18 CHAPTER 1 Logic and Proofs

15. Givethe converse and contrapositive of each sentence of Exercises 10(a), (b),
(c), and (d). Tell whether each converse and contrapositive is true or false.

16. Determinewhether each of the following isatautology, a contradiction, or neither.
* (a [(P=Q)=P]=P.
b) P=PA(PVQ).
¢ P=Q&PA~Q.
* (d P=[P= (P=Q)
e PA(QV~Q)sP.
® [QA((P=Q)]=P.
@ (PeQ e ~(~PVvQ)Vv(~PAQ).
() [P=QVR]=[(Q=R)v(R=P).
i) PA (P Q) A~Q.
G (PVvQ)=Q=P.
k) [P=@QAR)]=[R= (P=Q).
M [P=QAR)]=R= (P=0Q).
17. The inverse, or opposite, of the conditional sentence P = Q is~P = ~Q.
(a) Show that P = Q and itsinverse are not equivaent forms.
(b) For what values of the propositions P and Q are P = Q and itsinverse
both true?
(¢) Which isequivalent to the converse of a conditional sentence, the con-
trapositive of itsinverse, or the inverse of its contrapositive?

1.3 Quantifiers

Unless there has been a prior agreement about the value of x, the statement “x > 3" is
neither true nor false. A sentence that contains variablesis called an open sentence or
predicate, and becomes aproposition only when itsvariables are assigned specific val -
ues. For example, “x > 3" istrue when x is given the value 7 and false when x = 2.
When P is an open sentence with a variable x, the sentence is symbolized by
P(x). Likewisg, if P has variables x4, X2, X3, . . ., Xn, the sentence may be denoted by
P (X1, X2, X3, .. ., Xn). FOr example, for the sentence“x + y = 3z” wewrite P (x, y, z),
and we seethat P (4, 5, 3) istrue because 4 + 5 = 3(3), while P (1, 2, 4) isfase.
The collection of objects that may be substituted to make an open sentence a
true proposition is called the truth set of the sentence. Before a truth set can be
determined, we must be given or must decide what objects are available for consid-
eration; that is, we must have specified a universe of discourse. In many cases the
universewill be understood from the context. For a sentence such as*“ x likes choco-
late,” the universeis presumably the set of al people. We will often use the number
systems N, Z, @, R, and C as our universes. (See the Preface to the Student.)

Example. Thetruth set of the open sentence “x? < 5” depends upon the collection
of objectswe choose for the universe of discourse. With the universe specified asthe
set N, the truth set is{1, 2}. For the universe Z, thetruth set is{—2, —1, 0, 1, 2}.
When the universeis R, the truth set is the open interval (—+/5,+/5).
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1.3 Quantifiers 19

DEFINITION  With auniverse specified, two open sentences P (x) and
Q(X) are equivalent iff they have the same truth set.

Examples. The sentences “3x + 2= 20" and “x = 6" are equivalent open sen-
tences in any of the number systems we have named. On the other hand, “x? = 4”
and “x = 2" are not equivalent when the universe is R. They are equivalent when
the universeis N.

The notions of truth set, universe, and equivalent open sentences should not be
new concepts for you. Solving an equation such as (x2 + 1)(x — 3) = 0 is a matter
of determining what objects x make the open sentence “(x? + 1)(x — 3) = 0” true.
For the universe R, the only solutionisx = 3 and thusthe truth set is{ 3} . But if we
choose the universe to be C, the equation may be replaced by the equivalent open
sentence (X + i)(X — i)(x — 3) = 0, which has truth set (solutions) {3, i, —i}.

A sentence such as

“Thereis aprime number between 5060 and 5090”

is treated differently from the propositions we considered earlier. To determine
whether this sentence is true in the universe N, we might try to individually exam-
ine every natural number, checking whether it is a prime and between 5060 and
5090, until we eventually find any one of the primes 5077, 5081, or 5087 and con-
clude that the sentence istrue. (A quicker way is to search through a complete list
of the first thousand primes.) The key idea here is that although the open sentence
“x is a prime number between 5060 and 5090 is hot a proposition, the sentence

“There isanumber x such that x is a prime number between 5060 and 5090”

does have a truth value. This sentence is formed from the origina open
sentence by applying a quantifier.

DEFINITION For an open sentence P (x), the sentence (3x)P (x) is
read “ There exists x such that P (x)” or “For some X, P (x).” The sentence
(IX)P(x) is trueiff the truth set of P(x) is nonempty. The symbol 3 is
called the existential quantifier.

An open sentence P (x) does not have atruth value, but the quantified sentence
(3x) P (x) does. One way to show that (3x) P (x) is true for a particular universe is
toidentify an object a in the universe such that the proposition P (a) istrue. To show
(FX) P (x) isfalse, we must show that the truth set of P (x) is empty.

Examples. Let's examine the truth values of these statements for the universe R:

(@ (Ix=3)
(b) (E(x*=0)
© (IEx*=-1)
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20 CHAPTER 1 Logic and Proofs

Statement (@) istrue because the truth set of x > 3 contains 3, 7.02, and many other
real numbers. Thus the truth set contains at least one real number. Statement (b) is
true because the truth set of x2 = O is precisely {0} and thusis nonempty. Since the
open sentence x? = —1 is never true for real numbers, the truth set of x> = —1is
empty. Statement (c) isfalse.

In the universe N, only statement (a) is true. The three statements are all true
inthe universe {0, 5, i} and all three statements are falsein the universe {1, 2}.

Sometimes we can say (3x) P (X) is true even when we do not know a specific
object in the universe in the truth set of P(x), only that there (at least) is one.

Example. Show that (3x)(x” — 12x3 + 16x — 3 = 0) istruein the universe of real
numbers.

For the polynomial f(x) =x’ —12x34 16x — 3, f(0) = —3 and f (1) = 2.
From caculus, we know that f is continuous on [0, 1]. The Intermediate Value Theo-
remtellsusthereisazerofor f between 0 and 1. Evenif wedon't know the exact value
of the zero, we know it exists. Therefore, the truth set of x” — 12x3 + 16x — 3=10
is nonempty. Hence (3x)(x” — 12x3 + 16x — 3 = Q) istrue.

The sentence “The square of every number is greater than 3” uses a different
quantifier for the open sentence “x? > 3.” To decide the truth value of the given
sentence in the universe N it is not enough to observe that 3° > 3, 4% > 3, and so
on. Infact, the sentenceisfalsein N because 1 isin the universe but not in the truth
set. The sentence is true, however, in the universe [1.74, oo) because with this uni-
verse the truth set for x* > 3 isthe same as the universe.

