
Welcome to the study of mathematical reasoning. The authors know that many stu-
dents approach this material with some apprehension and uncertainty. Some students
feel that “This isn’t like other mathematics courses,” or expect that the study of
proofs is something they won’t really have to do or won’t use later. These feelings
are natural as you move from calculation-oriented courses where the goals empha-
size performing computations or solving certain equations, to more advanced
courses where the goal may be to establish whether a mathematical structure has cer-
tain properties. This textbook is written to help ease the transition between these
courses. Let’s consider several questions students commonly have at the beginning
of a “transition” course.

Why write proofs?

Mathematicians often collect information and make observations about particular
cases or phenomena in an attempt to form a theory (a model) that describes patterns
or relationships among quantities and structures. This approach to the development
of a theory uses inductive reasoning. However, the characteristic thinking of the
mathematician is deductive reasoning, in which one uses logic to develop and
extend a theory by drawing conclusions based on statements accepted as true.
Proofs are essential in mathematical reasoning because they demonstrate that the
conclusions are true. Generally speaking, a mathematical explanation for a conclu-
sion has no value if the explanation cannot be backed up by an acceptable proof.

Why not just test and repeat enough examples to confirm 
a theory?

After all, as is typically done in natural and social sciences, the test for truth of a
theory is that the results of an experiment conform to predictions, and that when
the experiment is repeated under the same circumstances the result is always the
same. The difference is that in mathematics we need to know whether a given
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statement is always true, so while the statement may be true for many (even infi-
nitely many) examples, we would never know whether another example might
show the statement to be false. By studying examples, we might conclude that the
statement

is true for all positive integers x. We could reach this conclusion testing the first 10
or 20 or even the first 42 integers In each of these cases and others,
such as 44, 45, 47, 48, 49, 50 and more, is a prime number. But thex2 − 3x + 43

1, 2, 3, Á , 42.

“x2 − 3x + 43 is a prime number”
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statement is not always true because which is 
Checking examples is helpful in gaining insight for understanding concepts and
relationships in mathematics, but is not a valid proof technique unless we can
somehow check all examples.

Why not just rely on proofs that someone else has done?

One answer follows from the statement above that deductive reasoning character-
izes the way mathematicians think. In the sciences, a new observation may force a
complete rethinking of what was thought to be true; in mathematics what we know
to be true (by proof) is true forever unless there was a flaw in the reasoning. By
learning the techniques of reasoning and proof, you are learning the tools of the
trade.

The first goal of this text is to examine standard proof techniques, especially
concentrating on how to get started on a proof, and how to construct correct proofs
using those techniques. You will discover how the logical form of a statement can
serve as a guide to the structure of a proof of the statement. As you study more
advanced courses, it will become apparent that the material in this book is indeed
fundamental and the knowledge gained will help you succeed in those courses.
Moreover, many of the techniques of reasoning and proof that may seem so diffi-
cult at first will become completely natural with practice. In fact, the reasoning that
you will study is the essence of advanced mathematics and the ability to reason
abstractly is a primary reason why applicants trained in mathematics are valuable
to employers.

What am I supposed to know before beginning Chapter 1?

The usual prerequisite for a transition course is at least one semester of calculus. We
will sometimes refer to topics that come from calculus and earlier courses (for
example, differentiable functions or the graph of a parabola), but we won’t be solv-
ing equations or finding derivatives.

You will need a good understanding of the basic concepts and notations from
earlier courses. The list of definitions and relationships below includes the main
things you will need to have ready for immediate use at any point in the text.

41 · 43.432 − 3(43) + 43 = 1763,
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Be aware that definitions in mathematics, however, are not like definitions in ordi-
nary English, which are based on how words are typically used. For example, the ordi-
nary English word “cool” came to mean something good or popular when many people
used it that way, not because it has to have that meaning. If people stop using the word
that way, this meaning of the word will change. Definitions in mathematics have pre-
cise, fixed meanings. When we say that an integer is odd, we do not mean that it’s
strange or unusual. Our definition below tells you exactly what odd means. You may
form a concept or a mental image that you may use to help understand (such as “ends
in 1, 3, 5, 7, or 9”), but the mental image you form is not what has been defined. For this
reason, definitions are usually stated with the “if and only if ” connective because they
describe exactly—no more, no less—the condition(s) to meet the definition.

