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First-Order Equations

I
n this chapter, we will study first-order equations. We will begin in Section 2.1 by
making some definitions and presenting an overview of what we will cover in this
chapter. We will then alternate between methods of finding exact solutions and

some applications that can be studied using those methods. For each application,
we will carefully derive the mathematical models and explore the existence of exact
solutions. We will end by showing how qualitative methods can be used to derive
useful information about the solutions.

2.1 Differential
Equations and

Solutions

In this section, we will give an overview of what we want to learn in this chapter.
We will visit each topic briefly to give a flavor of what will follow in succeeding
sections.

Ordinary differential equations

An ordinary differential equation is an equation involving an unknown function
of a single variable together with one or more of its derivatives. For example, the
equation

dy

dt
= y − t (1.1)

is an ordinary differential equation. Here y = y(t) is the unknown function and t is
the independent variable.
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2.1 Differential Equations and Solutions 17

Some other examples of ordinary differential equations are

y′ = y2 − t t y′ = y

y′ + 4y = e−3t y′ = cos(t y) (1.2)

yy′′ + t2 y = cos(t) y′′ = y2.

The order of a differential equation is the order of the highest derivative that
occurs in the equation. Thus the equation in (1.1) is a first-order equation since it
involves only the first derivative of the unknown function. All of the equations listed
in the first two rows of (1.2) are first order. Those in the third row are second order
because they involve the second derivative of y.

The equation

∂2w

∂t2
= c2 ∂2w

∂x2
(1.3)

is not an ordinary differential equation, since the unknown function w is a function
of the two independent variables t and x . Because it involves partial derivatives
of an unknown function of more than one independent variable, equation (1.3) is
called a partial differential equation. For the time being we are interested only in
ordinary differential equations.

Normal form

Any first order equation can be put into the form

φ(t, y, y′) = 0, (1.4)

where φ is a function of three variables. For example, the equation in (1.1) can be
written as

y′ − y − t = 0.

This equation has the form in (1.4) with φ(t, y, z) = z− y−t . Similarly, the general
equation of order n can be written as

φ(t, y, y′, . . . , y(n)) = 0, (1.5)

where φ is a function of n + 1 variables. Notice that all of the equations in (1.2) can
be put into this form.

The general forms in (1.4) and (1.5) are too general to deal with in many in-
stances. Frequently we will find it useful to solve for the highest derivative. We will
give the result a name.

DEFINITION 1.6 A first-order differential equation of the form

y′ = f (t, y)

is said to be in normal form. Similarly, an equation of order n having the form

y(n) = f (t, y, y′, . . . , y(n−1))

is said to be in normal form.

E x a m p l e 1 . 7 Place the differential equation t + 4yy′ = 0 into normal form.
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This is accomplished by solving the equation t + 4yy′ = 0 for y′. We find that

y′ = − t

4y
. (1.8)

Note that the right-hand side of equation (1.8) is a function of t and y, as required
by the normal form y′ = f (t, y). �

Solutions

A solution of the first-order, ordinary differential equation φ(t, y, y′) = 0 is a dif-
ferentiable function y(t) such that φ(t, y(t), y′(t)) = 0 for all t in the interval1

where y(t) is defined.
To discover if a given function is a solution to a differential equation we substi-

tute the function and its derivative(s) into the equation. For example, we can show
that y(t) = t + 1 is a solution to equation (1.1) by substitution. It is only necessary
to compute both sides of equation (1.1) and show that they are equal. We have

y′(t) = 1, and y(t) − t = t + 1 − t = 1.

Since the left- and right-hand sides are equal, y(t) = t + 1 is a solution.
The process of verifying that a given function is or is not a solution to a differ-

ential equation is a very important skill. You can use it to check that your homework
solutions are correct. We will use it repeatedly for a variety of purposes, including
finding solution methods. Here are two more examples.

E x a m p l e 1 . 9 Show that y(t) = Ce−t2
is a solution of the first-order equation

y′ = −2t y, (1.10)

where C is an arbitrary real number.

We compute both sides of the equation and compare them. On the left, we
have y′(t) = −2tCe−t2

, and on the right, −2t y(t) = −2tCe−t2
, so the equation is

satisfied. Both y(t) and y′(t) are defined on the interval (−∞, ∞). Therefore, for
each real number C , y(t) = Ce−t2

is a solution of equation (1.10) on the interval
(−∞, ∞). �

Example 1.9 illustrates the fact that a differential equation can have lots of so-
lutions. The solution formula y(t) = Ce−t2

gives a different solution for very
value of the constant C . We will see in Section 2.4 that every solution to equa-
tion (1.10) is of this form for some value of the constant C . For this reason the
formula y(t) = Ce−t2

is called the general solution to (1.10). The graphs of these
solutions are called solution curves, several of which are drawn in Figure 1.

t

y

�4 4

4

�4

Figure 1. Several solutions to
equation (1.10).

E x a m p l e 1 . 1 1 Is the function y(t) = cos t a solution to the differential equation y′ = 1 + y2?

We substitute y(t) = cos t into the equation. On the left-hand side we have
y′ = − sin t . On the right-hand side, 1+ y2 = 1+ cos2 t . Since − sin t �= 1+ cos2 t
for most values of t , y(t) = cos t is not a solution. �

1 We will use the notation (a, b), [a, b], (a, b], [a, b), (a, ∞), [a, ∞), (−∞, b), (−∞, b], and (−∞, ∞)

for intervals. For example, (a, b) = {t : a < t < b}, [a, b) = {t : a ≤ t < b}, (−∞, b] = {t : t ≤ b},
and so on.
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Initial value problems

In Example 1.9, we found a general solution, indicated by the presence of an unde-
termined constant in the formula. This reflects the fact that an ordinary differential
equation has infinitely many solutions. In applications, it is necessary to use other
information, in addition to the differential equation, to determine the value of the
constant and to specify the solution completely. Such a solution is called a particu-
lar solution.

E x a m p l e 1 . 1 2 Given that

y(t) = − 1

t − C
(1.13)

is a general solution of y′ = y2, find the particular solution satisfying y(0) = 1.

Because

1 = y(0) = −1

0 − C
= 1

C
,

C = 1. Substituting C = 1 in equation (1.13) makes

y(t) = − 1

t − 1
, (1.14)

a particular solution of y′ = y2, satisfying y(0) = 1. �

DEFINITION 1.15 A first-order differential equation together with an initial condition,

y′ = f (t, y), y(t0) = y0, (1.16)

is called an initial value problem. A solution of the initial value problem is a
differentiable function y(t) such that

1. y′(t) = f (t, y(t)) for all t in an interval containing t0 where y(t) is defined,
and

2. y(t0) = y0.

Thus, in Example 1.12, the function y(t) = 1/(1 − t) is the solution to the
initial value problem

y′ = y2, with y(0) = 1.

Interval of existence

The interval of existence of a solution to a differential equation is defined to be
the largest interval over which the solution can be defined and remain a solution. It
is important to remember that solutions to differential equations are required to be
differentiable, and this implies that they are continuous. The solution to the initial
value problem in Example 1.12 is revealing.

E x a m p l e 1 . 1 7 Find the interval of existence for the solution to the initial value problem

y′ = y2 with y(0) = 1.
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In Example 1.12, we found that the solution is

t

y
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Figure 2. The graph of
y = −1/(t − 1).

y(t) = −1

t − 1
.

The graph of y is a hyperbola with two branches, as shown in Figure 2. The func-
tion y has an infinite discontinuity at t = 1. Consequently, this function cannot be
considered to be a solution to the differential equation y′ = y2 over the whole real
line.

Note that the left branch of the hyperbola in Figure 2 passes through the point
(0, 1), as required by the initial condition y(0) = 1. Hence, the left branch of
the hyperbola is the solution curve needed. This particular solution curve extends
indefinitely to the left, but rises to positive infinity as it approaches the asymptote
t = 1 from the left. Any attempt to extend this solution to the right would have
to include t = 1, at which point the function y(t) is undefined. Consequently, the
maximum interval on which this solution curve is defined is the interval (−∞, 1).
This is the interval of existence. �

Using variables other than y and t

So far all of our examples have used y as the unknown function, and t as the inde-
pendent variable. It is not required to use y and t . We can use any letter to designate
the independent variable and any other for the unknown function. For example, the
equation

y′ = x + y

has the form y′ = f (x, y), making x the independent variable and requiring a
solution y that is a function of x . This equation has general solution

y(x) = −1 − x + Cex ,

which exists on (−∞, ∞).
Similarly, in the equation

s ′ = √
r ,

the independent variable is r and the unknown function is s, so s must be a function
of r . The general solution of this equation is

s(r) = 2

3
r3/2 + C.

This general solution exists on the interval [0, ∞).

E x a m p l e 1 . 1 8 Verify that x(s) = 2 − Ce−s is a solution of

x ′ = 2 − x (1.19)

for any constant C . Find the solution that satisfies the initial condition x(0) = 1.

What is the interval of existence of this solution?

We evaluate both sides of (1.19) for x(s) = 2 − Ce−s .

x ′(s) = Ce−s

2 − x = 2 − (2 − Ce−s) = Ce−s

They are the same, so the differential equation is solved for all s ∈ (−∞, ∞). In
addition,

x(0) = 2 − Ce−0 = 2 − C.
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To satisfy the initial condition x(0) = 1, we must have 2 − C = 1, or C = 1.