DEFINITION For an open sentence P (), the sentence (VX) P (x) isread
“For dl x, P(x)” and istrueiff the truth set of P(X) is the entire universe.
The symbol V is called the universal quantifier.

Examples. For the universe of all real numbers,

(VX)(x 4+ 2 > x) istrue.

(VX)(x>0vx=0vVx<Q0)istrue. That is, every real number is positive,
Zero or negative.

(Yx)(x > 3) isfase because there are (many) real numbers x for

which x > 3isfalse.

(YX)(|x] > 0) isfase, because Oisnot in the truth set.

There are many ways to express a quantified sentence in English. Look for key
words such as “for al,” “for every,” “for each,” or similar words that require uni-
versal quantifiers. Look for phrases such as*“some,” “at least one,” “there exist(s),”
“thereis (are),” and others that indicate existential quantifiers.

You should also be dert for hidden quantifiers because natural languagesallow for
imprecise quantified statements where the words “for al” and “there exists’ are not
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1.3 Quantifiers 21

present. Someone who says “Polynomia functions are continuous’ means that “All
polynomial functionsare continuous,” but someone who says* Rational functions have
vertical asymptotes’ must mean “Some rational functions have vertical asymptotes.”

We agree that “ All apples have spots” is quantified with V, but what form does
it have? If we limit the universe to just apples, a correct symbolization would be
(¥x)(x has spots). But if the universe is all fruits, we need to be more careful. Let
A(X) be“x isan apple” and S(x) be “x has spots.” Should we write the sentence as
(YX)[A(X) A S(X)] or (VX)[A(X) = S(X)]?

The first quantified form, (VX)[A(X) A S(X)], says “For all objects x in the uni-
verse, x isan appleand x has spots.” Sincewedon’t really intend to say that al fruitsare
spotted apples, thisis not the meaning we want. Our other choice, (VX)[A(X) = S(X)],
isthe correct one because it says “ For al objects x in the universe, if x is an apple then
x has spots.” In other words, “If afruit isan gpple, then it has spots.”

Now consider “ Some apples have spots.” Should this be (IX)[A(X) A S(x)] or
(I[A(X) = S(X)]? Thefirst form says*“ Thereisan object x such that it isan apple
and it has spots,” which is correct. On the other hand, (3x)[A(X) = S(x)] reads
“There is an object x such that, if it is an apple, then it has spots,” which does not
ensure the existence of apples with spots. The sentence (IX)[A(X) = S(X)] istrue
in every universe for which there is an object x such that either x is not an apple or
X has spots, which is not the meaning we want.

In general, a sentence of the form “All P (x) are Q (x)” should be symbolized
(YX)[P(x) = Q(x)]. And, in general, asentence of the form “SomeP (x) are Q (x)”
should be symbolized (Ix)[P (x) A Q(X)].

Examples. The sentence “For every odd prime x less than 10, x? + 4 is prime”
means that if x is prime, and odd, and less than 10, then x? + 4 is prime. It is writ-
ten symbolically as

(VX)(x isprime A xisodd A x < 10 = x* + 4 isprime).

The sentence “ Some functions defined at 0 are not continuous at 0” can be written
symbolically as (3 )(f isdefined at O A f is not continuous at 0).

Example. The sentence “ Some real numbers have a multiplicative inverse” could
be symbolized

(3X)(x isareal number A x has areal multiplicative inverse).

However, “x has an inverse” means there is some number that is an inverse for x
(hidden quantifier), so a more complete symbolic translation is

(IX)[x isarea number A (3y)(y isarea number A xy = 1)].

Example. One correct trandation of “Some integers are even and some integers
areodd” is

(IX)(x iseven) A (IX)(x isodd)
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22 CHAPTER 1 Logic and Proofs

because the first quantifier (3x) extends only as far as the word “even.” After that,
any variable (even x again) may be used to express “some are odd.” It would be
equally correct and sometimes preferable to write

(IX)(x iseven) A (Ty)(y isodd),
but it would be wrong to write
(Ix)(x iseven A x is odd),
because there is no integer that is both even and odd.
Several of our essential definitions given in the Preface to the Student are in

fact quantified statements. For example, the definition of arational number may be
symbolized:

risarationa number iff (Ip)(AqQ)(peZAgeZ ANqQ#OAT= g)

Statements of the form “Every element of the set A has the property P” and
“Some element of the set A has property P” occur so frequently that abbreviated
symbolic formsare desirable. “ Every element of the set A hasthe property P” could
berestated as“If x € A, then . . .” and symbolized by

(Yx e AP (X).
“Some element of the set A has property P” is abbreviated by
(Ix € A)P(x).

Examples. Thedefinition of arational number given above may be written as
risarationa number iff (dp € Z2)(3q € Z2)(Q#AO AT = %).

The statement “ For every rational number thereisalarger integer” may be symbol-
ized by

(W)[xe Q= (F2)(ze Zand z > X)]
or
(Vxe Q)(Fz € 2)(z > X).

DEFINITION Two quantified sentences are equivalent in a given
universe iff they have the same truth value in that universe. Two quanti-
fied sentences are equivalent iff they are equivalent in every universe.

Example. (Vx)(x > 3) and (Vx)(x > 4) are equivalent in the universe of integers
(because both are false), the universe of natural numbers greater than 10 (because
both are true), and in many other universes. However, if we chose a number
between 3 and 4, say 3.7, and let U be the universe of real numbers|larger than 3.7,
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1.3 Quantifiers 23

then (Vx)(x > 3) istrueand (Vx)(x > 4) isfalsein U. The sentences are not equiv-
alent in this universe, so they are not equivalent sentences.

As was noted with propositional forms, it is necessary to make a distinction
between a quantified sentence and its logical form. With the universe al inte-
gers, the sentence “All integers are odd” is an instance of the logical form
(YX)P(x), where P(x) is“x isodd.” The formitself, (Vx)P (x), is neither true nor
false, but becomes false when “x is odd” is substituted for P (x) and the universe
isall integers.

The pair of quantified forms (IX)([P(X) A Q(X)] and (IX)([Q(X) A P(x)] are
equivalent because for any choices of P and Q, P A Q and Q A P are equivalent
propositional forms. Another pair of equivalent sentences is (Vx)[P(x) = Q(X)]
and (VX)[~Q(x) = ~P(x)].

The next two equivalences are essential for reasoning about quantifiers.

