Homework \#3

Last Name:

Name:
PSID:

TRANSITION TO ADVANCED MATHEMATICS HOMEWORK\#3 - DUE THURSDAY, 02/15

Problem 1. Let x and y be integers. Prove that
(a) if x and y are even, then $x^{2} y$ is divisible by 8 .
(b) if x is odd, then $x^{2}+15$ is divisible by 4 .
(c) $x(x+3)$ is even.

Problem 2. Prove that if a is a positive integer, then $a^{2}+3 a+7$ is odd.
Problem 3. Prove that if x is a positive real number, then $4 x+\frac{1}{x} \geq 4$.
Problem 4. Let x and y be integers. Prove the following by contraposition.
(a) If x^{2} is not divisible by 4 , then x is odd.
(b) If $x y$ is odd, then x and y are odd.

Problem 5. A circle in the plane has center $(4,5)$.
(a) Prove that $(1,2)$ and $(-1,0)$ are not both on the circle.
(b) Prove that if $(1,1)$ is not inside the circle, then $(2,-2)$ is not inside the circle .

Problem 6. Suppose a, b, c, and d are positive integers. Prove that
(a) a is odd if and only if $a+1$ is even.
(b) $a+c=b$ and $2 b-a=d$ if and only if $a=b-c$ and $b+c=d$.

Problem 7. Provide a proof or a counterexample for each statement below:
(a) For all positive integers $x, x^{2}+x+41$ is a prime.
(b) For integers a, b, c, if a divides $b c$, then a divides b or a divides c.
(c) For all positive real numbers $x, x^{2}-x \geq 0$.
(d) For all positive real numbers $x, 2^{x} \geq x+1$.
(e) For any two irrational numbers x and $y, x y$ is also irrational.

Problem 8. Prove that for all integers a, b and c, if a divides $b-1$ and a divides $c-1$, then a divides $b c-1$.

Problem 9. Let x and y be real numbers. If $x+y$ is irrational, then either x or y is irrational.

Problem 10. Prove that if n is an integer and $3 n-1$ is odd, then $4 n+8$ is divisible by 8 .