Therefore, x(s) = 2 − e−s is a solution of the initial value problem. This solution

s

x

4

4

(0, 1)

�4

�4

Figure 3. Solution of x ′ = 2 − x ,
x(0) = 1.

exists for all s ∈ (−∞, ∞). Its graph is displayed in Figure 3.
Finally, both x(s) and x ′(s) exist and solve the equation on (−∞, ∞). There-

fore, the interval of existence is the whole real line. �

The geometric meaning of a differential equation and its solutions

Consider the differential equation

y′ = f (t, y),

where the right-hand side f (t, y) is defined for (t, y) in the rectangle

R = {(t, y) | a ≤ t ≤ b and c ≤ y ≤ d} .

Let y(t) be a solution of the equation y′ = f (t, y), and recall that the graph of the
function y is called a solution curve. Because y(t0) = y0, the point (t0, y0) is on
the solution curve. The differential equation says that y′(t0) = f (t0, y0). Hence
f (t0, y0) is the slope of any solution curve that passes through the point (t0, y0).

This interpretation allows us a new, geometric insight into a differential equa-
tion. Consider, if you can, a small, slanted line segment with slope f (t, y) attached
to every point (t, y) of the rectangle R. The result is called a direction field, because
at each (t, y) there is assigned a direction represented by the line with slope f (t, y).

Even for a simple equation like

y′ = y, (1.20)

it is difficult to visualize the direction field. However, a computer can calculate and
plot the direction field at a large number of points—a large enough number for us to
get a good understanding of the direction field. Each of the standard mathematics
programs, Maple, Mathematica, and MATLAB R©, has the capability to easily pro-
duce direction fields. Some hand-held calculators also have this capability. The stu-
dent will find that the use of computer- or calculator-generated direction fields will
greatly assist their understanding of differential equations. A computer-generated
direction field for equation (1.20) is given in Figure 4.
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Figure 4. The direction field for y ′ = y.
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The direction field is the geometric interpretation of a differential equation.
However, the direction field view also gives us a new interpretation of a solution.
Associated to the solution y(t), we have the solution curve in the ty-plane. At each
point (t, y(t)) on the solution curve the curve must have slope equal to y′(t) =
f (t, y(t)). In other words, the solution curve must be tangent to the direction field
at every point. Thus finding a solution to the differential equation is equivalent to the
geometric problem of finding a curve in the ty-plane that is tangent to the direction
field at every point.

For example, note how the solution curve of

y′ = y, y(0) = 1 (1.21)

in Figure 5 is tangent to the direction field at each point (t, y) on the solution curve.
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Figure 5. The solution curve is tangent to the direction field.

Approximate numerical solutions

The direction field hints at how we might produce a numerical solution of an initial
value problem. To find a solution curve for the initial value problem y′ = f (t, y),
y(t0) = y0, first plot the point P0 = (t0, y0). Because the slope of the solution
curve at P0 is given by f (t0, y0), move a prescribed distance along a line with slope
f (t0, y0) to the point P1 = (t1, y1). Next, because the slope of the solution curve at
P1 is given by f (t1, y1), move along a line with slope f (t1, y1) to the point P2 =
(t2, y2). Continue in this manner to produce an approximate solution curve of the
initial value problem.

This technique is used in Figure 6 to produce an approximate solution of equa-
tion (1.21) and is the basic idea behind Euler’s method, an algorithm used to find
numerical solutions of initial value problems. Clearly, if we decrease the distance
between consecutively plotted points, we should obtain an even better approxima-
tion of the actual solution curve.

Using a numerical solver

We assume that each of our readers has access to a computer. Furthermore, we
assume that this computer has software designed to produce numerical solutions
of initial value problems. For many purposes a hand-held graphics calculator will
suffice. There is a wide variety of software packages available for the study of
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Figure 6. An approximate solution curve of y ′ = y, y(0) = 1.

differential equations. Some of these packages are commercial, some are shareware,
and some are even freeware. We will assume that you have access to a solver that
will

• draw direction fields,
• provide numerical solutions of differential equations and systems of differen-

tial equations, and
• plot solutions of differential equations and systems of differential equations.

Test drive your solver

Let’s test our solvers in order to assure ourselves that they will provide adequate
support for the material in this text.

E x a m p l e 1 . 2 2 Use a numerical solver to compute and plot the solution of the initial value problem

y′ = y2 − t, y(4) = 0 (1.23)

over the t-interval [−2, 10].
Although solvers differ widely, they do share some common characteristics.

First, you need to input the differential equation, and you will probably have to
identify the independent variable — in this case t . Most solvers require that you
specify a display window, rectangle in which the solution will be drawn. In this
case we choose the bounds −2 ≤ t ≤ 10 and −4 ≤ y ≤ 4.

Finally, you need to enter the initial condition y(4) = 0 and plot the solution. If
your solver can superimpose the solution on a direction field, then your plot should
look similar to that shown in Figure 7. �

Qualitative methods

We are unable at this time to find analytic, closed-form solutions to the equation

y′ = 1 − y2. (1.24)
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Figure 7. The solution curve for y ′ = y2 − t , y(4) = 0.

This situation will be remedied in the next section. However, the lack of closed-form
solutions does not prevent us from using a bit of qualitative mathematical reasoning
to investigate a number of important qualities of the solutions of this equation.

Some information about the solutions can be gleaned by looking at the direction
field for the equation (1.24) in Figure 8. Notice that the lines y = 1 and y = −1
seem to be tangent to the direction field. It is easy to verify directly that the constant
functions

y1(t) = −1 and y2(t) = 1 (1.25)

are solutions to equation (1.24).

�5 0 5

�2

�1

0

1

2

t

y

Figure 8. The direction field for the equation y ′ = 1 − y2.

To see how we might find such constant solutions, consider the function f (y) =
1 − y2, which is the right-hand side of (1.24). The graph of f is shown in Figure 9.
Notice that f (y) = 0 only for y = −1 and y = 1. Each of these points (called

y

f (y)
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Figure 9. The graph of
f (y) = 1 − y2.

equilibrium points) gives rise to one of the solutions we found in (1.25). These
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equilibrium solutions are the solutions that can be “seen” in the direction field in
Figure 8. They are shown plotted in blue in Figure 10.

Next we notice that f (y) = 1 − y2 is positive if −1 < y < 1 and negative
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Figure 10. Equilibrium solutions to
the equation y ′ = 1 − y2.

otherwise. Thus, if y(t) is a solution to equation (1.24), and −1 < y < 1, then

y′ = 1 − y2 > 0.

Having a positive derivative, y is an increasing function.
How large can a solution y(t) get? If it gets larger than 1, then y′ = 1− y2 < 0,

so y(t) will be decreasing. We cannot complete this line of reasoning at this point,
but in Section 2.9 we will develop the argument, and we will be able to conclude
that if y(0) = y0 > 1, then y(t) is decreasing and y(t) → 1 as t → ∞.

On the other hand, if y(0) = y0 satisfies −1 < y0 < 1, then y′ = 1− y2 > 0, so
y(t) will be increasing. We will again conclude that y(t) increases and approaches
1 as t → ∞. Thus any solution to the equation y′ = 1 − y2 with an initial value
y0 > −1 approaches 1 as t → ∞.

Finally, if we consider a solution y(t) with y(0) = y0 < −1, then a similar
analysis shows that y′(t) = 1 − y2 < 0, so y(t) is decreasing. As y(t) decreases,
its derivative y′(t) = 1 − y2 gets more and more negative. Hence, y(t) decreases
faster and faster and must approach −∞ as t increases. Typical solutions to equa-
tion (1.24) are shown in Figure 11. These solutions were found with a computer,
but their qualitative nature can be found simply by looking at the equation.

�5 0 5

�2

�1

0

1

2

t

y

Figure 11. Typical solutions to the equation y ′ = 1 − y2.

EXERCISES
In Exercises 1 and 2 , given the function φ, place the ordinary
differential equation φ(t, y, y′) = 0 in normal form.

1. φ(x, y, z) = x2z + (1 + x)y

2. φ(x, y, z) = xz − 2y − x2

In Exercises 3–6, show that the given solution is a general solu-
tion of the differential equation. Use a computer or calculator
to sketch the solutions for the given values of the arbitrary con-
stant. Experiment with different intervals for t until you have

a plot that shows what you consider to be the most important
behavior of the family.

3. y′ = −t y, y(t) = Ce−(1/2) t2
, C = −3, −2, . . . , 3

4. y′ + y = 2t , y(t) = 2t − 2 + Ce−t , C = −3, −2, . . . , 3

5. y′ + (1/2)y = 2 cos t , y(t) = (4/5) cos t + (8/5) sin t +
Ce−(1/2)t , C = −5, −4, . . . , 5

6. y′ = y(4 − y), y(t) = 4/(1 + Ce−4t ), C = 1, 2, . . . , 5
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7. A general solution may fail to produce all solutions of a
differential equation. In Exercise 6, show that y = 0 is a
solution of the differential equation, but no value of C in
the given general solution will produce this solution.

8. (a) Use implicit differentiation to show that t2 + y2 = C2

implicitly defines solutions of the differential equa-
tion t + yy′ = 0.

(b) Solve t2 + y2 = C2 for y in terms of t to provide
explicit solutions. Show that these functions are also
solutions of t + yy′ = 0.

(c) Discuss the interval of existence for each of the solu-
tions in part (b).

(d) Sketch the solutions in part (b) for C = 1, 2, 3, 4.

9. (a) Use implicit differentiation to show that t2−4y2 = C2

implicitly defines solutions of the differential equa-
tion t − 4yy′ = 0.

(b) Solve t2 − 4y2 = C2 for y in terms of t to provide
explicit solutions. Show that these functions are also
solutions of t − 4yy′ = 0.

