ P with
x ∈ C and y ∈ C But this also implies that yQx.

To see that Q is transitive. Assume that xQy and that yQz. Since xQy
∃C1 ∈ P such that x ∈ C1 and y ∈ C1. Since yQz there exists C2 ∈ P such
that y ∈ C2 and z ∈ C2. We have that y ∈ C1 ∩C2. So by the property of a
partition, C1 = C2. Thus, x ∈ C1 and z ∈ C1 and so xQz.

(b): Let x ∈ A, we want to prove that x/Q ∈ P. Let y ∈ x/Q then
∃C1 ∈ P such that x ∈ C1 and y ∈ C1. We claim that x/Q = C1. To see
this, if z ∈ C1, then since x ∈ C1 and z ∈ C1 we have xQz and so z ∈ x/Q.
This proves that C1 ⊆ x/Q. Suppose that w ∈ x/Q then there is a set
C2 ∈ P, with x ∈ C2 and w ∈ C2. But x ∈ C1 ∩ C2 and so C1 = C2. Since
C1 = C2 =⇒ w ∈ C1 so x/Q ⊆ C1.
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Thus, x/Q = C1 and we have shown that every set in A/Q is one of the
sets in P.

Let C ∈ P. Then C 6= Ø, so there is x ∈ C. Now repeat the argument
above to show that x/Q = C.

Thus, every every set in P is in A/Q. �

Ordering Relations

Given x, y ∈ R and setting xRy iff x ≤ y defines an order relation on R.
What are the special properties of this relation? We also wish to generalize
the concept of “less than or equals” to more general setttings.

Definition. A relation R on a set A is called antisymmetric iff xRy and
yRx implies that x = y.

Example. Let A = R and set xRy iff x ≤ y. Then xRy and yRx means
that x ≤ y and y ≤ x, so x = y Thus, ≤ is antisymmetric.

Example. Let A = R and set xRy iff x < y. Then xRy and yRx means
that x < y AND y < x. This is never true. (Remember if P is never true,
then P =⇒ Q is always true!) Hence, xRy and yRx implies that x = y
and so this is also antisymmetric!! Note that R is not reflexive.

Definition. A relation R on a set A is called a partial order or partial
ordering iff R is reflexive, antisymmetric and transitive. A set A together
with a partial order R is called a partially ordered set or a poset.

Example. Each of the sets N,Z and R together with xRy iff x ≤ y are
posets.

Example. Let A = N and define aRb iff a divides b. Check that this is a
partial order on N.

Example. The 26 letter alphabet with the usual alphabet ordering is a
poset.

Example (The Dictionary Order). Consider all strings of length two that
can be made with two letters of the alphabet, so “words” of length two. So
altogether we have (26)2 words. Define w1Rw2 if either the first letter in
w1 comes before the first letter of w2 or when the first letters of both words
are the same then the second letter of w1 comes before or is the same as the
second letter of w2. So abRcd and aaRab. This is a partial order.

This can of course be applied to words of greater length and even to words
of different length-which is how our dictionary works.

Example (The Dictionary Order on R2). Let A = R × R and define a
relation by (a, b)R(c, d) iff either a < c or a = c and b ≤ d. This is a partial
order.
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Definition. Let R be a partial order on A and let a, b ∈ A with a 6= b.
We say that a is the immediate predecessor of b or that a is the
immediate succesor of a iff aRb and there does not exist c ∈ A with
a 6= c, b 6= c and aRc and cRb.

Another way to say this last awkward statement is that: if aRc and cRb
then either a = c or c = b.

Example. In N 2 is the immediate predecessor of 3.

Example. In R no number has an immediate predecessor.

Example. In the dictionary order on words of length two, bc is the imme-
diate predecessor of bd. The immediate predecessor of ca is bz.
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