Theorem 1.3.1 If A(x) is an open sentence with variable x, then

(@ ~(YX)A(X) isequivaent to (Ix) ~A(X).
(b) ~(IX)A(X) isequivalent to (Vx) ~A(X).

Proof.
(a) LetU beany universe.
The sentence ~ (VX) A(X) istruein U
iff (VX)A(X)isfaseinU
iff thetruth set of A(x) isnot the universe
iff the truth set of ~A(x) is nonempty
iff (3x) ~A(x) istruein U.

(b) Theproof of thispart is Exercise 7. [ ]

Theorem 1.3.1 is helpful for finding useful denials (that is, simplified forms of
negations) of quantified sentences. For example, in the universe of natural numbers,
the sentence “All primes are odd” is symbolized (Vx)(x is prime = x is odd). The
negation is ~ (Vx)(x is prime = x is odd). By applying Theorem 1.3.1(a), this
becomes (Ix)[~(x is prime = x is odd)]. By Theorem 1.2.2(c) this is equivalent to
(IX)[x is prime A ~(x is odd)]. We read this last statement as “There exists a num-
ber that is prime and is not odd” or “Some prime number is even.”

Example. A simplified denial of (Vvx)(3y)(3z)(Vu)(IV)(X+Yy + 2> 2u + V)
begins with its negation
~(YX)(3Y)(F2) (Yu)(FV)(X + Y + 2 > 2u + V).

After 5 applications of Theorem 1.3.1, beginning with the outermost quantifier
(¥x), we arrive at the simplified form

(IX) (YY) (V) (FUW)(YW)(X + Y + 2 < 2u + V).

Example. For the universe of all real numbers, find a denial of “Every positive
real number has a multiplicative inverse.”
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24 CHAPTER 1 Logic and Proofs

The sentence is symbolized (Vx)[x > 0 = (3y)(xy = 1)]. The negation and
successively rewritten equivalents are:
~(VX)[x> 0= (3y)(xy = 1)]
(3X) ~[x > 0= (Iy)xy =1)]
(3[x >0 A ~@Ey)xy = 1)]
(3N)x > 0 A (Vy) ~(xy = 1)]
(IN)x >0 A (vy)(xy # 1)]

This last sentence may be translated as “There is a positive real number that has no
multiplicative inverse.”

Example. For the universe of living things, find a denial of “Some children do not
like clowns.”

The sentence is (3x) [x isachild A (Vy)(y isaclown = x does not like y)]. Its
negation and several equivalents are:

~(3x) [xisachild A (Vy)(y is aclown = x does not like y)]
(Wx) ~[xisachild A (Vy)(y is aclown = x does not like y)]
(YX)[xisachild = ~(Vy)(yisaclown = x does not likey)]
(Wx)[xisachild = (3y) ~(yisaclown = x does not likey)]
(Vx)[xisachild = (Jy)(yisaclown A ~xdoes not likey)]
(Vx)[xisachild = (Jy)(yisaclown A x likesy)]

The denial we seek is “Every child has some clown that he/she likes.”

We sometimes hear statements like the complaint one fan had after a great Little
League baseball game. “The game was fine,” he said, “but everybody didn’t get to
play.” We easily understand that the fan did not mean this literally, because otherwise
there would have been no game. The meaning we understand is “Not everyone got to
play” or “Some team members did not play.” Such misuse of quantifiers, while toler-
ated in casual conversations, is always to be avoided in mathematics.

The 3! quantifier, defined next, is a special case of the existential quantifier.

DEFINITION For an open sentence P (x), the proposition (3!x) P (x) is
read “there exists a unique X such that P(x)” and is true iff the truth set
of P (x) has exactly one element. The symbol 3! is called the unique exis-
tential quantifier.
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1.3 Quantifiers 25

Recall that for (3x) P (x) to be true it is unimportant how many elements are in
the truth set of P(x), as long as there is at least one. For (3!x) P (x) to be true, the
number of elements in the truth set of P(x) is crucial—there must be exactly one.

In the universe of natural numbers, (3!x) (x is even and x is prime) is true
because the truth set of “x is even and x is prime” contains only the number 2. The
sentence (3!x)(x? = 4) is true in the universe of natural numbers, but false in the
universe of all integers.

Theorem 1.3.2 If A(x) is an open sentence with variable x, then

@ (GAYAKX) = (3IX)AX).
(b) (X AX) is equivalent to (IX) AX) A (VY)(V2)(A(Y) A A@R) = Yy =12).

Part (a) of Theorem 1.3.2 says that 3! is indeed a special case of the quantifier
3. Part (b) says that “There exists a unique x such that A(x)” is equivalent to “There
is an x such that A(x) and if both A(y) and A(z), then y = z.” The proofs are left to
Exercise 11.

Exercises 1.3

1. Translate the following English sentences into symbolic sentences with quan-
tifiers. The universe for each is given in parentheses.
* (a) Not all precious stones are beautiful. (All stones)
(b) All precious stones are not beautiful. (All stones)
(¢) Some isosceles triangle is a right triangle. (All triangles)
(d) No right triangle is isosceles. (All triangles)
(e) All people are honest or no one is honest. (All people)
(f) Some people are honest and some people are not honest. (All people)
(g) Every nonzero real number is positive or negative. (Real numbers)
* (h) Every integer is greater than —4 or less than 6. (Real numbers)
(i) Every integer is greater than some integer. (Integers)
* (j) No integer is greater than every other integer. (Integers)
(k) Between any integer and any larger integer, there is a real number. (Real
numbers)
* () There is a smallest positive integer. (Real numbers)
* (m) No one loves everybody. (All people)
(n) Everybody loves someone. (All people)
(o) For every positive real number x, there is a unique real number y such
that 2¥ = x. (Real humbers)

2. For each of the propositions in Exercise 1, write a useful denial, and give a
translation into ordinary English.

3. Translate these definitions from the Preface to the Student into quantified
sentences.
(a) The integer X is even.
(b) The integer x is odd.
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(¢) The integer a divides the integer b.
(d) The natural number n is prime.
(e) The natural number n is composite.

4. Translate these definitions in this text into quantified sentences. You need not
know the specifics of the terms and symbols to complete this exercise.
(a) The relation R is symmetric. (See page 147.)
(b) The relation R is transitive. (See page 147.)
(¢) The function f is one-to-one. (See page 208.)
(d) The operation = is commutative. (See page 277.)

5. The sentence “People dislike taxes” might be interpreted to mean “All people
dislike all taxes,” “All people dislike some taxes,” “Some people dislike all
taxes,” or “Some people dislike some taxes.” Give a symbolic translation for
each of these interpretations.