(c) Discuss the interval of existence for each of the solu-
tions in part (b).

(d) Sketch the solutions in part (b) for C = 1, 2, 3, 4.

10. Show that y(t) = 3/(6t − 11) is a solution of y′ = −2y2,
y(2) = 3. Sketch this solution and discuss its interval of
existence. Include the initial condition on your sketch.

11. Show that y(t) = 4/(1 − 5e−4t ) is a solution of the initial
value problem y′ = y(4 − y), y(0) = −1. Sketch this
solution and discuss its interval of existence. Include the
initial condition on your sketch.

In Exercises 12–15, use the given general solution to find a so-
lution of the differential equation having the given initial con-
dition. Sketch the solution, the initial condition, and discuss
the solution’s interval of existence.

12. y′+4y = cos t , y(t) = (4/17) cos t+(1/17) sin t+Ce−4t ,
y(0) = −1

13. t y′ + y = t2, y(t) = (1/3)t2 + C/t , y(1) = 2

14. t y′ + (t + 1)y = 2te−t , y(t) = e−t (t + C/t), y(1) = 1/e

15. y′ = y(2 + y), y(t) = 2/(−1 + Ce−2t ), y(0) = −3

16. Maple, when asked for the solution of the initial value
problem y′ = √

y, y(0) = 1, returns two solutions:
y(t) = (1/4)(t + 2)2 and y(t) = (1/4)(t − 2)2. Present
a thorough discussion of this response, including a check
and a graph of each solution, interval of existence, and so
on. Hint: Remember that

√
a2 = |a|.

In Exercises 17–20, plot the direction field for the differential
equation by hand. Do this by drawing short lines of the appro-
priate slope centered at each of the integer valued coordinates
(t, y), where −2 ≤ t ≤ 2 and −1 ≤ y ≤ 1.

17. y′ = y + t 18. y′ = y2 − t

19. y′ = t tan(y/2) 20. y′ = (t2 y)/(1 + y2)

In Exercises 21–24, use a computer to draw a direction field
for the given first-order differential equation. Use the indi-
cated bounds for your display window. Obtain a printout and
use a pencil to draw a number of possible solution trajectories
on the direction field. If possible, check your solutions with a
computer.

21. y′ = −t y, R = {(t, y) : −3 ≤ t ≤ 3, −5 ≤ y ≤ 5}
22. y′ = y2 − t , R = {(t, y) : −2 ≤ t ≤ 10, −4 ≤ y ≤ 4}
23. y′ = t − y + 1, R = {(t, y) : −6 ≤ t ≤ 6, −6 ≤ y ≤ 6}
24. y′ = (y + t)/(y − t), R = {(t, y) : −5 ≤ t ≤ 5, −5 ≤

y ≤ 5}
For each of the initial value problems in Exercises 25–28 use
a numerical solver to plot the solution curve over the indicated
interval. Try different display windows by experimenting with
the bounds on y. Note: Your solver might require that you first
place the differential equation in normal form.

25. y + y′ = 2, y(0) = 0, t ∈ [−2, 10]
26. y′ + t y = t2, y(0) = 3, t ∈ [−4, 4]
27. y′ − 3y = sin t , y(0) = −3, t ∈ [−6π, π/4]
28. y′ + (cos t)y = sin t , y(0) = 0, t ∈ [−10, 10]
Some solvers allow the user to choose dependent and indepen-
dent variables. For example, your solver may allow the equa-
tion r ′ = −2sr + e−s , but other solvers will insist that you
change variables so that the equation reads y′ = −2t y + e−t ,
or y′ = −2xy + e−x , should your solver require t or x as the
independent variable. For each of the initial value problems
in Exercises 29 and 30, use your solver to plot solution curves
over the indicated interval.

29. r ′ + xr = cos(2x), r(0) = −3, x ∈ [−4, 4]
30. T ′ + T = s, T (−3) = 0, s ∈ [−5, 5]
In Exercises 31–34, plot solution curves for each of the initial
conditions on one set of axes. Experiment with the different
display windows until you find one that exhibits what you feel
is all of the important behavior of your solutions. Note: Se-
lecting a good display window is an art, a skill developed with
experience. Don’t become overly frustrated in these first at-
tempts.

31. y′ = y(3 − y), y(0) = −2, −1, 0, 1, 2, 3, 4, 5

32. x ′ − x2 = t , x(0) = −2, 0, 2, x(2) = 0, x(4) = −3, 0, 3,
x(6) = 0

33. y′ = sin(xy), y(0) = 0.5, 1.0, 1.5, 2.0, 2.5

34. x ′ = −t x , x(0) = −3, −2, −1, 0, 1, 2, 3

35. Bacteria in a petri dish is growing according to the equa-
tion

d P

dt
= 0.44P,

where P is the mass of the accumulated bacteria (mea-
sured in milligrams) after t days. Suppose that the initial
mass of the bacterial sample is 1.5 mg. Use a numerical
solver to estimate the amount of bacteria after 10 days.
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36. A certain radioactive substance is decaying according to
the equation

d A

dt
= −0.25A,

where A is the amount of substance in milligrams remain-
ing after t days. Suppose that the initial amount of the
substance present is 400 mg. Use a numerical solver to
estimate the amount of substance remaining after 4 days.

37. The concentration of pollutant in a lake is given by the
equation

dc

dt
= −0.055c,

where c is the concentration of the pollutant at t days.
Suppose that the initial concentration of pollutant is 0.10.
A concentration level of c = 0.02 is deemed safe for the
fish population in the lake. If the concentration varies ac-
cording to the model, how long will it be before the con-

centration reaches a level that is safe for the fish popula-
tion?

38. An aluminum rod is heated to a temperature of 300◦C.
Suppose that the rate at which the rod cools is proportional
to the difference between the temperature of the rod and
the temperature of the surrounding air (20◦C). Assume a
proportionality constant k = 0.085 and time is measured
in minutes. How long will it take the rod to cool to 100◦C?

39. You’re told that the “carrying capacity” for an environ-
ment populated by “critters” is 100. Further, you’re also
told that the rate at which the critter population is chang-
ing is proportional to the product of the number of critters
and the number of critters less than the carrying capacity.
Assuming a constant of proportionality k = 0.00125 and
an initial critter population of 20, use a numerical solver to
determine the size of the critter population after 30 days.

2.2 Solutions to
Separable Equations

An unstable nucleus is radioactive. At any instant, it can emit a particle, trans-
forming itself into a different nucleus in the process. For example, 238U is an alpha
emitter that decays spontaneously according to the scheme 238U → 234Th + 4He,
where 4He is the alpha particle. In a sample of 238U, a certain percentage of the
nuclei will decay during a given observation period. If at time t the sample contains
N (t) radioactive nuclei, then we expect that the number of nuclei that decay in the
time interval t will be approximately proportional to both N and t . In symbols,

N = N (t + t) − N (t) ≈ −λN (t)t, (2.1)

where λ > 0 is a constant of proportionality. The minus sign is indicative of the fact
that there are fewer radioactive nuclei at time t + t than there are at time t .

Dividing both sides of equation (2.1) by t , then taking the limit as t → 0,

N ′(t) = lim
t→0

N (t + t) − N (t)

t
= −λN (t).

This equation is one that arises often in applications. Because of the form of its
solutions, the equation

N ′ = −λN (2.2)

is called the exponential equation.
Equation (2.2) is an example of what is called a separable equation because it

can be rewritten with its variables separated and then easily solved. To do this, we
first write the equation using d N/dt instead of N ′,

d N

dt
= −λN . (2.3)

Next, we separate the variables by putting every expression involving the unknown
function N on the left and everything involving the independent variable t on the
right. This includes d N and dt . The result is

1

N
d N = −λ dt. (2.4)
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It is important to note that this step is valid only if N �= 0, since we cannot divide
by zero. Then we integrate both sides of equation (2.4), getting2

∫
1

N
d N = −λ

∫
dt, or

ln |N | = −λt + C. (2.5)

It remains to solve for N . Taking the exponential of both sides of equation (2.5), we
get

|N (t)| = e−λt+C = eC e−λt . (2.6)

Since eC and e−λt are both positive, there are two cases

N (t) =
{

eC e−λt , if N > 0;
−eC e−λt , if N < 0.

We can simplify the solution by introducing

A =
{

eC , if N > 0;
−eC , if N < 0.

Therefore, the solution is also described by the simpler formula

N (t) = Ae−λt , (2.7)

where A is a constant different from zero, but otherwise arbitrary.
In arriving at equation (2.4), we divided both sides of equation (2.3) by N, and

this procedure is not valid when N = 0. We will discuss this a bit later. For now,
let’s notice that if we set A = 0 in equation (2.7), we get the constant function
N (t) = 0, and we can verify by substitution that this is a solution of the original
equation, N ′ = −λN . Consequently, equation (2.7) with A completely arbitrary,
gives us the solution in all cases.

E x a m p l e 2 . 8 32 P , an isotope of phosphorus, is used in leukemia therapy. After 10 hours, 615 mg
of an initial 1000 mg sample remain. The half-life of a radioactive substance is the
amount of time required for 50% of the substance to decay. Determine the half-life
of 32 P .

The differential equation N ′ = −λN was used to model the number of remain-
ing nuclei. However, the number of nuclei is proportional to the mass, so we will let
N represent the mass of the remaining nuclei in this example. As seen earlier, this
differential equation has solution

N = Ae−λt , (2.9)

where A is an arbitrary constant. At time t = 0 we have N = 1000 mg of the
isotope. Substituting these quantities in equation (2.9),

1000 = Ae−λ(0) = A. (2.10)

2 Our understanding of integration first has us use two constants of integration,

ln |N | + C1 = −λt + C2.

