Math 3325 Spring 2018: Exam 1 Review Instructor: Dr. Blerina Xhabli

Exam 1 will cover the material in Sections 1.1–1.7 and 2.1–2.4 of *A Transition to Advanced Mathematics* (Seventh Edition) by Smith, Eggen, and St. Andre. Possible exercise types include true/false questions; statements of axioms, definitions, and major results; computational exercises; and exercises requiring theoretical arguments (proofs). The following are the most important concepts you should concentrate on while preparing yourselves for Exam 1. *Do not forget that your homework assignments serve as review exercises for your Exam.*

1. Definitions and axioms

You should be able to define and use the following.

- (1) Even integer; odd integer
- (2) a divides b (for integers a and b)
- (3) Prime number
- (4) Rational number; irrational number
- (5) A \subset B for sets A and B
- (6) A = B for sets A and B
- (7) Power set P(A) of a set A
- (8) Operations on sets: union, intersection, difference, complement
- (9) Disjoint Sets
- (10) Cross Products of Sets

2. Computational techniques

(1) Computations with sets: union, intersection, difference, complement

(2) Compute intersections and unions of sequences of sets *

3. Proof techniques

- (1) $P \Rightarrow Q$: Prove directly.
- (2) $P \Rightarrow Q$: Prove using contraposition.
- (3) $P \Leftrightarrow Q$: Show that $P \Rightarrow Q$ and $Q \Rightarrow P$.
- (4) $P \Leftrightarrow Q$: Prove using a sequence of iff statements.
- (5) Proof by contradiction
- (6) Prove that P(x) is true for all x. Methods: Direct, contradiction.
- (7) Prove that there exists x for which P(x) is true. Methods: Explicitly find an x; show that such an x must exist using an indirect argument; proof by contradiction.
- (8) Statements involving multiple quantifiers
- (9) Prove that there exists a unique x for which P (x) is true.
- (10) Prove that a statement is false by providing a counterexample.
- (11) Principle of mathematical induction (PMI)
- (12) Generalized PMI

4. Theoretical results

You should know and be able to apply the following.

- (1) De Morgan's laws in propositional logic
- (2) Euclid's Lemma
- (3) Theorem 2.1.1
- (4) Theorem 2.1.5
- (5) Theorem 2.2.1
- (6) Theorem 2.2.2 (De Morgan's laws are given here)
- (7) Theorem 2.2.3

5. Proofs

- (1) Prove that $\sqrt{2}$ is irrational.
- (2) Prove that the set of prime numbers is infinite.

6. Suggested extra problems

1.4: 6d, 9b	1.5: 3f, 7a
1.6: 6ij	2.1: 8, 9
2.2: 2ij, 9gh, 11b	2.4: 6d, 8f
	ĺ