6. LetT={17}, U={6},V={24} and W= {2, 3,7, 26}. In which of these
four different universes is the statement true?
*x a) (3Ix)(xisodd = x > 8).
b) (IX)(xisodd A x > 8).
¢) (¥x)(xisodd = x > 8).
d) (VX)(xisodd A x > 8).

7. (a) Complete this proof of Theorem 1.3.1(b):
Proof: Let U be any universe.
The sentence ~ (3x) A(X) is true in U
iff ...
iff (Vx) ~A(X) is true in U.
(b) Give a proof of part (b) of Theorem 1.3.1 that uses part (a).

8. Which of the following are true? The universe for each statement is given in
parentheses.
@) (V)X +x>x).(R)
* (b)) (VX)X + x> x). (N)
© (@FXN2x+3=6x+7).(N)
@ (3@ =x%.([R)
* (e) (INE =x).(R)
® (B2 —x)=54+8(1 —x)). (R)
(@ (YX)(X%2+6x+5=>0).(R)
*x (h) (YX)(X? +4x +5>0). (R)
) (3% — x + 41 is prime). (N)
G (Y)(X? — x + 41 is prime). (N)
& (VX)X 4 17x% + 6x + 100 > 0). (R)
O (M)Wx<y= Ew)x <w <y)]. (Q)
9. Give an English translation for each. The universe is given in parentheses.
(@ (Y)(x=1).(N)
* (b)) (AX)(x>0Ax=<0).(R)
(©)  (¥YX)(xisprime A X # 2 = x is odd). (N)
* (@) (FX)(logex = 1). (R)
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(e ~(3INK <0).(R)
® (@EXE=0). (R)
(@ (¥X)(xisodd = x?is odd). (N)

10. Which of the following are true in the universe of all real numbers?
* (@ (Y)Y +y=0).
®)  E)(W)X+y=0).
© (@0ENE +y>=-1).
* (d) (V)[X>0= 3y)y <0Axy>D0)]
(&) (YY)(E)(V2)(xy = x2).
* () @YX =Y).
(® (WEX)X=Y).
Mh) @Ay <0Ay+3>0).
@) @YX =y?).
() (WENX=Yy?).
& @AY (Yw)W? > x —y).
11. Let A(X) be an open sentence with variable x.
(a) Prove Theorem 1.3.2 (a).
(b) Show that the converse of Theorem 1.3.2 (a) is false.
(¢) Prove Theorem 1.3.2 (b).
(d) Prove that (3'x) A(x) is equivalent to (IX)[A(X) A (VY)(A(Y) = x =Y)].
* (e) Find a useful denial for (3!x) A(X).
12. (a) Write the symbolic form for the definition of “f is continuous at a.”
(b) Write the symbolic form of the statement of the Mean Value Theorem.
(¢) Write the symbolic form for the definition of * Iima f(x)=L."
(d) Write a useful denial of each sentence in parts )Ea_s (b), and (c).
13. Which of the following are denials of (3!x) P (x)?
(@ (VX)P(X) Vv (¥YX)~P(x).
() (vx) ~P(x) v (3y)(F2)(y # 2 A P(y) A P(2)).
© (VIIP(X) = EY)(P(y) A x#Y)].
(@) ~(Y)(WIPX) A P(Y)) = x=Yl.
» 14. Riddle: What is the English translation of the symbolic statement Y33v?

1.4 Basic Proof Methods |

In mathematics, a theorem is a statement that describes a pattern or relationship
among quantities or structures and a proof is a justification of the truth of a theo-
rem. Before beginning to examine valid proof techniques it is recommended that
you review the comments about proofs and the definitions in the Preface to the
Student.

We cannot define all terms nor prove all statements from previous ones. We
begin with an initial set of statements, called axioms (or postulates), that are
assumed to be true. We then derive theorems that are true in any situation where the
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axioms are true. The Pythagorean* Theorem, for example, is a theorem whose
proof is ultimately based on the five axioms of Euclidean’ geometry. In a situation
where the Euclidean axioms are not all true (which can happen), the Pythagorean
Theorem may not be true.

There must also be an initial set of undefined terms—concepts fundamental to the
context of study. In geometry, the concept of a point is an undefined term. In this text
the real numbers are not formally defined. Instead, they are described in the Preface to
the Student as the decimal numbers along the number line. While a precise definition of
a real number could be given*, doing so would take us far from our intended goals.

From the axioms and undefined terms, new concepts (new definitions) can be
introduced. And finally, new theorems can be proved. The structure of a proof for a par-
ticular theorem depends greatly on the logical form of the theorem. Proofs may require
some ingenuity or insightfulness to put together the right statements to build the justifi-
cation. Nevertheless, much can be gained in the beginning by studying the fundamental
components found in proofs and examples that exhibit them. The four rules that follow
provide guidance about what statements are allowed in a proof, and when.

Some steps in a proof may be statements of axioms of the basic theory upon
which the discussion rests. Other steps may be previously proved results. Still other
steps may be assumptions you wish to introduce. In any proof you may

At any time state an assumption, an axiom, or a previously proved result.

The statement of an assumption generally takes the form “Assume P” to alert
the reader that the statement is not derived from a previous step or steps. We must
be careful about making assumptions, because we can only be certain that what we
proved will be true when all the assumptions are true. The most common assump-
tions are hypotheses given as components in the statement of the theorem to be
proved. We will discuss assumptions in more detail later in this section.

The statement of an axiom is usually easily identified as such by the reader
because it is a statement about a very fundamental fact assumed about the theory.
Sometimes the axiom is so well known that its statement is omitted from proofs, but
there are cases (such as the Axiom of Choice in Chapter 5) for which it is prudent
to mention the axiom in every proof employing it.

Proof steps that use previously proven results help build a rich theory from the
basic assumptions. In calculus, for example, before one proves that the derivative

X
of sin x is cos X, there is a proof of the separate result that lim =1.1tis

Ax—0 AX
easier to prove this result first, then cite the result in the proof of the fact that the
derivative of sin x is cos x.

* Pythagoras, latter half of the 6th century, B.c.E., was a Greek mathematician and philosopher who
founded a secretive religious society based on mathematical and metaphysical thought. Although
Pythagoras is regularly given credit for the theorem named for him, the result was known to Babylonian
and Indian mathematicians centuries earlier.