We get (2.5) by setting C = C2 − C1. This combining of the two constants into one works in the solution
of any separable equation.
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Consequently, equation (2.9) becomes

N = 1000e−λt . (2.11)

After t = 10 hr, only N = 615 mg of the substance remains. Substituting these
values into equation (2.11), we get

615 = 1000e−λ(10). (2.12)

Using a little algebra and a calculator to compute a logarithm shows that λ =
0.04861, correct to six decimal places, and equation (2.11) becomes

N = 1000e−0.04861t . (2.13)

To find the half-life, we substitute N = 500 mg in equation (2.13).

500 = 1000e−0.04861t

Solving for t , we find that the half-life of the isotope is approximately 14.3 hours.�

A large number of equations are separable and can be solved exactly like we
solved the exponential equation. Let’s look at another example.

E x a m p l e 2 . 1 4 Solve the differential equation

y′ = t y2. (2.15)

Again, we rewrite the equation using dy/dt instead of y′, so

dy

dt
= t y2. (2.16)

Next we separate the variables by putting every expression involving the unknown
function y on the left and everything involving the independent variable t on the
right, including dy and dt . The result is

1

y2
dy = t dt. (2.17)

Notice that this step is valid only if y �= 0, since we cannot divide by zero. Next we
integrate both sides of equation (2.17), getting∫

1

y2
dy =

∫
t dt, or − 1

y
= 1

2
t2 + C. (2.18)

Finally, we solve equation (2.18) for y. The equation for the solution is

y(t) = −1
1
2 t2 + C

= −2

t2 + 2C
. (2.19)

Several solutions are shown in Figure 1. Included among the functions plotted in
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Figure 1. Several solutions to
y ′ = t y2.

Figure 1 is the constant function y(t) = 0. It is easily verified by substitution that
this is a solution of (2.15), although no finite value of C in equation (2.19) will yield
this solution. We will have more to say about this on page 30. �

Treating dy and dt as mathematical entities, as we did in separating the vari-
ables in equation (2.17), may be troublesome to you. If so, it is probably because
you have learned your calculus very well. We will explain this step at the end of this
section under the heading “Why separation of variables works.”
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The general method

Clearly the key step in this method is the separation of variables. This is the step go-
ing from equation (2.3) to equation (2.4) or from equation (2.16) to equation (2.17).
The method of solution illustrated here will work whenever we can perform this
step, and this can be done for any equation of the two equivalent forms

dy

dt
= g(t)

h(y)
(2.20)

and

dy

dt
= g(t) f (y). (2.21)

Equations of either form are called separable differential equations. For both we
can separate the variables.

The method we used to solve equation (2.16) will work for any separable
equation.

We can solve any separable equation of the form (2.21) using the fol-
lowing three steps.

1. Separate the variables:
dy

f (y)
= g(t) dt.

2. Integrate both sides:
∫

dy

f (y)
=

∫
g(t) dt.

3. Solve for the solution y(t), if possible.

Avoiding division by zero

When separating the variables we do have to worry about dividing by zero, but
otherwise things work well. What about those points where f (y) = 0 in equa-
tion (2.21)? It turns out to be quite easy to find the solutions in such a case, since
if f (y0) = 0, then by substitution we see that the constant function y(t) = y0 is a
solution to (2.21).

In particular, the function y(t) = 0 is a solution to the equation y′ = t y2. We
found in (2.19) that, under the assumption that y �= 0, the general solution to the
equation y′ = t y2 is

y(t) = −2

t2 + 2C
.

If we naively substitute the initial condition y(0) = 0 into this general solution, we
get 0 = −1/C . No finite value of the constant C solves this equation. This should
not be a surprise, since (2.19) was derived on the assumption that y �= 0. Neverthe-
less, we will want to call (2.19) a general solution to equation (2.16). We define a
general solution to a differential equation to be a family of solutions depending on
sufficiently many parameters to give all but finitely many solutions.

Thus the general solution to a differential equation does not always yield the
solution to every initial value problem, and for separable equations this is related to
the problem of dividing by 0. In the case of y′ = t y2, we can find the exceptional
solution by setting C = ∞. This often the case, but we will not explore this further.
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Using definite integration

Sometimes it is useful to use definite integrals when solving initial value problems
for separable equations.

E x a m p l e 2 . 2 2 A can of beer at 40◦F is placed into a room where the temperature is 70◦F. After 10
minutes the temperature of the beer is 50◦F. What is the temperature of the beer as a
function of time? What is the temperature of the beer 30 minutes after the beer was
placed into the room?

According to Newton’s law of cooling, the rate of change of an object’s temper-
ature (T ) is proportional to the difference between its temperature and the ambient
temperature (A). Thus we have

dT

dt
= −k(T − A). (2.23)

We introduce the minus sign so that the proportionality constant k is positive. Notice
that if T < A, the temperature of the object will be increasing. The equation is
separable, so we separate variables to get

dT

T − A
= −k dt.

The next step is to integrate both sides, but this time let’s use definite integrals to
bring in the initial condition T (0) = T0. Since t = 0 corresponds to T = T0, we
have ∫ T

T0

ds

s − A
= −k

∫ t

0
du.

Notice that we changed the variables of integration because we want the upper limits
of our integrals to be T and t . Performing the integration, we get

ln
|T − A|
|T0 − A| = ln |T − A| − ln |T0 − A| = −kt.

We can solve for T by exponentiating, and since T − A and T0 − A both have the
same sign, our answer is

T (t) = A + (T0 − A)e−kt . (2.24)

We first use the fact that T (10) = 50 in addition to the initial condition T (0) =
T0 = 40 and the ambient temperature A = 70 to evaluate k. Equation (2.24)
becomes 50 = 70 − 30e−10k . Therefore, k = ln(3/2)/10 = 0.0405. Thus from
equation (2.24) we see that the temperature is

T (t) = 70 − 30e−0.0405t .

After 30 minutes the temperature is 61.1◦F. The solution is plotted in Figure 2. �
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Figure 2. The temperature of the can
of beer in Example 2.22.

Implicitly defined solutions

After the integration step, we need to solve for the solution. However, this is not
always easy. In fact, it is not always possible. We will look at a series of examples.

E x a m p l e 2 . 2 5 Find the solutions of the equation y′ = ex/(1+y), having initial conditions y(0) = 1
and y(0) = −4.



32 CHAPTER 2 First-Order Equations

Separate the variables and integrate.

(1 + y) dy = ex dx

y + 1

2
y2 = ex + C (2.26)

Rearrange equation (2.26) as

y2 + 2y − 2(ex + C) = 0. (2.27)

This is an implicit equation for y(x) that we can solve using the quadratic formula.

y(x) = 1

2

[
−2 ± √

4 + 8(ex + C)
]

= −1 ± √
1 + 2(ex + C)

We get two solutions from the quadratic formula, and the initial condition will
dictate which solution we choose. If y(0) = 1, then we must use the positive square
root and we find that C = 1/2. The solution is

y(x) = −1 + √
2 + 2ex . (2.28)

On the other hand, if y(0) = −4, then we must use the negative square root and we

x

y

5

20

(0, � 4)

(0, 1)

�5

�20

Figure 3. y = −1 + √
2 + 2ex passes

through (0, 1), while
y = −1 − √

7 + 2ex passes through
(0, −4).

find that C = 3. The solution in this case is

y(x) = −1 − √
7 + 2ex . (2.29)

Both solutions are shown in Figure 3.
What about the interval of existence? A quick glance reveals that each solution

is defined on the interval (−∞, ∞). Some calculation will reveal that y′(x) is also
defined on (−∞, ∞). However, for each solution to satisfy the equation y′ =
ex/(1 + y), y must not equal −1. Fortunately, neither solution (2.28) or (2.29) can
ever equal −1. Therefore, the interval of existence is (−∞, ∞). �

Let’s be sure we know what the terminology means. An explicit solution is one
for which we have a formula as a function of the independent variable. For example,
(2.28) is an explicit solution to the equation in Example 2.25. In contrast, (2.27) is
an implicit equation for the solution. In this example, the implicit equation can be
solved easily to find an explicit equation, but this is not always the case.

Unfortunately, implicit solutions occur frequently. Consider again the general
problem in the form dy/dt = g(t)/h(y). Separating variables and integrating, we
get ∫

h(y) dy =
∫

g(t) dt. (2.30)

If we let

H(y) =
∫

h(y) dy and G(t) =
∫

g(t) dt,

and then introduce a constant of integration, equation (2.30) can be rewritten as

H(y) = G(t) + C. (2.31)

Unless H(y) = y, and therefore h(y) = 1, this is an implicit equation for y(t). To
find an explicit solution we must be able to compute the inverse function H−1. If
this is possible, then we have

y(t) = H−1(G(t) + C).
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Let’s do one more example.

E x a m p l e 2 . 3 2 Find the solutions to the differential equation

x ′ = 2t x

1 + x
,

having initial conditions x(0) = 1, x(0) = −2, and x(0) = 0.
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Figure 4. The direction field for x ′ = 2t x(1 + x).

The direction field for this equation is shown in Figure 4. This equation is
separable since it can be written as

dx

dt
= 2t

x

1 + x
.