Sets

A set is a collection of objects, called the elements, or members of the set. When
the object x is in the set A, we write otherwise The set

has four elements; we see that but We may use set-
builder notation to write the set K as

which we read as “the set of x such that x is . . .” Observe that the set whose only
element is 5 is not the same as the number 5; that is, The empty set is
a set with no elements.

We say that A is a subset of B, and write if and only if every element of
A is an element of B. If sets A and B have exactly the same elements, we say they
are equal and write 

We use these notations for the number systems:

is the set of natural numbers.
is the set of integers.

is the set of all rational numbers.
is the set of all real numbers.
is the set of all complex numbers.

A set is finite if it is empty or if it has n elements for some natural number n.
Otherwise it is infinite. Thus the set {6, 7, 8, 9} is finite. All the number systems
listed above are infinite.

The Natural Numbers

The properties below describe the basic arithmetical and ordering structure of the set �.

1. Successor properties
1 is a natural number.
Every natural number x has a unique successor 
1 is not the successor of any natural number.

x + 1.

�

�

�

� = {Á −3, −2, −1, 0, 1, 2, Á}
� = {1, 2, 3, Á}

A = B.

A ⊆ B,

�{5} =� 5.

{x: x is an integer greater than 5 and less than 10},

3 � K.7 � KK = {6, 7, 8, 9}
x � A.x � A;
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2. Closure properties
The sum of two natural numbers is a natural number.
The product of two natural numbers is a natural number.

3. Associativity properties
For all 
For all 

4. Commutativity properties
For all 
For all 

5. Distributivity properties
For all 
For all 

6. Cancellation properties
For all if then 
For all if then 

For natural numbers a and b we say a divides b (or a is a divisor of b, or b is
a multiple of a) if and only if there is a natural number k such that For
example, 7 divides 56 because there is a natural number (namely 8) such that

A natural number p is prime if and only if p is greater than 1 and the only nat-
ural numbers that divide p are 1 and p. A composite is a natural number that is 
neither 1 nor prime.

The Fundamental Theorem of Arithmetic:

Every natural number larger than 1 is prime or can be expressed uniquely as a prod-
uct of primes. For example, 440 can be expressed as If we list the
prime factors in increasing order, then there is only one prime factorization: the
primes and their exponents are uniquely determined. 

The Integers

The integers share properties 2 through 6 listed above for (with the exception that
we can’t cancel from the product Other important properties are:

For all x in and 
For all in if and 
The product of two positive or two negative integers is positive; the product of 

a positive and a negative is negative.

The natural numbers and integers provide excellent settings for developing an
understanding of the structure of a correct proof, so we will use the following defi-
nitions extensively in early examples of proof writing. In those proofs we make use
of the properties of number systems and the fact that every integer is either even or
odd, but not both.

z > 0, xy < yz.x < y�,x, y, z
x + (−x) = 0.�, x + 0 = 0, x · 0 = 0

xz = yz).z = 0
�

440 = 23 · 5 · 11.

56 = 7 · 8.

b = ak.

x = y.xz = yz,x, y, z � �,
x = y.x + z = y + z,x, y, z � �,

x, y, z � �, (y + z)x = yx + zx.
x, y, z � �, x (y + z) = xy + xz.

x, y � �, xy = yx.
x, y � �, x + y = y + x.

x, y, z � �, x (yz) = (xy)z.
x, y, z � �, x + (y + z) = (x + y) + z.

Preface to the Student xv

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



An integer x is even if and only if there is an integer k such that An inte-
ger x is odd if and only if there is an integer j such that For integers a
and b with we say a divides b if and only if there is an integer k such that

Real and Rational Numbers

We think of the real numbers as being all the numbers along the number line. Each
real number can be represented as an integer together with a finite or infinite deci-
mal part. We use the standard notations for intervals on the number line. For real
numbers a and b with

is the open interval from a to b.
is the closed interval from a to b.

and are
open rays.

and are
closed rays.