T Euclid of Alexandria, circa 300 B.c.E., made his immortal contribution to mathematics with his famous
text on geometry and number theory. His Elements sets forth a small number of axioms from which
additional definitions and many familiar geometric results were developed in a rigorous way. Other
geometries, based on different sets of axioms, did not begin to appear until the 1800s.

t See the references cited in Section 7.5.
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An important skill for proof writing is the ability to rewrite a complex state-
ment in an equivalent form that is more useful or helps to clarify its meaning.
You may:

At any time state a sentence equivalent to any statement earlier in the proof.

This replacement rule is often used in combination with the equivalences of
Theorems 1.1.1 and 1.2.2 to rewrite a statement involving logical connectives. For
example, suppose we have been able to establish the step

“It is not the case that x is even and prime.”

Because the form of this statement is ~ (P A Q), where P is “x is even” and Q is “x
is prime,” we may deduce that

“X is not even or x is not prime,”

which has form ~P v ~Q. We have applied the replacement rule, using one of De
Morgan’s Laws. A working knowledge of the equivalences of Theorems 1.1.1 and
1.2.2 is essential.

The replacement rule allows you to use definitions in two ways. First, if you are
told or have shown that x is odd, then you can correctly state that for some natural
number k, x = 2k + 1. You now have an equation to use. Second, if you need to
prove that x is odd, then the definition gives you something equivalent to work
toward: It suffices to show that x can be expressed as x = 2k + 1, for some natural
number k. You’ll find it useful in writing proofs to keep in mind these two ways we
use definitions.

Example. If a proof contains the line “The product of real numbers a and b is
zero,” we could assert that “Either a = 0 or b = 0.” In this example, the equivalence
of the two statements comes from our knowledge of the real numbers that
(@b=0)«< (@a=00rb=0).

Tautologies are important both because a statement that has the form of a tau-
tology may be used as a step in a proof, and because tautologies are used to cre-
ate rules for making deductions in a proof. The tautology rule says that you may:

At any time state a sentence whose symbolic translation is a tautology.

For example, if a proof involves a real number x, you may at any time assert “Either
X > 0 orx < 0,” since this is an instance of the tautology P v ~P.

The rules above allow us to reword a statement or say something that’s always
true or is assumed to be true. The next rule is the one that allows us to make a con-
nection so that we can get from statement P to a different statement Q.

The most fundamental rule of reasoning is modus ponens, which is based on
the tautology [P A (P = Q)] = Q. As we have seen in Section 1.2, what this
means is that when P and P = Q are both true, we may deduce that Q must also be
true. The modus ponens rule says you may:

At any time after P and P = Q appear in a proof, state that Q is true.
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Example. From calculus we know that if a function f is differentiable on an inter-
val (a, b), then f is continuous on the interval (a, b). A proof writer who had already
written:

f is differentiable on the interval (a, b)
could use modus ponens to write as a subsequent step:
Therefore f is continuous on the interval (a, b).

This deduction uses the statements D, D = C, and C, where D is the statement “f is
differentiable on interval (a, b)” and C is “f is continuous on the interval (a, b).”

Notice that in this example it would make the proof shorter and easier to read
if we didn’t write out the sentence D = C in the proof. This is because the connec-
tion between differentiability and continuity is a well-known theorem, which the
proof writer may assume that the reader knows.

When we use modus ponens to deduce statement Q from P and P = Q, the
statement P could be an instance of a tautology, a simple or compound proposition
whose components are either hypotheses, axioms, earlier statements deduced in the
proof, or statements of previously proved theorems. Likewise, P = Q may have
been deduced earlier in the proof or may be a previous theorem, axiom, or tautology.

Example. You are at a crime scene and have established the following facts:

(1) If the crime did not take place in the billiard room, then Colonel Mustard is guilty.
(2) The lead pipe is not the weapon.
(3) Either Colonel Mustard is not guilty or the weapon used was a lead pipe.

From these facts and modus ponens, you may construct a proof that shows the
crime took place in the billiard room:

Proof.
Statement (1) ~B=M
Statement (2) ~L
Statement (3) ~M v L
Statements (1) and (2) and (3) (~B=M) A~LA(~M VL)
Statements (1), (2), and (3) [B=M) A~LA(~MV L)]=B

imply the crime took place is a tautology (see Exercise 2).
in the billiard room.
Therefore, the crime took place B
in the billiard room. =

The last three statements above are an application of the modus ponens rule:
We deduced Q from the statements P and P = Q, where Q is B and P is
(~B= M) A~LA(~MVL).
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The previous example shows the power of pure reasoning: It is the forms of the
propositions and not their meanings that allowed us to make the deductions.

Because our proofs are always about mathematical phenomena, we also need
to understand the subject matter of the proof—the concepts involved and how they
are related. Therefore, when you develop a strategy to construct a proof, keep in
mind both the logical form of the theorem’s statement and the mathematical con-
cepts involved.

You won’t find truth tables displayed or referred to in proofs that you encounter
in mathematics: It is expected that readers are familiar with the rules of logic and
correct forms of proof. As a general rule, when you write a step in a proof, ask your-
self if deducing that step is valid in the sense that it uses one of the four rules above.
If the step follows as a result of the use of a tautology, it is not necessary to cite the
tautology in your proof. In fact, with practice you should eventually come to write
proofs without purposefully thinking about tautologies. What is necessary is that
every step be justifiable.

The first—and most important—proof method is the direct proof of statement
of the form P = Q, which proceeds in a step by step fashion from the antecedent P
to the consequent Q. Since P = Q is false only when P is true and Q is false, it suf-
fices to show that this situation cannot happen. The direct way to proceed is to
assume that P is true and show (deduce) that Q is also true. A direct proof of P = Q
will have the following form:

DIRECT PROOF OFP = Q
Proof.
Assume P.

Therefore, Q.
Thus, P = Q. [

Some of the examples that follow actually involve quantified sentences. Since
we won’t consider proofs with quantifiers until Section 1.6, you should imagine for
now that a variable represents some fixed object. Out first example proves the famil-
iar fact that “If x is odd, then x + 1 is even.” You should think of x as being some
particular integer.

Example. Let x be an integer. Prove that if x is odd, then x + 1 is even.

Proof. (The theorem has the form P = Q, where P is “x is odd”” and Q is “x + 1
is even.”) Let x be an integer. (We may assume this hypothesis since it is given

in the statement of the theorem.) Suppose x is odd. (We assume that the antecedent
P is true. The goal is to derive the consequent Q as our last step.) From the defi-
nition of odd, x = 2k + 1 for some integer k. (This deduction is the replacement
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of P by an equivalent statement—the definition of ““odd.” We now have an equa-

tion to use.) Then x+1=(2k 4+ 1) + 1 for some integer k. (This is another

replacement using an algebraic property of N.) Since

(2k+1)+1=2k+2=2(k+1), x+1 is the product of 2 and an integer.
(Another equivalent using algebra.) Thus x + 1 is even. (We have deduced Q.)