When we separate variables, we get
(

1 + 1

x

)
dx = 2t dt,

assuming that x �= 0. Integrating, we get

x + ln(|x |) = t2 + C, (2.33)

where C is an arbitrary constant. For the initial condition x(0) = 1, this becomes
1 = C . Hence our solution is implicitly defined by x+ln(|x |) = t2+1. The function
ln(|x |) is not defined at x = 0, so our solution can never be equal to 0. Since our
initial condition is positive, and a solution must be continuous, our solution x(t)
must be positive for all t . Hence |x | = x and our solution is given implicitly by

x + ln(x) = t2 + 1. (2.34)

This is as far as we can go. We cannot solve equation (2.34) explicitly for
x(t), so we have to be satisfied with this as our answer. The solution x is defined
implicitly by equation (2.34).
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For the initial condition x(0) = −2, we can find the constant C in the same
manner. We get −2+ ln(|−2|) = C , or C = ln 2−2. Hence the solution is defined
implicitly by

x + ln(|x |) = t2 + ln 2 − 2.

This time our initial condition is negative, so |x | = −x , and our implicit equation
for the solution is

x + ln(−x) = t2 + ln 2 − 2.

For the initial condition x(0) = 0, we cannot divide by x/(1 + x) to separate
variables. However, we know that this means that x(t) = 0 is a solution. We can
easily verify that by direct substitution. Thus we do get an explicit formula for the
solution with this initial condition. �
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Figure 5. Solutions to x ′ = 2t x(1 + x).

The solutions sought in the previous example were computed numerically and
are plotted in Figure 5. Since the solutions are defined implicitly, it is a difficult task
to visualize them without the aid of numerical methods.

Why separation of variables works

If we start with a separable equation

y′ = g(t)
/

h(y), (2.35)

then separation of variables leads to the equation

h(y) dy = g(t) dt. (2.36)

However, many readers will have been taught that the terms dy and dt have no
meaning and so equation (2.36) has no meaning. Yet the method works, so what is
going on here?

To understand this better, let’s start with (2.35) and perform legitimate steps

y′ = g(t)/h(y) or h(y)y′ = g(t).

Integrating both sides with respect to t , we get∫
h(y(t))y′(t) dt =

∫
g(t) dt.
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The integral on the left contains the expression y′(t) dt . This is inviting us to change
the variable of integration to y, since when we do that, we use the equation dy =
y′(t) dt . Making the change of variables leads to∫

h(y) dy =
∫

g(t) dt. (2.37)

Notice the similarity between (2.36) and (2.37). Equation (2.36), which has no
meaning by itself, acquires a precise meaning when both sides are integrated. Since
this is precisely the next step that we take when solving separable equations, we can
be sure that our method is valid.

We mention in closing that the objects in (2.36), h(y) dy and g(t) dt , can be
given meaning as formal objects that can be integrated. They are called differen-
tial forms, and the special cases like dy and dt are called differentials. The basic
formula connecting differentials dy and dt when y is a function of t is

dy = y′(t) dt,

the change-of-variables formula in integration. These techniques will assume greater
importance in Section 2.6, where we will deal with exact equations. The use of dif-
ferential forms is very important in the study of the calculus of functions of several
variables and especially in applications to geometry and to parts of physics.

EXERCISES
In Exercises 1–12, find the general solution of the indicated
differential equation. If possible, find an explicit solution.

1. y′ = xy 2. xy′ = 2y

3. y′ = ex−y 4. y′ = (1 + y2)ex

5. y′ = xy + y 6. y′ = yex − 2ex + y − 2

7. y′ = x/(y + 2) 8. y′ = xy/(x − 1)

9. x2 y′ = y ln y − y′ 10. xy′ − y = 2x2 y

11. y3 y′ = x + 2y′ 12. y′ = (2xy+2x)/(x2 −1)

In Exercises 13–18, find the exact solution of the initial value
problem. Indicate the interval of existence.

13. y′ = y/x , y(1) = −2

14. y′ = −2t (1 + y2)/y, y(0) = 1

15. y′ = (sin x)/y, y(π/2) = 1

16. y′ = ex+y , y(0) = 0

17. y′ = (1 + y2), y(0) = 1

18. y′ = x/(1 + 2y), y(−1) = 0

In Exercises 19–22, find exact solutions for each given initial
condition. State the interval of existence in each case. Plot
each exact solution on the interval of existence. Use a numeri-
cal solver to duplicate the solution curve for each initial value
problem.

19. y′ = x/y, y(0) = 1, y(0) = −1

20. y′ = −x/y, y(0) = 2, y(0) = −2

21. y′ = 2 − y, y(0) = 3, y(0) = 1

22. y′ = (y2 + 1)/y, y(1) = 2

23. Suppose that a radioactive substance decays according to
the model N ′ = N0e−λt . Show that the half-life of the
radioactive substance is given by the equation

T1/2 = ln 2

λ
. (2.38)

24. The half-life of 238U is 4.47 × 107 yr.

(a) Use equation (2.38) to compute the decay constant λ

for 238U.

(b) Suppose that 1000 mg of 238U are present initially.
Use the equation N = N0e−λt and the decay constant
determined in part (a) to determine the time for this
sample to decay to 100 mg.

25. Tritium, 3H, is an isotope of hydrogen that is sometimes
used as a biochemical tracer. Suppose that 100 mg of 3H
decays to 80 mg in 4 hours. Determine the half-life of 3H.

26. The isotope Technetium 99m is used in medical imag-
ing. It has a half-life of about 6 hours, a useful feature
for radioisotopes that are injected into humans. The Tech-
netium, having such a short half-life, is created artificially
on scene by harvesting from a more stable isotope, 99Mb.
If 10 g of 99mTc are “harvested” from the Molybdenum,
how much of this sample remains after 9 hours?

27. The isotope Iodine 131 is used to destroy tissue in an over-
active thyroid gland. It has a half-life of 8.04 days. If a
hospital receives a shipment of 500 mg of 131I, how much
of the isotope will be left after 20 days?
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28. A substance contains two Radon isotopes, 210Rn [t1/2 =
2.42 h] and 211Rn [t1/2 = 15 h]. At first, 20% of the decays
come from 211Rn. How long must one wait until 80% do
so?

29. Suppose that a radioactive substance decays according to
the model N = N0e−λt .

(a) Show that after a period of Tλ = 1/λ, the material has
decreased to e−1 of its original value. Tλ is called the
time constant and it is defined by this property.

(b) A certain radioactive substance has a half-life of 12
hours. Compute the time constant for this substance.

(c) If there are originally 1000 mg of this radioactive sub-
stance present, plot the amount of substance remain-
ing over four time periods Tλ.

In the laboratory, a more useful measurement is the decay rate
R, usually measured in disintegrations per second, counts per
minute, etc. Thus, the decay rate is defined as R = −d N/dt .
Using the equation d N/dt = −λN , it is easily seen that R =
λN . Furthermore, differentiating the solution N = N0e−λt

with respect to t reveals that

R = R0e−λt , (2.39)

in which R0 is the decay rate at t = 0. That is, because R
and N are proportional, they both decrease with time accord-
ing to the same exponential law. Use this idea to help solve
Exercises 30–31.

30. Jim, working with a sample of 131I in the lab, measures the
decay rate at the end of each day.

Time Counts Time Counts
(days) (counts/day) (days) (counts/day)

1 938 6 587
2 822 7 536
3 753 8 494
4 738 9 455
5 647 10 429

Like any modern scientist, Jim wants to use all of the data
instead of only two points to estimate the constants R0 and
λ in equation (2.39). He will use the technique of regres-
sion to do so. Use the first method in the following list that
your technology makes available to you to estimate λ (and
R0 at the same time). Use this estimate to approximate the
half-life of 131I.

(a) Some modern calculators and the spreadsheet Excel
can do an exponential regression to directly estimate
R0 and λ.

(b) Taking the natural logarithm of both sides of equa-
tion (2.39) produces the result

ln R = −λt + ln R0.

Now ln R is a linear function of t . Most calcula-
tors, numerical software such as MATLAB R©, and
computer algebra systems such as Mathematica and
Maple will do a linear regression, enabling you to esti-
mate ln R0 and λ (e.g., use the MATLAB R© command
polyfit).

(c) If all else fails, plotting the natural logarithm of the
decay rates versus the time will produce a curve that
is almost linear. Draw the straight line that in your
estimation provides the best fit. The slope of this line
provides an estimate of −λ.

31. A 1.0 g sample of Radium 226 is measured to have a decay
rate of 3.7×1010 disintegrations/s. What is the half-life of
226Ra in years? Note: A chemical constant, called Avo-
gadro’s number, says that there are 6.02 × 1023 atoms per
mole, a common unit of measurement in chemistry. Fur-
thermore, the atomic mass of 226Ra is 226 g/mol.

32. Radiocarbon dating. Carbon 14 is produced naturally
in the earth’s atmosphere through the interaction of cos-
mic rays and Nitrogen 14. A neutron comes along and
strikes a 14N nucleus, knocking off a proton and creating
a 14C atom. This atom now has an affinity for oxygen and
quickly oxidizes as a 14CO2 molecule, which has many
of the same chemical properties as regular CO2. Through
photosynthesis, the 14CO2 molecules work their way into
the plant system, and from there into the food chain. The
ratio of 14C to regular carbon in living things is the same as
the ratio of these carbon atoms in the earth’s atmosphere,
which is fairly constant, being in a state of equilibrium.
When a living being dies, it no longer ingests 14C and the
existing 14C in the now defunct life form begins to de-
cay. In 1949, Willard F. Libby and his associates at the
University of Chicago measured the half-life of this de-
cay at 5568 ± 30 years, which to this day is known as the
Libby half-life. We now know that the half-life is closer
to 5730 years, called the Cambridge half-life, but radio-
carbon dating labs still use the Libby half-life for technical
and historical reasons. Libby was awarded the Nobel prize
in chemistry for his discovery.