Note that the infinity symbol is simply a notational convenience and does
not represent any real number. Also, one should be careful not to confuse (1, 6) with
{2, 3, 4, 5}, since (1, 6) is the set of all real numbers between 1 and 6 and contains,
for example, and 

The real number x is rational if and only if there are integers p and q, with 
such that 

The rationals are exactly the numbers along the number line that have termi-
nating or repeating decimal expressions. All other real numbers are irrational. In
Chapter 1 we will see a proof that is irrational. The number systems and 
share many of the arithmetic and ordering properties of the naturals and integers,
along with a new property:

Every number x except 0 has a multiplicative inverse; that is, there is a number
y such that 

Complex Numbers

A complex number has the form where a and b are real numbers and
The conjugate of is and The

set of reals is a subset of the complex numbers because any real number x may be writ-
ten as Complex numbers do not share the ordering properties of the reals.

Functions

A function (or a mapping) is a rule of correspondence that associates to each ele-
ment in a set A a unique element in a second set B. No restriction is placed on the
sets A and B, which may be sets of numbers, or functions, or vegetables. To denote
that f is a function from A to B, we write

f : A → B

x + 0i.

(a + bi)(a − bi) = a2 + b2.a − bia + bii =
√

−1.
a + bi,

xy = 1.

��
√

2

x = p/q.q =� 0,

27
5 .2, π,

√
13,

“∞”

(−∞, b] = {x: x � � and x ≤ b}[a, ∞) = {x: x � � and a ≤ x}

(−∞, b) = {x: x � � and x < b}(a, ∞) = {x: x � � and a < x}
[a, b] = {x: x � � and a ≤ x ≤ b}
(a, b) = {x: x � � and a < x < b}

a < b:

b = ak.
a =� 0

x = 2j + 1.
x = 2k.
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and say “ f maps A to B.” If and the corresponding element of B is b, we write

The elements of A are sometimes called the arguments or inputs of the function.
If we say that b is the image of a, or b is the value of the function f at a.
We also say that a is a pre-image of b.

For example, given by represents the correspondence
that assigns to each real number x the number that is one more than the square of x.
The image of the real number 2 is 5 and is a pre-image of 10.

The features that make f a function from A to B are that every element of A
must have an image, that image must be in B, and most importantly, that no element
of A has more than one image. It is this single-valued property that make functions
so useful.

If the set A is the domain of f, denoted and B is the
codomain of f . The set

of all images under the function f is called the range of f . The range of the function
given by is

It is sometimes convenient to describe a function by giving only a domain and
a rule. For functions whose domains and codomains are subsets of the domain is
sometimes left unspecified and assumed to be the largest possible subset of for
which image values may be obtained. With this assumption, the domain of

is because this is the largest set of real numbers for which
may be calculated.

When we say that it is required that However, it may
be that some elements of the codomain are not images under the function f ; that is,
the set may not be equal to B. In the special case when the range of f is
equal to B, we say f maps A onto B. It may also be that two different elements of
A have the same image in B. In the special case when any two different arguments
have different images, we say that f is one-to-one. Because the range of

is is not onto Since and have value 10, f
is not one-to-one.

What am I allowed to assume for a proof?

You may be given specific instructions for some proof writing exercises, but gener-
ally the idea is that you may use what someone studying the topic of your proof
would know. That is, when we prove something about intersecting lines we might
use facts about the slope of a line, but we probably would not use properties of
derivatives. This really is not much of a problem, except for our first proof exam-
ples, which deal with elementary concepts such as even and odd (because they pro-
vide meaningful examples and a familiar context in which to study logic and
reasoning). For these proofs we are allowed to use the properties of integers and

f (−3)f (3)�.[1, ∞), ff (x) = x2 + 1

Rng ( f )

Rng ( f ) ⊆ B.f : A → B,

√
x + 1

[−1, ∞),g(x) =
√

x + 1

�

�,

[1, ∞).f (x) = x2 + 1f : � → �

Rng ( f ) = { f (x): x � A}

Dom ( f ),f : A → B,

−3

f (x) = x2 + 1f : � → �

f (a) = b

f (a) = b.

a � A
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natural numbers that we already know except what we already know about even-
ness and oddness.

Remember, we don’t expect you to become an expert at proving theorems
overnight. With practice—studying lots of examples and exercises—the skills will
come. Our goal is to help you write and think as mathematicians do, and to pres-
ent a solid foundation in material that is useful in advanced courses. We hope you
enjoy it.

Douglas D. Smith
Richard St. Andre
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