Therefore, if x is an odd integer, then x + 1 is even. (We conclude that P = Q.)

|

In this example, we did not worry about what would happen if x were not odd.
Remember that it is appropriate to assume P is true when giving a direct proof of
P = Q. (If P is false, it does not matter what the truth of Q is; the statement we are
trying to prove, P = Q, will be true.) The process of assuming that the antecedent
is true and proceeding step by step to show the consequent is true is what makes this
type of proof direct.

This example also includes parenthetical comments offset by (...) and in ital-
ics to explain how and why a proof is proceeding as it is. Such comments are not a
requisite part of the proof, but are inserted to help clarify the workings of the proof.
The proof above would stand alone as correct with all the comments deleted, or it
could be written in shorter form, as follows.

Proof. Let x be an integer. Suppose x is odd. Then x = 2k + 1 for some integer k.
Then x+1=02k+1)+1=2k+2=2(k+ 1). Since k+ 1 is an integer and
X+1=2(k+ 1), x+ liseven.

Therefore, if x is an odd integer, then x + 1 is even. u

Great latitude is allowed for differences in taste and style among proof
writers. Generally, in advanced mathematics, only the minimum amount of
explanation is included in a proof. The reader is expected to know the defini-
tions and previous results and be able to fill in computations and deductions as
necessary. In this text, we shall include parenthetical comments for more com-
plete explanations.

Example. Suppose a, b, and c are integers. Prove that if a divides b and b divides
¢, then a divides c.

Proof. Let a, b, and ¢ be integers. (We start by assuming that the hypothesis is
true.) Suppose a divides b and b divides c. (The antecedent is the compound sen-
tence ““a divides b and b divides ¢.”) Then b = ak for some integer k and ¢ = bm for
some integer m. (\We replaced the assumptions by equivalents using the definition of
“divides.” Notice that we did not assume that k and m are the same integer.) (To
show that a divides ¢, we must write ¢ as a multiple of a.) Therefore,
¢ = bm = (ak)m = a(km). Then c is a multiple of a. (We use the fact that if k and m
are integers, then km is an integer.)

Therefore, if a divides b and b divides c, then a divides c. u
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Both of the above examples and many more to follow use the following strat-
egy for developing a direct proof of a conditional sentence:

1. Determine precisely the hypotheses (if any) and the antecedent and consequent.
2. Replace (if necessary) the antecedent with a more usable equivalent.

3. Replace (if necessary) the consequent by something equivalent and more read-
ily shown.

4. Beginning with the assumption of the antecedent, develop a chain of state-
ments that leads to the consequent. Each statement in the chain must be
deducible from its predecessors or other known results.

As you write a proof, be sure it is not just a string of symbols. Every step of
your proof should express a complete sentence. Be sure to include important con-
nective words.

Example. Suppose a, b, and c are integers. Prove that if a divides b and a divides
¢, then a divides b — c.

Proof. Suppose a, b, and c are integers and a divides b and a divides c. (Now use
the definition of divides.) Then b = an for some integer n and ¢ = am for some
integer m. Thus, b — ¢ = an — am = a(n — m). Since n — m is an integer (using
the fact that the difference of two integers is an integer ), a divides b — c. [

Our next example of a direct proof, which comes from an exercise in precalcu-
lus mathematics, involves a point (X, y) in the Cartesian plane (Figure 1.4.1). It uses
algebraic properties available to students in such a class.

Example. Prove thatif x < —4 and y > 2, then the distance from (x, y) to (1, —2)
is at least 6.

Proof. Assume that x < —4 andy > 2. Then x — 1 < —5, so (x — 1)®> > 25. Also
y + 2> 4,50 (y + 2)> > 16. Therefore,

Vx =12+ (y+ 22> +/25 + 16 > /36,

so the distance from (x, y) to (1, —2) is at least 6. [
y
(X! y) L [
n yo2
(- I — i I S X
Xx=-4 I~
[ .(11 _2)
Figure 1.4.1
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To get a sense of how a proof of P = Q should proceed, it is sometimes useful
to “work backward” from what is to be proved: To show that a consequent is true,
decide what statement could be used to prove it, another statement that could be
used to prove that one, and so forth. Continue until you reach a hypothesis, the
antecedent, or a fact known to be true. After doing such preliminary work, construct
a proof “forward” so that your conclusion is the consequent.

Example. Let a and b be positive real numbers. Prove that if a <b, then
b?> —a?> 0.

Proof. (Working backward, rewrite b> —a?>>0 as (b —a)(b+a) > 0. This
inequality will be true when both b —a > 0 and b + a > 0. The first inequality
b —a > 0 will be true because we will assume the antecedent a < b. The second
inequality b 4+ a > 0 is true because of our hypothesis that a and b are positive. We
now proceed with the direct proof.) Assume a and b are positive real numbers and
that a < b. Since both a and b are positive, b +a > 0. Sincea<b, b—a > 0.
Because the product of two positive real numbers is positive, (b — a)(b + a) > 0.
Therefore b?> — a? > 0. ]

It is often helpful to work both ways—backward from what is to be proved and
forward from the hypothesis—until you reach a common statement from each
direction.

Example. Prove that if x* < 1, then x* — 7x > — 10.
Working backward from x> — 7x > —10, we note that this can be deduced from
x? — 7x + 10 > 0. This can be deduced from (x — 5)(x — 2) > 0, which could be
concluded if we knew that x — 5 and x — 2 were both positive or both negative.
Working forward from x? < 1, we have —1 < x < 1, so x < 1. Therefore,
X <5 and x < 2, from which we can conclude that x —5 <0 and x — 2 <0,
which is exactly what we need.

Proof. Assume that x2 < 1. Then —1 < x < 1. Therefore x < 1. Thus x < 5 and
X < 2, and so we have x —5 < 0 and x — 2 < 0. Therefore, (x — 5)(x — 2) > 0.
Thus x2 — 7x + 10 > 0. Hence x2 — 7x > —10. n

We now consider direct proofs of statements of the form P = Q when either P
or Q is itself a compound proposition. We have in fact already constructed proofs
of statements of the form (P A Q) = R. When we give a direct proof of a statement
of this form, we have the advantage of assuming both P and Q at the beginning of
the proof, as we did in the proof (above) that if a divides b and a divides c, then a
divides b — c.