(a) Carbon 14 dating is a useful dating tool for organisms
that lived during a specific time period. Why is that?
Estimate this period.

(b) Suppose that the ratio of 14C to carbon in the charcoal
on a cave wall is 0.617 times a similar ratio in living
wood in the area. Use the Libby half-life to estimate
the age of the charcoal.

33. A murder victim is discovered at midnight and the tem-
perature of the body is recorded at 31◦C. One hour later,
the temperature of the body is 29◦C. Assume that the sur-
rounding air temperature remains constant at 21◦C. Use
Newton’s law of cooling to calculate the victim’s time of
death. Note: The “normal” temperature of a living human
being is approximately 37◦C.

34. Suppose a cold beer at 40◦F is placed into a warm room
at 70◦F. Suppose 10 minutes later, the temperature of the
beer is 48◦F. Use Newton’s law of cooling to find the tem-
perature 25 minutes after the beer was placed into the
room.

35. Referring to the previous problem, suppose a 50◦ bottle of
beer is discovered on a kitchen counter in a 70◦ room. Ten
minutes later, the bottle is 60◦. If the refrigerator is kept
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at 40◦ how long had the bottle of beer been sitting on the
counter when it was first discovered?

36. Consider the equation

y′ = f (at + by + c),

where a, b, and c are constants. Show that the substitution
x = at + by + c changes the equation to the separable
equation x ′ = a + b f (x). Use this method to find the gen-
eral solution of the equation y′ = (y + t)2.

37. Suppose a curve, y = y(x) lies in the first quadrant and
suppose that for each x the piece of the tangent line at
(x, y(x)) which lies in the first quadrant is bisected by the
point (x, y(x)). Find y(x).

38. Suppose the projection of the part of the normal line to the
graph of y = y(x) from the point (x, y(x)) to the x-axis
has length 2. Find y(x).

39. Suppose a polar graph r = r(θ) has the property that θ

always equals twice the angle from the radial line (i.e. the
line from the origin to (θ, r(θ))) to the tangent. Find the
function r(θ).

40. Suppose y(x) is a continuous, nonnegative function with
y(0) = 0. Find y(x) if the area under the curve, y = y(t),
from 0 to x is always equal to one-fourth the area of the
rectangle with vertices at (0, 0) and (x, y(x)).

41. A football, in the shape of an ellipsoid, is lying on the
ground in the rain. Its length is 8 inches and its cross sec-
tion at its widest point is a circular disc of radius 2 inches.

A rain drop hits the top half of the football. Find the path
that it follows as it runs down the top half of the football.
Hint: Recall that the gradient of a function f (x, y) points
in the (x, y)-direction of maximum increase of f .

42. From Torricelli’s law, water in an open tank will flow out
through a hole in the bottom at a speed equal to that it
would acquire in a free-fall from the level of the water to
the hole. A parabolic bowl has the shape of y = x2, 0 ≤
x ≤ 1, (units are feet) revolved around the y-axis. This
bowl is initially full of water and at t = 0, a hole of ra-
dius a is punched at the bottom. How long will it take for
the bowl to drain? Hint: An object dropped from height
h will hit the ground at a speed of v = √

2gh, where g
is the gravitational constant. This formula is derived from
equating the kinetic energy on impact, (1/2)mv2, with the
work required to raise the object, mgh.

43. Referring to the previous problem, find the shape of the
bowl if the water level drops at a constant rate.

44. A destroyer is hunting a submarine in a dense fog. The
fog lifts for a moment, disclosing that the submarine lies
on the surface 4 miles away. The submarine immediately
descends and departs in a straight line in an unknown di-
rection. The speed of the destroyer is three times that of
the submarine. What path should the destroyer follow to
be certain of intercepting the submarine? Hint: Estab-
lish a polar coordinate system with the origin located at
the point where the submarine was sighted. Look up the
formula for arc length in polar coordinates.

2.3 Models of Motion One of the most intensively studied scientific problems is the study of motion. This
is true in particular for the motion of the planets. The history of the ideas involved
is one of the most interesting chapters of human history. We will start by giving a
brief summary of the development of models of motion.

A brief history of models of motion

The study of the stars and planets is as old as humankind. Even the most primitive
people have been fascinated by the nightly display of the stars, and they soon noticed
that some objects, now called planets, moved against the background of the “fixed”
stars. The systematic study of planetary motion goes back at least 3000 years to the
Babylonians, who made the first recorded observations.

Their interest was furthered by the Greek civilization. There were a number
of explanations posed, including that of Aristarchus who put the sun at the cen-
ter of the universe. However, the one that lasted was developed over hundreds of
years and culminated with the work of Hipparchus and Ptolemy. It was published
in Claudius Ptolemy’s Almagest in the second century A.D. Their theory was a de-
scriptive model of the motion of the planets. They assumed that the earth was the
center of the universe and that everything revolved around it. At first they thought
that the planets, the sun, and the moon moved with constant velocities in circular
paths around the earth. As they grew more proficient in their measurements they
realized that this was not true. They modified their theory by inventing epicycles.
These were smaller circles, the centers of which moved with constant velocity along
circular paths centered at the earth. The planets moved with constant velocity along
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the epicycles as the epicycles moved around the earth, as illustrated in Figure 1.
When this theory proved to be inadequate in some cases, the Greeks added epicy-
cles to the epicycles.

P C

E

Figure 1. A planet moving on an
epicycle.

The theory of epicycles enabled the Greeks to compute and predict the motion
of the planets. In many ways it was a highly satisfactory scientific theory, but it
left many questions unanswered. Most important, why do the planets move in the
complicated manner suggested by the theory of epicycles? The explanation was not
causal. It was only descriptive in nature.

A major improvement on this theory came in 1543, when Nicholas Copernicus
made the radical suggestion that the earth was not the center of the universe. Instead,
he proposed that the sun was the center. Of course this required a major change in
the thinking of all humankind in matters of religion and philosophy as well as in
astronomy. It did, however, make the theory of epicycles somewhat easier, because
fewer epicycles were needed to explain the motion of the planets.

Starting in 1609, and based on extensive and careful astronomical observations
made by Tycho Brahe, Johannes Kepler postulated three laws of planetary motion:

1. Each planet moves in an ellipse with the sun at one focus.

2. The line between the sun and a planet sweeps out equal areas in equal times.

3. The squares of the periods of revolution of the planets are proportional to the
cubes of the semimajor axis of their elliptic orbits.

P
S

Figure 2. Kepler’s second law.

Each of Kepler’s laws made a major break with the past. The first abandoned cir-
cular motion and the need for epicycles. The second abandoned the uniformity of
speed that had been part of the Ptolemaic theory, and replaced it by a beautiful math-
ematical expression of how fast a planet moved. The first two laws are illustrated
in Figure 2. The planet P moves along an ellipse with the sun S at one focus. The
two pie-shaped regions have equal area, so the planet will traverse the two arcs in
equal times. The third law was equally dramatic, since it displays a commonality in
the motion of all of the planets. Although a major accomplishment, Kepler’s results
remained descriptive. His three laws provided no causal explanation for the motion
of the planets.

A causal explanation was provided by Isaac Newton. However he did much
more. He made three major advances.3 First, he proved the fundamental theorem
of calculus, and for that reason he is given credit for inventing the calculus. The
fundamental theorem made possible the easy evaluation of integrals. As has been
demonstrated, this made possible the solution of differential equations. Newton’s
second contribution was his formulation of the laws of mechanics. In particular, his
second law, which says that force is equal to mass times acceleration, means that
the study of motion can be reduced to a differential equation or to a system of dif-
ferential equations. Finally, he discovered the universal law of gravity, which gave a
mathematical description of the force of gravity. All of these results were published
in 1687 in his Philosophiae Naturalis Principia Mathematica (The Mathematical
Principles of Natural Philosophy), commonly referred to as the Principia.

Using his three discoveries, Newton was able to derive Kepler’s laws of plan-
etary motion. This means that for the first time there was a causal explanation of
the motion of the planets. Newton’s results were much broader in application, since
they explained any kind of mechanical motion once the nature of the force was
understood.

There were still difficulties with Newton’s explanation. In particular, the force
of gravity, as Newton described it, was a force acting at a distance. One body

3 We have already discussed this briefly in Section 1.1 of Chapter 1.
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acts on any other without any indication of a physical connection. Philosophers and
physicists wondered how this was possible. In addition, by the end of the nineteenth
century, some physical and mathematical anomalies had been observed. Although
in most cases Newton’s theory provided good answers, there were some situations
in which the predictions of Newton’s theory were not quite accurate.

These difficulties were apparently resolved in 1919, when Albert Einstein pro-
posed his general theory of relativity. In this theory, gravity is explained as being
the result of the curvature of four-dimensional space-time. This curvature in turn is
caused by the masses of the bodies. The space-time itself provided the connection
between the bodies and did away with problems of action at a distance. Finally, the
general theory seems to have adequately explained most of the anomalies.

However, this is not the end of the story. Most physicists are convinced that
all forces should be manifestations of one unified force. Early in the twentieth
century they realized that there were four fundamental forces: gravity, the weak and
strong nuclear forces, and electromagnetism. In the 1970s they were able to use
quantum mechanics to unify the last three of these forces, but to date there is no
generally accepted theory that unites gravity with the other three. There seems to
be a fundamental conflict between general relativity and quantum mechanics.

A number of theories have been proposed to unify the two, but they remain
unverified by experimental findings. Principal among these is string theory. The
fundamental idea of string theory is that a particle is a tiny string that is moving in a
10-dimensional space-time. Four of these dimensions correspond to ordinary space-
time. The extra six dimensions are assumed to have a tiny extent, on the order of
10−33 cm. This explains why these directions are not noticeable. It also gives a clue
as to why string theory has no experimental verification. Nevertheless, as a theory
it is very exciting. Hopefully someday it will be possible to devise an experimental
test of the validity of string theory.

The modeling process

What we have described is a sequence of at least six different theories or mathemat-
ical models. The first were devised to explain the motion of the planets. Each was
an improvement on the previous one, and starting with Newton they began to have
more general application. With Newton’s theory we have a model of all motion
based on ordinary differential equations. His model was a complete departure from
those that preceded it. It is his model that is used today, except when the relative
velocities are so large that relativistic effects must be taken into account.

The continual improvement of the model in this case is what should take place
wherever a mathematical model is used. As we learn more, we change the model to
make it better. Furthermore, changes are always made on the basis of experimental
findings that show faults in the existing model. The scientific theories of motion are
probably the most mature of all scientific theories. Yet as our brief history shows,
they are still being refined. This skepticism of the validity of existing theories is an
important part of the scientific method. As good as our theories may seem, they can
always be improved.

Linear motion

Let’s look now at Newton’s theory of motion. We will limit ourselves for the mo-
ment to motion in one dimension. Think in terms of a ball that is moving only up
and down near the surface of the earth, as shown in Figure 3. Recall that we have
already discussed this in Sections 1.1 and 1.3 of Chapter 1.

m

x

Figure 3. A ball near the surface of
the earth.
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To set the stage, we recall from Chapter 1 that the displacement x is the distance
the ball is above the surface of the earth. Its derivative v = x ′ is the velocity, and
its second derivative a = v′ = x ′′ is the acceleration. The mathematical model for
motion is provided by Newton’s second law. In our terms this is

F = ma, (3.1)

where F is the force on the body and m is its mass. The gravitational force on a
body moving near the surface of the earth is

F = −mg,

where g is the gravitational constant. It has value g = 32 ft/s2 = 9.8 m/s2. The
minus sign is there because the direction of the force of gravity is always down,
in the direction opposite to the positive x-direction. Thus, in this case, Newton’s
second law (3.1) becomes

m
dv

dt
= m

d2x

dt2
= −mg, or

dv

dt
= d2x

dt2
= −g. (3.2)

We solved equation (3.2) in Example 3.14 in Section 1.3, and the solution is

x(t) = −1

2
gt2 + v0t + x0, (3.3)

where v0 is the original velocity and x0 is the initial height.

Air resistance

In the derivation of our model in equation (3.2), we assumed that the only force
acting was gravity. Now let’s take into account the resistance of the air to the motion
of the ball. If we think about how the resistance force acts, we come up with three
simple facts. First, if there is no motion, then the velocity is zero, and there is no
resistance. Second, the force always acts in the direction opposite to the motion.
Thus if the ball is moving up, the resistance force is in the down direction, and if the
ball is moving down, the force is in the up direction. From these considerations, we
conclude that the resistance force has sign opposite to that of the velocity. We can
put this mathematically by saying that the resistance force R has the form R(x, v) =
−r(x, v)v, where r is a function that is always nonnegative. There are cases where
r depends on x as well as v, such as when a ball is falling from a very high altitude
so the density of the air has to be taken into account. However, in the cases we will
consider r will depend only on v, so we will write

R(v) = −r(v)v. (3.4)

Beyond these considerations, experiments have shown that the resistance force
is somewhat complicated and there is no law that applies in all cases. Physicists use
several models. We will look at two. In the first, resistance is proportional to the
velocity, and in the second, the magnitude of the resistance is proportional to the
square of the velocity. We will look at each of these cases in turn.

In the first case, r is a positive constant. Since forces add, our total force is the
sum of the forces of gravity and air resistance,

F = −mg + R(v) = −mg − rv.
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Using Newton’s second law, we get

m
dv

dt
= −mg − rv, or

dv

dt
= −g − r

m
v. (3.5)

Notice that equation (3.5) is separable. Let’s look for solutions. We separate
variables to get

dv

g + rv/m
= −dt.

When we integrate this and solve for v, we find the solution

v(t) = Ce−r t/m − mg/r, (3.6)

where C is a constant of integration.
We discover an interesting fact if we look at the limit of the velocity for large t .

The exponential term in (3.6) decays to 0, so the velocity reaches the limit

lim
t→∞ v(t) = −mg

r
.

Thus the velocity does not continue to increase in magnitude as the ball is falling.
Instead it approaches the terminal velocity

vterm = −mg/r. (3.7)

We still have to solve for the displacement and for this we use equation (3.6),
which we rewrite as

dx

dt
= v = Ce−r t/m − mg/r.

This equation can be solved by integration to get

x = −mC

r
e−r t/m − mgt

r
+ A,

where A is another constant of integration.

E x a m p l e 3 . 8 Suppose you drop a brick from the top of a building that is 250 m high. The brick
has a mass of 2 kg, and the resistance force is given by R = −4v. How long will it
take the brick to reach the ground? What will be its velocity at that time?

The equation for the velocity of the brick is given in (3.6). Since we are drop-
ping the brick, the initial condition is v(0) = 0, and we can use (3.6) to find that

0 = v(0) = C − mg/r or C = mg/r = 2 × 9.8/4 = 4.9.

Then

dx

dt
= v(t) = 4.9

(
e−2t − 1

)
. (3.9)

Integrating, we get

x(t) = 4.9

(
−1

2
e−2t − t

)
+ A.

The initial condition x(0) = 250 enables us to compute A, since evaluating the
previous equation at t = 0 gives

250 = −4.9

2
+ A or A = 252.45.
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Thus the equation for the height of the brick becomes

x(t) = 4.9

(
−1

2
e−2t − t

)
+ 252.45.

We want to find t such that x(t) = 0. This equation cannot be solved using alge-
bra, but a hand-held calculator or a computer can find a very accurate approximate
solution. In this way we obtain t = 51.5204 seconds.

For a time this large the exponential term in (3.9) is negligible, so the brick has
reached its terminal velocity of vterm = −4.9m/s. �

Now let’s turn to the second case, where the magnitude of the resistance force
is proportional to the square of the velocity. Given the form of R in (3.4) together
with the fact that r ≥ 0, we see that the magnitude of R is

|R(v)| = r(v)|v| = kv2

for some nonnegative constant k. Since v2 = |v|2, we conclude that r = k|v|, and
the resistance force is R(v) = −k|v|v. In this case, Newton’s second law becomes

m
dv

dt
= −mg − k|v|v, or

dv

dt
= −g − k

m
|v|v. (3.10)

Again, (3.10) is a separable equation. Let’s look for solutions. Because of the
absolute value, we have to consider separately the situation when the velocity is
positive and the ball is moving upward and when the velocity is negative and the
ball is descending. We will solve the equation for negative velocity and leave the
other case to the exercises. When v < 0, |v| = −v, so (3.10) becomes

dv

dt
= −g + k

m
v2. (3.11)

Scaling variables to ease computation

We could solve (3.11) using separation of variables, but the constants cause things
to get a little complicated. Instead, let’s first introduce new variables by scaling the
old ones. We introduce

v = αw and t = βs,

where the constants α and β will be determined in a moment. Then

dv

dt
= dv

dw

dw

ds

ds

dt
= α

β

dw

ds
,

and equation (3.11) becomes

α

β

dw

ds
= −g + k

m
α2w2, or

dw

ds
= −gβ

α
+ kαβ

m
w2. (3.12)

We choose α and β to make this equation as simple as possible. We require that

gβ

α
= 1 and

kαβ

m
= 1.

Solving the first equation for α, we get α = gβ. Making this substitution in the
second equation, it becomes kgβ2/m = 1. Solving for β and then for α, we get

β =
√

m

kg
and α =

√
mg

k
.
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As a reward for all of this, our differential equation in (3.12) simplifies to

dw

ds
= −1 + w2. (3.13)

The separable equation (3.13) can be solved in the usual way. We first get

dw

1 − w2
= −ds.

Next we use partial fractions to write this as

1

2

[
dw

1 + w
+ dw

1 − w

]
= −ds.

This can be integrated to get

1

2
ln

∣∣∣∣1 + w

1 − w

∣∣∣∣ = C − s,

where C is an arbitrary constant. When we exponentiate, we get

∣∣∣∣1 + w

1 − w

∣∣∣∣ = e2C−2s = Ae−2s .

By allowing A to be negative or 0, we see that in general

1 + w

1 − w
= Ae−2s .

Solving for w, we find that

w(t) = Ae−2s − 1

Ae−2s + 1
.

In terms of our original variables v and t , this becomes

v(t) = −
√

mg

k

1 − Ae−2t
√

kg/m

1 + Ae−2t
√

kg/m
. (3.14)

We want to observe the limiting behavior of v(t) as t → ∞. The exponential
terms in (3.14) decay to 0, so the velocity approaches the terminal velocity

vterm = −√
mg/k.

This should be compared to equation (3.7), which gives the terminal velocity when
the air resistance is proportional to the velocity instead of to its square.
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Finding the displacement

Integrating equation (3.14) to find the displacement is a daunting task to say the
least. For certain problems the task can be made easier by eliminating the variable t
from the equation a = dv/dt. This is done using the chain rule to write

a = dv

dt
= dv

dx
· dx

dt
= dv

dx
· v. (3.15)

Using this, equation (3.10) becomes

v
dv

dx
= −g − k

m
|v|v. (3.16)

Here is an example of how this can be useful.