A proof of a statement symbolized by P = (Q A R) would probably have two
parts. In one part we prove P = Q and in the other part we prove P = R. We
would use this method to prove the statement “If two parallel lines are cut by a
transversal, then corresponding angles are equal and corresponding lines are
equal.”
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To prove a conditional sentence whose consequent is a disjunction, that is, a
sentence of the form P = (Q vV R), one often proves either the equivalent
P A~Q =R or the equivalent P A ~R = Q. For instance, to prove “If the
polynomial f has degree 4, then f has a real zero or f can be written as the product
of two irreducible quadratics,” we would prove “If f has degree 4 and no real zeros,
then f can be written as the product of two irreducible quadratics.”

A statement of the form (P v Q) = R has the meaning: “If either P is true or Q
is true, then R is true,” or “In case either P or Q is true, R must be true.” A natural
way to prove such a statement is by cases, so the proof outline would have the form:

Case 1. Assume P. ... Therefore R.
Case 2. Assume Q. ... Therefore R.

This method is valid because of the tautology
[(PVvQ)=R] <= [(P=R)A(Q=R)].

The statement “If a quadrilateral has opposite sides equal or opposite angles equal,
then it is a parallelogram” is proved by showing both “A quadrilateral with opposite
sides equal is a parallelogram” and “A quadrilateral with opposite angles equal is a
parallelogram.”

The two similar statement forms (P = Q) =R and P= (Q=R) have
remarkably dissimilar direct proof outlines. For (P = Q) = R, we assume P = Q
and deduce R. We cannot assume P; we must assume P = Q. On the other hand, in
a direct proof of P = (Q = R), we do assume P and show Q = R. Furthermore,
after the assumption of P, a direct proof of Q = R begins by assuming Q is true as
well. This is not surprising since P = (Q = R) is equivalentto (P A Q) = R.

The main lesson to be learned from this discussion is that the method of proof
you choose will depend on the form of the statement to be proved. The outlines we
have given are the most natural, but not the only ways, to construct correct proofs.
Of course constructing a proof also requires knowledge of the subject matter.

Example. Suppose n is an odd integer. Then n = 4j 4+ 1 for some integer j, or
n = 4i — 1 for some integer i.

Proof. Suppose n is odd. Then n = 2m + 1 for some integer m. (A little experi-
mentation shows that when m is even, for example when n is 2(—2) + 1,
2(0) + 1, 2(2) + 1, 2(4) + 1, etc., n has the form 4j + 1; otherwise n has the form
4i — 1. We now show that (P v Q) = (R; Vv R2), where P is “m is even,” Q is “m
is odd,” Ry is “n = 4j 4 1 for some integer j,”” and Ry is “n = 4i — 1 for some
integer i.”” The method we choose is to show that P = R; and Q = Ry.)

Case 1. If m is even, then m = 2j for some integer j, and so n =2(2j) + 1 =
4 + 1.

Case2. If mis odd, then m =2k + 1 for some integer k. In this case, n =
2(2k+1)+1=4k+3=4(k+ 1) — 1. Choosing i to be the integer
k+ 1, we have n =4i — 1. |
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The form of proof known as proof by exhaustion consists of an examination
of every possible case. The statement to be proved may have any form P. For exam-
ple, to prove that every number x in the closed interval [0, 5] has a certain property,
we might consider the cases x =0, 0 < X < 5, and x = 5. The exhaustive method
was our method in the example above, and in the proof of Theorem 1.1.1, where we
examined all four combinations of truth values for two propositions. Naturally, the
idea of proof by exhaustion is appealing only when the number of cases is small, or
when large numbers of cases can be systematically handled. Care must be taken to
ensure that all possible cases have been considered.

Example. Letx be a real number. Prove that — x| < x < |X].

Proof. (Since the absolute value of x is defined by cases (|x| =x if x> 0;
[x| = —x if x < 0) this proof will proceed by cases.)

Case 1. Suppose x > 0. Then|x|=x. Since x >0, we have —x < x. Hence,
—X < X < X, which is —|x| < x <|x] in this case.

Case 2. Suppose X < 0. Then|x|= —x. Since x <0, x < —x. Hence, we have
X< X< =X 0fr —(—X) < X < —x, whichis —|x| < x <|X].

Thus, in all cases we have — x| < x <|[X]. ]

There have been instances of truly exhausting proofs involving great numbers of
cases. In 1976, Kenneth Appel and Wolfgang Haken of the University of Illinois
announced a proof of the Four-Color Theorem. The original version of their proof of
the famous Four-Color Conjecture contains 1,879 cases and took 3 %years to develop.*

Finally, there are proofs by exhaustion with cases so similar in reasoning that
we may simply present a single case and alert the reader with the phrase “without
loss of generality” that this case represents the essence of arguments for the other
cases. Here is an example.

Example. Prove that for the integers m and n, one of which is even and the other
odd, m? + n? has the form 4k + 1 for some integer k.

Proof. Let m and n be integers. Without loss of generality, we may assume that m
is even and n is odd. (The case where m is odd and n is even is similar.) Then there
exist integers s and t such that m=2s and n =2t + 1. Therefore, m? +n? =
(25)2 4 (2t +1)2 =452 + 4t2 + 4t + 1 = 4(s> + t2 + t) + 1. Since 2 +t2 +t is an
integer, m? + n? has the form 4k + 1 for some integer k. |

* The Four-Color Theorem involves coloring regions or countries on a map in such a way that no two
adjacent countries have the same color. It states that four colors are sufficient, no matter how intertwined
the countries may be. The fact that the proof depended so heavily on the computer for checking cases
raised questions about the nature of proof. Verifying the 1,879 cases required more than 10 billion cal-
culations. Many people wondered whether there might have been at least one error in a process so
lengthy that it could not be carried out by one human being in a lifetime. Haken and Appel’s proof has
since been improved, and the Four-Color Theorem is accepted; but the debate about the role of comput-
ers in proof continues.
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Exercises 1.4

1. Analyze the logical form of each of the following statements and construct
just the outline of a proof. Since the statements may contain terms with which
you are not familiar, you should not (and perhaps could not) provide any
details of the proof.

* (a) Outline a direct proof that if (G, *) is a cyclic group, then (G, *) is

abelian.

(b) Outline a direct proof that if B is a nonsingular matrix, then the determi-
nant of B is not zero.