E x a m p l e 3 . 1 7 A ball of mass m = 0.2 kg is projected from the surface of the earth with velocity
v0 = 50 m/s. Assume that the force of air resistance is given by R = −k |v|v,

where k = 0.02. What is the maximum height reached by the ball?

Since the ball is going up, the velocity is positive, so equation (3.16) becomes

v
dv

dx
= −g − k

m
v2 = −mg + kv2

m
.

When we separate variables, we get

v dv

mg + kv2
= −dx

m
. (3.18)

We will integrate this equation using the definite integral. To find what the end
points of the integrations are, we notice first that at time t = 0 we have x(0) =
0, and v(0) = v0. At a later time T , which is unknown and which need not be
computed, the ball is at the top of its path, where x(T ) = xmax and v(T ) = 0. With
these limits the integral of (3.18) is

∫ 0

v0

v dv

mg + kv2
= −

∫ xmax

0

dx

m
.

Evaluating the integrals and solving for xmax, we get

xmax = m

2k
ln

(
1 + kv2

0

mg

)
.

With the data given we find that xmax = 16.4 m. �

EXERCISES
1. The acceleration due to gravity (near the earth’s surface)

is 9.8 m/s2. If a rocketship in free space were able to
maintain this constant acceleration indefinitely, how long
would it take the ship to reach a speed equaling (1/5)c,
where c is the speed of light? How far will the ship have
traveled in this time? Ignore air resistance. Note: The
speed of light is 3.0 × 108 m/s.

2. A balloon is ascending at a rate of 15 m/s at a height of

100 m above the ground when a package is dropped from
the gondola. How long will it take the package to reach
the ground? Ignore air resistance.

3. A stone is released from rest and dropped into a deep well.
Eight seconds later, the sound of the stone splashing into
the water at the bottom of the well returns to the ear of the
person who released the stone. How long does it take the
stone to drop to the bottom of the well? How deep is the
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well? Ignore air resistance. Note: The speed of sound is
340 m/s.

4. A rocket is fired vertically and ascends with constant ac-
celeration a = 100 m/s2 for 1.0 min. At that point, the
rocket motor shuts off and the rocket continues upward
under the influence of gravity. Find the maximum altitude
acquired by the rocket and the total time elapsed from the
take-off until the rocket returns to the earth. Ignore air
resistance.

5. A body is released from rest and travels the last half of the
total distance fallen in precisely one second. How far did
the body fall and how long did it take to fall the complete
distance? Ignore air resistance.

6. A ball is projected vertically upward with initial velocity
v0 from ground level. Ignore air resistance.

(a) What is the maximum height acquired by the ball?

(b) How long does it take the ball to reach its maximum
height? How long does it take the ball to return to the
ground? Are these times identical?

(c) What is the speed of the ball when it impacts with the
ground on its return?

7. A particle moves along a line with x , v, and a representing
position, velocity, and acceleration, respectively. Assum-
ing that the acceleration a is constant, use equation (3.15)
to show that

v2 = v2
0 + 2a(x − x0),

where x0 and v0 are the position and velocity of the parti-
cle at time t = 0, respectively. A car’s speed is reduced
from 60 mi/h to 30 mi/h in a span covering 500 ft. Calcu-
late the magnitude and direction of the constant decelera-
tion.

8. Near the surface of the earth, a ball is released from rest
and its flight through the air offers resistance that is pro-
portional to its velocity. How long will it take the ball to
reach one-half of its terminal velocity? How far will it
travel during this time?

9. A ball having mass m = 0.1 kg falls from rest under the
influence of gravity in a medium that provides a resis-
tance that is proportional to its velocity. For a velocity
of 0.2 m/s, the force due to the resistance of the medium is
−1 N. [One Newton [N] is the force required to accelerate
a 1kg mass at a rate of 1 m/s2. Hence, 1 N = 1 kg m/s2.]
Find the terminal velocity of the ball.

10. An object having mass 70 kg falls from rest under the in-
fluence of gravity. The terminal velocity of the object is
−20 m/s. Assume that the air resistance is proportional to
the velocity.

(a) Find the velocity and distance traveled at the end of 2
seconds.

(b) How long does it take the object to reach 80% of its
terminal velocity?

11. A ball is thrown vertically into the air with unknown ve-
locity v0 at time t = 0. Assume that the ball is thrown

from about shoulder height, say y0 = 1.5 m. If you ignore
air resistance, then it is easy to show that dv/dt = −g,
where g = 9.8 m/s2 is the acceleration due to gravity.
Follow the lead of exercise 7 to show that v dv = −g dy.
Further, because the velocity of the ball is zero when it
reaches its maximum height,

∫ 0

v0

v dv =
∫ 15

1.5
−g dy.

Find the initial velocity of the ball if the ball reaches a
maximum height of 15 m.

Next, let’s include air resistance. Suppose that
R(v) = −rv and show that the equation of motion be-
comes

v dv =
(
−g − r

m
v
)

dy.

If the mass of the ball is 0.1 kg and r = 0.02 N/(m/s), find
the initial velocity if the ball is again released from shoul-
der height (y0 = 1.5 m) and reaches a maximum height of
15 m.

12. A mass of 0.2 kg is released from rest. As the object
falls, air provides a resistance proportional to the veloc-
ity (R(v) = −0.1v), where the velocity is measured in
m/s. If the mass is dropped from a height of 50 m, what is
its velocity when it hits the ground? Hint: You may find
equation (3.15) useful. Find v when y = 0.

13. An object having mass m = 0.1 kg is launched from
ground level with an initial vertical velocity of 230 m/s.
The air offers resistance proportional to the square of the
object’s velocity (R(v) = −0.05v|v|), where the velocity
is measured in m/s. Find the maximum height acquired by
the object.

14. One of the great discoveries in science is Newton’s uni-
versal law of gravitation, which states that the magnitude
of the gravitational force exerted by one point mass on
another is proportional to their masses and inversely pro-
portional to the square of the distance between them. In
symbols,

|F | = G Mm

r 2
,

where G is a universal gravitational constant. This con-
stant, first measured by Lord Cavendish in 1798, has a
currently accepted value approximately equal to 6.6726 ×
10−11 Nm2/kg2. Newton also showed that the law was
valid for two spherical masses. In this case, you assume
that the mass is concentrated at a point at the center of
each sphere.

Suppose that an object with mass m is launched from
the earth’s surface with initial velocity v0. Let y represent
its position above the earth’s surface, as shown in Figure 4.
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R

m

y

Figure 4. The object in Exercise 14.

(a) If air resistance is ignored, use the idea in equa-
tion (3.15) to help show that

v
dv

dy
= − G M

(R + y)2
. (3.19)

(b) Assuming that y(0) = 0 (the object is launched from
earth’s surface) and v(0) = v0, solve equation (3.19)
to show that

v2 = v2
0 − 2G M

(
1

R
− 1

R + y

)
.

(c) Show that the maximum height reached by the object
is given by

y = v2
0 R

2G M/R − v2
0

.

(d) Show that the initial velocity

v0 =
√

2G M

R

is the minimum required for the object to “escape”
earth’s gravitational field. Hint: If an object “escapes”
earth’s gravitational field, then the maximum height
acquired by the object is potentially infinite.

15. Inside the earth, the surrounding mass exerts a gravita-
tional pull in all directions. Of course, there is more mass
towards the center of the earth than any other direction.
The magnitude of this force is proportional to the distance
from the center. (Can you prove this?) Suppose a hole is
drilled to the center of the earth and a mass is dropped in
the hole. Ignoring air resistance, with what velocity will
the mass strike the center of the earth? As a hint, let x rep-
resent the distance of the mass from the center of the earth
and note that equation (3.15) implies that the acceleration
is a = v(dv/dx).

16. An object with mass m is released from rest at a distance
of a meters above the earth’s surface (see Figure 5). Use
Newton’s universal law of gravitation (see Exercise 14) to
show that the object impacts the earth surface with a ve-
locity determined by

v =
√

2agR

a + R
,

where g is the acceleration due to gravity at the earth’s
surface and R is the radius of the earth. Ignore any affects
due to the earth’s rotation and atmosphere. Hint: On the
earth’s surface, explain why mg = G Mm/R2, where M
is the mass of the earth and G is the universal gravitational
constant.

y

a

R

m

Figure 5. The object in Exercise 16.

17. A 2-foot length of a 10-foot chain hangs off the end of a
high table. Neglecting friction, find the time required for
the chain to slide off the table. Hint: Model this problem
with a second-order differential equation and then solve
it using the following reduction of order technique: If x
is the length of the chain hanging off the table, then by
equation (3.15) the acceleration is a = v(dv/dx).

18. A parachutist of mass 60 kg free-falls from an airplane at
an altitude of 5000 meters. He is subjected to an air re-
sistance force that is proportional to his speed . Assume
the constant of proportionality is 10 (kg/sec). Find and
solve the differential equation governing the altitude of the
parachuter at time t seconds after the start of his free-fall.
Assuming he does not deploy his parachute, find his limit-
ing velocity and how much time will elapse before he hits
the ground.

19. In our models of air resistance the resistance force has de-
pended only on the velocity. However, for an object that
drops a considerable distance, such as the parachutist in
the previous exercise, there is a dependence on the alti-
tude as well. It is reasonable to assume that the resis-
tance force is proportional to air pressure, as well as to
the velocity. Furthermore, to a first approximation the air
pressure varies exponentially with the altitude (i.e., it is
proportional to e−ax , where a is a constant and x is the
altitude). Present a model using Newton’s second law for
the motion of an object in the earth’s atmosphere subject
to such a resistance force.
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