(¢) Suppose A, B, and C are sets. Outline a direct proof that if A is a subset
of B and B is a subset of C, then A is a subset of C.

(d) Outline a direct proof that if the maximum value of the differentiable
function f on the closed interval [a, b] occurs at Xo, then either
Xo=aor Xo="hbor f'(xg) =0.

(e) Outline a direct proof that if A is a diagonal matrix, then A is invertible
whenever all its diagonal entries are nonzero.

2. Atheorem of linear algebra states that if A and B are invertible matrices, then
the product AB is invertible. As in Exercise 1, outline
(a) adirect proof of the theorem.
(b) adirect proof of the converse of the theorem.

3. Verify that [(~B= M)A ~LA(~M Vv L)]= B is a tautology. See the
example on page 30.

4. These facts have been established at a crime scene.
(i) If Professor Plum is not guilty, then the crime took place in the kitchen.
(ii) If the crime took place at midnight, Professor Plum is guilty.
(iii) Muiss Scarlet is innocent if and only if the weapon was not the candlestick.
(iv) Either the weapon was the candlestick or the crime took place in the
library.
(v) Either Miss Scarlet or Professor Plum is guilty.

Use the above and the additional fact(s) below to solve the case. Explain your
answer.
* (a) The crime lab determines that the crime took place in the library.

(b) The crime lab determines that the crime did not take place in the library.

(¢) The crime lab determines that the crime was committed at noon with the
revolver.

(d) The crime took place at midnight in the conservatory. (Give a complete
answer.)

5. Letxandy be integers. Prove that
(a) ifxandy areeven, then x 4 y is even.
(b) if xiseven, then xy is even.
(¢c) ifxandy areeven, then xy is divisible by 4.
(d) ifxandy are even, then 3x — 5y is even.
(e) ifxandy are odd, then x + y is even.
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(f) ifxandy are odd, then 3x — 5y is even.
(g) ifxandy are odd, then xy is odd.

* (h) ifxisevenandy isodd, then x + y is odd.
(i) ifxisevenandy is odd, then xy is even.

6. Letaand b be real numbers. Prove that
(a) |ab| = |a]lb].
(b) la—b|=|b—al.
a| la|
() ‘b‘_lm,forb;éo.
(@ la+b| <|al+ |b].
(e) if|a] <b,then—b<acx<h.
() if —b <a<hbh,thenjal] <bh.
7. Suppose a, b, ¢, and d are integers. Prove that
(a) 2a—1lisodd.
*» (b) ifaiseven,thena+ 1isodd.
(¢) ifaisodd,thena+ 2 is odd.
(d) a(a+1)iseven.
(e) 1divides a.
(f) adivides a.
* (g) ifaand b are positive and a divides b, thena < b.
(h) ifadivides b, then a divides bc.
* (i) ifaandb are positiveandab =1,thena=b=1.
(j) ifaand b are positive, a divides b and b divides a, then a = b.
(k) ifadivides b and c divides d, then ac divides bd.
(1) if abdivides c, then a divides c.
(m) if ac divides bc, then a divides b.

8. Give two proofs that if n is a natural number, then n? 4 n + 3 is odd.
(a) Use two cases.
(b) Use Exercises 7(d) and 5(h).

9. Leta, b, and c be integers and x, y, and z be real numbers. Use the technique
of working backward from the desired conclusion to prove that

(a) ifxandy are nonnegative, then ~ ; Yo vy

Where in the proof do we use the fact that x and y are nonnegative?
(b) ifadivides b and a divides b + c, then a divides 3c.
(¢) ifab > 0andbc <0, then ax? + bx + ¢ = 0 has two real solutions.
(d) ifx®+2x* <0, then2x 4+ 5 < 11.
(e) if an isosceles triangle has sides of length x, y, and z, where x =y and
z = /2xy, then itis a right triangle.
10. Recall that except for degenerate cases, the graph of Ax?+ Bxy + Cy? +
Dx+Ey+F=0is

an ellipse iff B2 — 4AC < 0,
a parabola iff B> — 4AC = 0,
a hyperbola iff B> — 4AC > 0.
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* (a) Prove that the graph of the equation is an ellipse whenever A > C >
B> 0.
(b) Prove that the graph of the equation is a hyperbola if AC <0 or
B<C<4A <.
(c) Prove that if the graph is a parabola, then BC = 0 or A = B?/(4C).

Proofs to Grade 11. Exercises throughout the text with this title ask you to examine “Proofs to
Grade.” These are allegedly true claims and supposed “proofs” of the claims.
You should decide the merit of the claim and the validity of the proof and then
assign a grade of

A (correct), if the claim and proof are correct, even if the proof is not the
simplest or the proof you would have given.

C (partially correct), if the claim is correct and the proof is largely cor-
rect. The proof may contain one or two incorrect statements or justi-
fications, but the errors are easily correctable.

F (failure), if the claim is incorrect, or the main idea of the proof is incor-
rect, or there are too many errors.

You must justify assignments of grades other than A and if the proof is incor-
rect, explain what is incorrect and why.
* (a) Suppose a is an integer.
Claim. If ais odd then a? + 1 is even.
“Proof.” Leta. Then, by squaring an odd we get an odd. An odd plus
odd is even. So a2 + 1 is even. m
(b) Suppose a, b, and c are integers.
Claim. If adivides b and a divides c, then a divides b + c.
“Proof.” Suppose a divides b and a divides c. Then for some integer
g, b =aq, and for some integer g, c=ag. Then b+ c=aq+aq =
2aq = a(2q), so adividesb + c. u
* (¢) Suppose X is a positive real number.
Claim. The sum of x and its reciprocal is greater than or equal to 2.
That is,

1
X + X > 2.
“Proof.” Multiplying by x, we get x?+1>2x. By algebra,

x?2 —2x41>0. Thus, (x —1)>>0. Any real number squared is

greater than or equal to zero, so X + % > 2 is true. =
* (d) Suppose m is an integer.

Claim. If m? is odd, then m is odd.

“Proof.” Assume m is odd. Then m =2k + 1 for some integer k.

Therefore, m? = (2k 4+ 1)? = 4k? + 4k + 1 = 2(2k? + 2k) + 1, which is

odd. Therefore, if m? is odd, then m is odd. [

(e) Suppose a is an integer.

Claim. a®+ a?iseven.

“Proof.” a®+ a?=a?@ + 1), which is always an odd number times

an even number. Therefore, a3 + a2 is even. |

Copyright 2011 Cengage Learning, Inc. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



